blob: 5f87343d12d8ca98db432ecdded681cc20c3b94b [file] [log] [blame] [edit]
#!/usr/bin/env python3
r"""
This module provides many print functions such as sprint_var, sprint_time, sprint_error, sprint_call_stack.
"""
import sys
import os
import time
import inspect
import re
import grp
import socket
import argparse
import copy
try:
import __builtin__
except ImportError:
import builtins as __builtin__
import logging
import collections
from wrap_utils import *
try:
robot_env = 1
from robot.utils import DotDict
from robot.utils import NormalizedDict
from robot.libraries.BuiltIn import BuiltIn
# Having access to the robot libraries alone does not indicate that we are in a robot environment. The
# following try block should confirm that.
try:
var_value = BuiltIn().get_variable_value("${SUITE_NAME}", "")
except BaseException:
robot_env = 0
except ImportError:
robot_env = 0
import gen_arg as ga
# Setting these variables for use both inside this module and by programs importing this module.
pgm_file_path = sys.argv[0]
pgm_name = os.path.basename(pgm_file_path)
pgm_dir_path = os.path.normpath(re.sub("/" + pgm_name, "", pgm_file_path)) +\
os.path.sep
# Some functions (e.g. sprint_pgm_header) have need of a program name value that looks more like a valid
# variable name. Therefore, we'll swap odd characters like "." out for underscores.
pgm_name_var_name = pgm_name.replace(".", "_")
# Initialize global values used as defaults by print_time, print_var, etc.
dft_indent = 0
# Calculate default column width for print_var functions based on environment variable settings. The
# objective is to make the variable values line up nicely with the time stamps.
dft_col1_width = 29
NANOSECONDS = os.environ.get('NANOSECONDS', '1')
if NANOSECONDS == "1":
dft_col1_width = dft_col1_width + 7
SHOW_ELAPSED_TIME = os.environ.get('SHOW_ELAPSED_TIME', '1')
if SHOW_ELAPSED_TIME == "1":
if NANOSECONDS == "1":
dft_col1_width = dft_col1_width + 14
else:
dft_col1_width = dft_col1_width + 7
# Initialize some time variables used in module functions.
start_time = time.time()
# sprint_time_last_seconds is used to calculate elapsed seconds.
sprint_time_last_seconds = [start_time, start_time]
# Define global index for the sprint_time_last_seconds list.
last_seconds_ix = 0
def set_last_seconds_ix(ix):
r"""
Set the "last_seconds_ix" module variable to the index value.
Description of argument(s):
ix The index value to be set into the module global last_seconds_ix variable.
"""
global last_seconds_ix
last_seconds_ix = ix
# Since output from the lprint_ functions goes to a different location than the output from the print_
# functions (e.g. a file vs. the console), sprint_time_last_seconds has been created as a list rather than a
# simple integer so that it can store multiple sprint_time_last_seconds values. Standard print_ functions
# defined in this file will use sprint_time_last_seconds[0] and the lprint_ functions will use
# sprint_time_last_seconds[1].
def standard_print_last_seconds_ix():
r"""
Return the standard print last_seconds index value to the caller.
"""
return 0
def lprint_last_seconds_ix():
r"""
Return lprint last_seconds index value to the caller.
"""
return 1
# The user can set environment variable "GEN_PRINT_DEBUG" to get debug output from this module.
gen_print_debug = int(os.environ.get('GEN_PRINT_DEBUG', 0))
def sprint_func_name(stack_frame_ix=None):
r"""
Return the function name associated with the indicated stack frame.
Description of argument(s):
stack_frame_ix The index of the stack frame whose function name should be returned. If
the caller does not specify a value, this function will set the value to
1 which is the index of the caller's stack frame. If the caller is the
wrapper function "print_func_name", this function will bump it up by 1.
"""
# If user specified no stack_frame_ix, we'll set it to a proper default value.
if stack_frame_ix is None:
func_name = sys._getframe().f_code.co_name
caller_func_name = sys._getframe(1).f_code.co_name
if func_name[1:] == caller_func_name:
stack_frame_ix = 2
else:
stack_frame_ix = 1
func_name = sys._getframe(stack_frame_ix).f_code.co_name
return func_name
def work_around_inspect_stack_cwd_failure():
r"""
Work around the inspect.stack() getcwd() failure by making "/tmp" the current working directory.
