blob: c8206c05f2dc8ee62b29c3e8f077c61e219b9489 [file] [log] [blame]
/**
* Describes utility functions for parsing CPER into JSON IR.
*
* Author: Lawrence.Tang@arm.com
**/
#include <stdio.h>
#include "json.h"
#include "edk/Cper.h"
#include "cper-utils.h"
//The available severity types for CPER.
const char* CPER_SEVERITY_TYPES[4] = {"Recoverable", "Fatal", "Corrected", "Informational"};
//Converts the given generic CPER error status to JSON IR.
json_object* cper_generic_error_status_to_ir(EFI_GENERIC_ERROR_STATUS* error_status)
{
json_object* error_status_ir = json_object_new_object();
//Error type.
json_object_object_add(error_status_ir, "errorType", integer_to_readable_pair_with_desc(error_status->Type, 18,
CPER_GENERIC_ERROR_TYPES_KEYS,
CPER_GENERIC_ERROR_TYPES_VALUES,
CPER_GENERIC_ERROR_TYPES_DESCRIPTIONS,
"Unknown (Reserved)"));
//Boolean bit fields.
json_object_object_add(error_status_ir, "addressSignal", json_object_new_boolean(error_status->AddressSignal));
json_object_object_add(error_status_ir, "controlSignal", json_object_new_boolean(error_status->ControlSignal));
json_object_object_add(error_status_ir, "dataSignal", json_object_new_boolean(error_status->DataSignal));
json_object_object_add(error_status_ir, "detectedByResponder", json_object_new_boolean(error_status->DetectedByResponder));
json_object_object_add(error_status_ir, "detectedByRequester", json_object_new_boolean(error_status->DetectedByRequester));
json_object_object_add(error_status_ir, "firstError", json_object_new_boolean(error_status->FirstError));
json_object_object_add(error_status_ir, "overflowDroppedLogs", json_object_new_boolean(error_status->OverflowNotLogged));
return error_status_ir;
}
//Converts the given CPER-JSON generic error status into a CPER structure.
void ir_generic_error_status_to_cper(json_object* error_status, EFI_GENERIC_ERROR_STATUS* error_status_cper)
{
error_status_cper->Type = readable_pair_to_integer(json_object_object_get(error_status, "errorType"));
error_status_cper->AddressSignal = json_object_get_boolean(json_object_object_get(error_status, "addressSignal"));
error_status_cper->ControlSignal = json_object_get_boolean(json_object_object_get(error_status, "controlSignal"));
error_status_cper->DataSignal = json_object_get_boolean(json_object_object_get(error_status, "dataSignal"));
error_status_cper->DetectedByResponder = json_object_get_boolean(json_object_object_get(error_status, "detectedByResponder"));
error_status_cper->DetectedByRequester = json_object_get_boolean(json_object_object_get(error_status, "detectedByRequester"));
error_status_cper->FirstError = json_object_get_boolean(json_object_object_get(error_status, "firstError"));
error_status_cper->OverflowNotLogged = json_object_get_boolean(json_object_object_get(error_status, "overflowDroppedLogs"));
}
//Converts a single uniform struct of UINT64s into intermediate JSON IR format, given names for each field in byte order.
json_object* uniform_struct64_to_ir(UINT64* start, int len, const char* names[])
{
json_object* result = json_object_new_object();
UINT64* cur = start;
for (int i=0; i<len; i++)
{
json_object_object_add(result, names[i], json_object_new_uint64(*cur));
cur++;
}
return result;
}
//Converts a single uniform struct of UINT32s into intermediate JSON IR format, given names for each field in byte order.
json_object* uniform_struct_to_ir(UINT32* start, int len, const char* names[])
{
json_object* result = json_object_new_object();
UINT32* cur = start;
for (int i=0; i<len; i++)
{
json_object_object_add(result, names[i], json_object_new_uint64(*cur));
cur++;
}
return result;
}
//Converts a single object containing UINT32s into a uniform struct.
void ir_to_uniform_struct64(json_object* ir, UINT64* start, int len, const char* names[])
{
UINT64* cur = start;
for (int i=0; i<len; i++)
{
*cur = json_object_get_uint64(json_object_object_get(ir, names[i]));
cur++;
}
}
//Converts a single object containing UINT32s into a uniform struct.
void ir_to_uniform_struct(json_object* ir, UINT32* start, int len, const char* names[])
{
UINT32* cur = start;
for (int i=0; i<len; i++)
{
*cur = (UINT32)json_object_get_uint64(json_object_object_get(ir, names[i]));
cur++;
}
}
//Converts a single integer value to an object containing a value, and a readable name if possible.
json_object* integer_to_readable_pair(UINT64 value, int len, int keys[], const char* values[], const char* default_value)
{
json_object* result = json_object_new_object();
json_object_object_add(result, "value", json_object_new_uint64(value));
//Search for human readable name, add.
const char* name = default_value;
for (int i=0; i<len; i++)
{
if (keys[i] == value)
name = values[i];
}
json_object_object_add(result, "name", json_object_new_string(name));
return result;
}
//Converts a single integer value to an object containing a value, readable name and description if possible.
json_object* integer_to_readable_pair_with_desc(int value, int len, int keys[], const char* values[],
const char* descriptions[], const char* default_value)
{
json_object* result = json_object_new_object();
json_object_object_add(result, "value", json_object_new_int(value));
//Search for human readable name, add.
const char* name = default_value;
for (int i=0; i<len; i++)
{
if (keys[i] == value)
{
name = values[i];
json_object_object_add(result, "description", json_object_new_string(descriptions[i]));
}
}
json_object_object_add(result, "name", json_object_new_string(name));
return result;
}
//Returns a single UINT64 value from the given readable pair object.
