utils: Reimplement ver2str() for sanity

The dense mix of print_version_field(), snprintf() with its tricky
return semantics, and the tricky POINTER_MOVE() macro are replaced by an
implementation where each statement directly inserts one character into
the buffer while preventing buffer overflow.

While we're reworking ver2str(), change the return type to avoid
clang-tidy's bugprone-narrowing-conversion diagnostic. This is an
API/ABI break, but it's one with low impact: The test suite declares the
variable holding the return type as `auto`, while the one ver2str() call
in the entire openbmc github org, in pldmd, immediately discards the
return value (it is never assigned).

Signed-off-by: Andrew Jeffery <andrew@aj.id.au>
Change-Id: I11708a32019a36ea0d31229f6c91c8a75f7f22d0
2 files changed
tree: 18b23616ea7cde3c4d6887e75b6e1f7e8e6c9cac
  1. include/
  2. src/
  3. subprojects/
  4. tests/
  5. .clang-format
  6. libpldm.pc.in
  7. LICENSE
  8. meson.build
  9. meson_options.txt
  10. OWNERS
  11. README.md
README.md

libpldm

This is a library which deals with the encoding and decoding of PLDM messages. It should be possible to use this library by projects other than OpenBMC, and hence certain constraints apply to it:

  • keeping it light weight
  • implementation in C
  • minimal dynamic memory allocations
  • endian-safe
  • no OpenBMC specific dependencies

Source files are named according to the PLDM Type, for eg base.[h/c], fru.[h/c], etc.

Given a PLDM command "foo", the library will provide the following API: For the Requester function:

encode_foo_req() - encode a foo request
decode_foo_resp() - decode a response to foo

For the Responder function:

decode_foo_req() - decode a foo request
encode_foo_resp() - encode a response to foo

The library also provides API to pack and unpack PLDM headers.

To Build

Need meson and ninja. Alternatively, source an OpenBMC ARM/x86 SDK.

meson setup builddir && ninja -C builddir

To run unit tests

The simplest way of running the tests is as described by the meson man page:

meson setup builddir && meson test -C builddir

OEM/vendor-specific functions

This will support OEM or vendor-specific functions and semantic information. Following directory structure has to be used:

 libpldm
    |---- include/libpldm
    |        |---- oem/<oem_name>/libpldm
    |                    |----<oem based .h files>
    |---- src
    |        |---- oem/<oem_name>
    |                    |----<oem based .c files>
    |---- tests
    |        |---- oem/<oem_name>
    |                    |----<oem based test files>

<oem_name> - This folder must be created with the name of the OEM/vendor in lower case.

Header files & source files having the oem functionality for the libpldm library should be placed under the respective folder hierarchy as mentioned in the above figure. They must be adhering to the rules mentioned under the libpldm section above.

Once the above is done a meson option has to be created in libpldm/meson_options.txt with its mapped compiler flag to enable conditional compilation.

For consistency would recommend using "oem-<oem_name>".

The libpldm/meson.build and the corresponding source file(s) will need to incorporate the logic of adding its mapped compiler flag to allow conditional compilation of the code.

Requester APIs

The pldm requester API's are present in src/requester folder and they are intended to provide API's to interact with the desired underlying transport layer to send/receive pldm messages.

NOTE : In the current state, the requester API's in the repository only works with specific transport mechanism & these are going to change in future & probably aren't appropriate to be writing code against.