NOTES: If the current working directory has been deleted, inspect.stack() will fail with "OSError: [Errno
2] No such file or directory" because it tries to do a getcwd().
This function will try to prevent this failure by detecting the scenario in advance and making "/tmp" the
current working directory.
"""
try:
os.getcwd()
except OSError:
os.chdir("/tmp")
def get_line_indent(line):
r"""
Return the number of spaces at the beginning of the line.
"""
return len(line) - len(line.lstrip(' '))
# get_arg_name is not a print function per se. It has been included in this module because it is used by
# sprint_var which is defined in this module.
def get_arg_name(var,
arg_num=1,
stack_frame_ix=1):
r"""
Return the "name" of an argument passed to a function. This could be a literal or a variable name.
Description of argument(s):
var The variable whose name is to be returned.
arg_num The arg number whose name is to be returned. To illustrate how arg_num
is processed, suppose that a programmer codes this line: "rc, outbuf =
my_func(var1, var2)" and suppose that my_func has this line of code:
"result = gp.get_arg_name(0, arg_num, 2)". If arg_num is positive, the
indicated argument is returned. For example, if arg_num is 1, "var1"
would be returned, If arg_num is 2, "var2" would be returned. If arg_num
exceeds the number of arguments, get_arg_name will simply return a
complete list of the arguments. If arg_num is 0, get_arg_name will
return the name of the target function as specified in the calling line
("my_func" in this case). To clarify, if the caller of the target
function uses an alias function name, the alias name would be returned.
If arg_num is negative, an lvalue variable name is returned. Continuing
with the given example, if arg_num is -2 the 2nd parm to the left of the
"=" ("rc" in this case) should be returned. If arg_num is -1, the 1st
parm to the left of the "=" ("out_buf" in this case) should be returned.
If arg_num is less than -2, an entire dictionary is returned. The keys
to the dictionary for this example would be -2 and -1.
stack_frame_ix The stack frame index of the target function. This value must be 1 or
greater. 1 would indicate get_arg_name's stack frame. 2 would be the
caller of get_arg_name's stack frame, etc.
Example 1:
my_var = "mike"
var_name = get_arg_name(my_var)
In this example, var_name will receive the value "my_var".
Example 2:
def test1(var):
# Getting the var name of the first arg to this function, test1. Note, in this case, it doesn't
# matter what is passed as the first arg to get_arg_name since it is the caller's variable name that
# matters.
dummy = 1
arg_num = 1
stack_frame = 2
var_name = get_arg_name(dummy, arg_num, stack_frame)
# Mainline...
another_var = "whatever"
test1(another_var)
In this example, var_name will be set to "another_var".
"""
# Note: To avoid infinite recursion, avoid calling any function that calls this function (e.g.
# sprint_var, valid_value, etc.).
# The user can set environment variable "GET_ARG_NAME_DEBUG" to get debug output from this function.
local_debug = int(os.environ.get('GET_ARG_NAME_DEBUG', 0))
# In addition to GET_ARG_NAME_DEBUG, the user can set environment variable "GET_ARG_NAME_SHOW_SOURCE" to
# have this function include source code in the debug output.
local_debug_show_source = int(
os.environ.get('GET_ARG_NAME_SHOW_SOURCE', 0))
if stack_frame_ix < 1:
print_error("Programmer error - Variable \"stack_frame_ix\" has an"
+ " invalid value of \"" + str(stack_frame_ix) + "\". The"
+ " value must be an integer that is greater than or equal"
+ " to 1.\n")
return
if local_debug:
debug_indent = 2
print("")
print_dashes(0, 120)
print(sprint_func_name() + "() parms:")
print_varx("var", var, indent=debug_indent)
print_varx("arg_num", arg_num, indent=debug_indent)
print_varx("stack_frame_ix", stack_frame_ix, indent=debug_indent)
print("")
print_call_stack(debug_indent, 2)
work_around_inspect_stack_cwd_failure()
for count in range(0, 2):
try:
frame, filename, cur_line_no, function_name, lines, index = \
inspect.stack()[stack_frame_ix]
except IndexError:
print_error("Programmer error - The caller has asked for"
+ " information about the stack frame at index \""
+ str(stack_frame_ix) + "\". However, the stack"
+ " only contains " + str(len(inspect.stack()))
+ " entries. Therefore the stack frame index is out"
+ " of range.\n")
return
if filename != "<string>":