//Assumes the integer value is held in the "value" field.
UINT64 readable_pair_to_integer(json_object* pair)
{
return json_object_get_uint64(json_object_object_get(pair, "value"));
}
//Converts the given 64 bit bitfield to IR, assuming bit 0 starts on the left.
json_object* bitfield_to_ir(UINT64 bitfield, int num_fields, const char* names[])
{
json_object* result = json_object_new_object();
for (int i=0; i<num_fields; i++)
{
json_object_object_add(result, names[i], json_object_new_boolean((bitfield >> i) & 0b1));
}
return result;
}
//Converts the given IR bitfield into a standard UINT64 bitfield, with fields beginning from bit 0.
UINT64 ir_to_bitfield(json_object* ir, int num_fields, const char* names[])
{
UINT64 result = 0x0;
for (int i=0; i<num_fields; i++)
{
if (json_object_get_boolean(json_object_object_get(ir, names[i])))
result |= (0x1 << i);
}
return result;
}
//Converts the given UINT64 array into a JSON IR array, given the length.
json_object* uint64_array_to_ir_array(UINT64* array, int len)
{
json_object* array_ir = json_object_new_array();
for (int i=0; i<len; i++)
json_object_array_add(array_ir, json_object_new_uint64(array[i]));
return array_ir;
}
//Converts a single UINT16 revision number into JSON IR representation.
json_object* revision_to_ir(UINT16 revision)
{
json_object* revision_info = json_object_new_object();
json_object_object_add(revision_info, "major", json_object_new_int(revision >> 8));
json_object_object_add(revision_info, "minor", json_object_new_int(revision & 0xFF));
return revision_info;
}
//Returns the appropriate string for the given integer severity.
const char* severity_to_string(UINT32 severity)
{
return severity < 4 ? CPER_SEVERITY_TYPES[severity] : "Unknown";
}
//Converts a single EFI timestamp to string, at the given output.
//Output must be at least TIMESTAMP_LENGTH bytes long.
void timestamp_to_string(char* out, EFI_ERROR_TIME_STAMP* timestamp)
{
sprintf(out, "%02d%02d-%02d-%02dT%02d:%02d:%02d.000",
timestamp->Century,
timestamp->Year,
timestamp->Month,
timestamp->Day,
timestamp->Hours,
timestamp->Minutes,
timestamp->Seconds);
}
//Converts a single timestamp string to an EFI timestamp.
void string_to_timestamp(EFI_ERROR_TIME_STAMP* out, const char* timestamp)
{
//Ignore invalid timestamps.
if (timestamp == NULL)
return;
sscanf(timestamp, "%02hhd%02hhd-%02hhd-%02hhdT%02hhd:%02hhd:%02hhd.000",
&out->Century,
&out->Year,
&out->Month,
&out->Day,
&out->Hours,
&out->Minutes,
&out->Seconds);
}
//Helper function to convert an EDK EFI GUID into a string for intermediate use.
void guid_to_string(char* out, EFI_GUID* guid)
{
sprintf(out, "%08x-%04x-%04x-%02x%02x%02x%02x%02x%02x%02x%02x",
guid->Data1,
guid->Data2,
guid->Data3,
guid->Data4[0],
guid->Data4[1],
guid->Data4[2],
guid->Data4[3],
guid->Data4[4],
guid->Data4[5],
guid->Data4[6],
guid->Data4[7]);
}
//Helper function to convert a string into an EDK EFI GUID.
void string_to_guid(EFI_GUID* out, const char* guid)
{
//Ignore invalid GUIDs.
if (guid == NULL)
return;
sscanf(guid, "%08x-%04hx-%04hx-%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx",
&out->Data1,
&out->Data2,
&out->Data3,
out->Data4,
out->Data4 + 1,
out->Data4 + 2,
out->Data4 + 3,
out->Data4 + 4,
out->Data4 + 5,
out->Data4 + 6,
out->Data4 + 7);
}
//Returns one if two EFI GUIDs are equal, zero otherwise.
int guid_equal(EFI_GUID* a, EFI_GUID* b)
{
//Check top base 3 components.
if (a->Data1 != b->Data1
|| a->Data2 != b->Data2
|| a->Data3 != b->Data3)
{
return 0;
}
//Check Data4 array for equality.
for (int i=0; i<8; i++)
{
if (a->Data4[i] != b->Data4[i])
return 0;
}
return 1;
}
//Converts the given BCD byte to a standard integer.
int bcd_to_int(UINT8 bcd)
{
return ((bcd & 0xF0) >> 4) * 10 + (bcd & 0x0F);
}
//Converts the given integer to a single byte BCD.
UINT8 int_to_bcd(int value)
{
UINT8 result = 0;
int shift = 0;
while (value > 0) {
result |= (value % 10) << (shift++ << 2);
value /= 10;
}
return result;
}