break
# filename of "<string>" may mean that the function in question was defined dynamically and
# therefore its code stack is inaccessible. This may happen with functions like "rqprint_var". In
# this case, we'll increment the stack_frame_ix and try again.
stack_frame_ix += 1
if local_debug:
print("Adjusted stack_frame_ix...")
print_varx("stack_frame_ix", stack_frame_ix, indent=debug_indent)
real_called_func_name = sprint_func_name(stack_frame_ix)
module = inspect.getmodule(frame)
# Though one would expect inspect.getsourcelines(frame) to get all module source lines if the frame is
# "<module>", it doesn't do that. Therefore, for this special case, do inspect.getsourcelines(module).
if function_name == "<module>":
source_lines, source_line_num =\
inspect.getsourcelines(module)
line_ix = cur_line_no - source_line_num - 1
else:
source_lines, source_line_num =\
inspect.getsourcelines(frame)
line_ix = cur_line_no - source_line_num
if local_debug:
print("\n Variables retrieved from inspect.stack() function:")
print_varx("frame", frame, indent=debug_indent + 2)
print_varx("filename", filename, indent=debug_indent + 2)
print_varx("cur_line_no", cur_line_no, indent=debug_indent + 2)
print_varx("function_name", function_name, indent=debug_indent + 2)
print_varx("lines", lines, indent=debug_indent + 2)
print_varx("index", index, indent=debug_indent + 2)
print_varx("source_line_num", source_line_num, indent=debug_indent)
print_varx("line_ix", line_ix, indent=debug_indent)
if local_debug_show_source:
print_varx("source_lines", source_lines, indent=debug_indent)
print_varx("real_called_func_name", real_called_func_name,
indent=debug_indent)
# Get a list of all functions defined for the module. Note that this doesn't work consistently when
# _run_exitfuncs is at the top of the stack (i.e. if we're running an exit function). I've coded a
# work-around below for this deficiency.
all_functions = inspect.getmembers(module, inspect.isfunction)
# Get called_func_id by searching for our function in the list of all functions.
called_func_id = None
for func_name, function in all_functions:
if func_name == real_called_func_name:
called_func_id = id(function)
break
# NOTE: The only time I've found that called_func_id can't be found is when we're running from an exit
# function.
# Look for other functions in module with matching id.
aliases = set([real_called_func_name])
for func_name, function in all_functions:
if func_name == real_called_func_name:
continue
func_id = id(function)
if func_id == called_func_id:
aliases.add(func_name)
# In most cases, my general purpose code above will find all aliases. However, for the odd case (i.e.
# running from exit function), I've added code to handle pvar, qpvar, dpvar, etc. aliases explicitly
# since they are defined in this module and used frequently.
# pvar is an alias for print_var.
aliases.add(re.sub("print_var", "pvar", real_called_func_name))
# The call to the function could be encased in a recast (e.g. int(func_name())).
recast_regex = "([^ ]+\\([ ]*)?"
import_name_regex = "([a-zA-Z0-9_]+\\.)?"
func_name_regex = recast_regex + import_name_regex + "(" +\
'|'.join(aliases) + ")"
pre_args_regex = ".*" + func_name_regex + "[ ]*\\("
# Search backward through source lines looking for the calling function name.
found = False
for start_line_ix in range(line_ix, 0, -1):
# Skip comment lines.
if re.match(r"[ ]*#", source_lines[start_line_ix]):
continue
if re.match(pre_args_regex, source_lines[start_line_ix]):
found = True
break
if not found:
print_error("Programmer error - Could not find the source line with"
+ " a reference to function \"" + real_called_func_name
+ "\".\n")
return
# Search forward through the source lines looking for a line whose indentation is the same or less than
# the start line. The end of our composite line should be the line preceding that line.
start_indent = get_line_indent(source_lines[start_line_ix])
end_line_ix = line_ix
for end_line_ix in range(line_ix + 1, len(source_lines)):
if source_lines[end_line_ix].strip() == "":
continue
line_indent = get_line_indent(source_lines[end_line_ix])
if line_indent <= start_indent:
end_line_ix -= 1
break
if start_line_ix != 0:
# Check to see whether the start line is a continuation of the prior line.
prior_line = source_lines[start_line_ix - 1]
prior_line_stripped = re.sub(r"[ ]*\\([\r\n]$)", " \\1", prior_line)
prior_line_indent = get_line_indent(prior_line)
if prior_line != prior_line_stripped and\
prior_line_indent < start_indent:
start_line_ix -= 1
# Remove the backslash (continuation char) from prior line.
source_lines[start_line_ix] = prior_line_stripped
# Join the start line through the end line into a composite line.
composite_line = ''.join(map(str.strip,
source_lines[start_line_ix:end_line_ix + 1]))
# Insert one space after first "=" if there isn't one already.
composite_line = re.sub("=[ ]*([^ ])", "= \\1", composite_line, 1)
lvalue_regex = "[ ]*=[ ]+" + func_name_regex + ".*"
lvalue_string = re.sub(lvalue_regex, "", composite_line)
if lvalue_string == composite_line:
# i.e. the regex did not match so there are no lvalues.
lvalue_string = ""
lvalues_list = list(filter(None, map(str.strip, lvalue_string.split(","))))
try:
lvalues = collections.OrderedDict()
except AttributeError:
# A non-ordered dict doesn't look as nice when printed but it will do.
lvalues = {}
ix = len(lvalues_list) * -1
for lvalue in lvalues_list:
lvalues[ix] = lvalue
ix += 1
lvalue_prefix_regex = "(.*=[ ]+)?"
called_func_name_regex = lvalue_prefix_regex + func_name_regex +\
"[ ]*\\(.*"
called_func_name = re.sub(called_func_name_regex, "\\4", composite_line)
arg_list_etc = "(" + re.sub(pre_args_regex, "", composite_line)
if local_debug:
print_varx("aliases", aliases, indent=debug_indent)
print_varx("import_name_regex", import_name_regex, indent=debug_indent)
print_varx("func_name_regex", func_name_regex, indent=debug_indent)
print_varx("pre_args_regex", pre_args_regex, indent=debug_indent)
print_varx("start_line_ix", start_line_ix, indent=debug_indent)
print_varx("end_line_ix", end_line_ix, indent=debug_indent)
print_varx("composite_line", composite_line, indent=debug_indent)
print_varx("lvalue_regex", lvalue_regex, indent=debug_indent)
print_varx("lvalue_string", lvalue_string, indent=debug_indent)
print_varx("lvalues", lvalues, indent=debug_indent)
print_varx("called_func_name_regex", called_func_name_regex,
indent=debug_indent)
print_varx("called_func_name", called_func_name, indent=debug_indent)
print_varx("arg_list_etc", arg_list_etc, indent=debug_indent)
# Parse arg list...
# Initialize...
nest_level = -1
arg_ix = 0
args_list = [""]
for ix in range(0, len(arg_list_etc)):
char = arg_list_etc[ix]
# Set the nest_level based on whether we've encounted a parenthesis.
if char == "(":
nest_level += 1
if nest_level == 0:
continue
elif char == ")":
nest_level -= 1
if nest_level < 0:
break
# If we reach a comma at base nest level, we are done processing an argument so we increment arg_ix
# and initialize a new args_list entry.
if char == "," and nest_level == 0:
arg_ix += 1
args_list.append("")
continue
# For any other character, we append it it to the current arg list entry.
args_list[arg_ix] += char
# Trim whitespace from each list entry.
args_list = [arg.strip() for arg in args_list]
if arg_num < 0:
if abs(arg_num) > len(lvalues):
argument = lvalues
else:
argument = lvalues[arg_num]
elif arg_num == 0:
argument = called_func_name
else:
if arg_num > len(args_list):
argument = args_list
else:
argument = args_list[arg_num - 1]
if local_debug:
print_varx("args_list", args_list, indent=debug_indent)
print_varx("argument", argument, indent=debug_indent)
print_dashes(0, 120)
return argument
def sprint_time(buffer=""):
r"""
Return the time in the following format.
Example:
The following python code...
sys.stdout.write(sprint_time())
sys.stdout.write("Hi.\n")
Will result in the following type of output:
#(CDT) 2016/07/08 15:25:35 - Hi.
Example:
The following python code...
sys.stdout.write(sprint_time("Hi.\n"))
Will result in the following type of output:
#(CDT) 2016/08/03 17:12:05 - Hi.
The following environment variables will affect the formatting as described:
NANOSECONDS This will cause the time stamps to be precise to the microsecond (Yes, it
probably should have been named MICROSECONDS but the convention was set
long ago so we're sticking with it). Example of the output when
environment variable NANOSECONDS=1.
#(CDT) 2016/08/03 17:16:25.510469 - Hi.
SHOW_ELAPSED_TIME This will cause the elapsed time to be included in the output. This is
the amount of time that has elapsed since the last time this function was
called. The precision of the elapsed time field is also affected by the
value of the NANOSECONDS environment variable. Example of the output
when environment variable NANOSECONDS=0 and SHOW_ELAPSED_TIME=1.
#(CDT) 2016/08/03 17:17:40 - 0 - Hi.
Example of the output when environment variable NANOSECONDS=1 and SHOW_ELAPSED_TIME=1.
#(CDT) 2016/08/03 17:18:47.317339 - 0.000046 - Hi.
Description of argument(s).
buffer This will be appended to the formatted time string.
"""
global NANOSECONDS
global SHOW_ELAPSED_TIME
global sprint_time_last_seconds
global last_seconds_ix
seconds = time.time()
loc_time = time.localtime(seconds)
nanoseconds = "%0.6f" % seconds
pos = nanoseconds.find(".")
nanoseconds = nanoseconds[pos:]
time_string = time.strftime("#(%Z) %Y/%m/%d %H:%M:%S", loc_time)
if NANOSECONDS == "1":
time_string = time_string + nanoseconds
if SHOW_ELAPSED_TIME == "1":
cur_time_seconds = seconds
math_string = "%9.9f" % cur_time_seconds + " - " + "%9.9f" % \
sprint_time_last_seconds[last_seconds_ix]
elapsed_seconds = eval(math_string)
if NANOSECONDS == "1":
elapsed_seconds = "%11.6f" % elapsed_seconds
else:
elapsed_seconds = "%4i" % elapsed_seconds
sprint_time_last_seconds[last_seconds_ix] = cur_time_seconds
time_string = time_string + " - " + elapsed_seconds
return time_string + " - " + buffer
def sprint_timen(buffer=""):
r"""
Append a line feed to the buffer, pass it to sprint_time and return the result.
"""
return sprint_time(buffer + "\n")
def sprint_error(buffer=""):
r"""
Return a standardized error string. This includes:
- A time stamp
- The "**ERROR**" string
- The caller's buffer string.
Example:
The following python code...
print(sprint_error("Oops.\n"))
Will result in the following type of output:
#(CDT) 2016/08/03 17:12:05 - **ERROR** Oops.
Description of argument(s).
buffer This will be appended to the formatted error string.
"""
return sprint_time() + "**ERROR** " + buffer
# Implement "constants" with functions.
def digit_length_in_bits():
r"""
Return the digit length in bits.
"""
return 4
def word_length_in_digits():
r"""
Return the word length in digits.
"""
return 8
def bit_length(number):
r"""
Return the bit length of the number.
Description of argument(s):
number The number to be analyzed.
"""
if number < 0:
# Convert negative numbers to positive and subtract one. The following example illustrates the
# reason for this:
# Consider a single nibble whose signed values can range from -8 to 7 (0x8 to 0x7). A value of 0x7
# equals 0b0111. Therefore, its length in bits is 3. Since the negative bit (i.e. 0b1000) is not
# set, the value 7 clearly will fit in one nibble. With -8 = 0x8 = 0b1000, one has the smallest
# negative value that will fit. Note that it requires 3 bits of 0. So by converting a number value
# of -8 to a working_number of 7, this function can accurately calculate the number of bits and
# therefore nibbles required to represent the number in print.
working_number = abs(number) - 1
else:
working_number = number
# Handle the special case of the number 0.
if working_number == 0:
return 0
return len(bin(working_number)) - 2
def get_req_num_hex_digits(number):
r"""
Return the required number of hex digits required to display the given number.
The returned value will always be rounded up to the nearest multiple of 8.
Description of argument(s):
number The number to be analyzed.
"""
if number < 0:
# Convert negative numbers to positive and subtract one. The following example illustrates the
# reason for this:
# Consider a single nibble whose signed values can range from -8 to 7 (0x8 to 0x7). A value of 0x7
# equals 0b0111. Therefore, its length in bits is 3. Since the negative bit (i.e. 0b1000) is not
# set, the value 7 clearly will fit in one nibble. With -8 = 0x8 = 0b1000, one has the smallest
# negative value that will fit. Note that it requires 3 bits of 0. So by converting a number value
# of -8 to a working_number of 7, this function can accurately calculate the number of bits and
# therefore nibbles required to represent the number in print.
working_number = abs(number) - 1
else:
working_number = number
# Handle the special case of the number 0.
if working_number == 0:
return word_length_in_digits()
num_length_in_bits = bit_length(working_number)
num_hex_digits, remainder = divmod(num_length_in_bits,
digit_length_in_bits())
if remainder > 0:
# Example: the number 7 requires 3 bits. The divmod above produces, 0 with remainder of 3. So
# because we have a remainder, we increment num_hex_digits from 0 to 1.
num_hex_digits += 1
# Check to see whether the negative bit is set. This is the left-most bit in the highest order digit.
negative_mask = 2 ** (num_hex_digits * 4 - 1)
if working_number & negative_mask:
# If a number that is intended to be positive has its negative bit on, an additional digit will be
# required to represent it correctly in print.
num_hex_digits += 1
num_words, remainder = divmod(num_hex_digits, word_length_in_digits())
if remainder > 0 or num_words == 0:
num_words += 1
# Round up to the next word length in digits.
return num_words * word_length_in_digits()
def dft_num_hex_digits():
r"""
Return the default number of hex digits to be used to represent a hex number in print.
The value returned is a function of sys.maxsize.
"""
global _gen_print_dft_num_hex_digits_
try:
return _gen_print_dft_num_hex_digits_
except NameError:
_gen_print_dft_num_hex_digits_ = get_req_num_hex_digits(sys.maxsize)
return _gen_print_dft_num_hex_digits_
# Create constant functions to describe various types of dictionaries.
def dict_type():
return 1
def ordered_dict_type():
return 2
def dot_dict_type():
return 3
def normalized_dict_type():
return 4
def proxy_dict_type():
return 5
def is_dict(var_value):
r"""
Return non-zero if var_value is a type of dictionary and 0 if it is not.
The specific non-zero value returned will indicate what type of dictionary var_value is (see constant
functions above).
Description of argument(s):
var_value The object to be analyzed to determine whether it is a dictionary and if
so, what type of dictionary.
"""
if isinstance(var_value, dict):
return dict_type()
try:
if isinstance(var_value, collections.OrderedDict):
return ordered_dict_type()
except AttributeError:
pass
try:
if isinstance(var_value, DotDict):
return dot_dict_type()
except NameError:
pass
try:
if isinstance(var_value, NormalizedDict):
return normalized_dict_type()
except NameError:
pass
try:
if str(type(var_value)).split("'")[1] == "dictproxy":
return proxy_dict_type()
except NameError:
pass
return 0
def get_int_types():
r"""
Return a tuple consisting of the valid integer data types for the system and version of python being run.
Example:
(int, long)
"""
try:
int_types = (int, long)
except NameError:
int_types = (int,)
return int_types
def get_string_types():
r"""
Return a tuple consisting of the valid string data types for the system and version of python being run.
Example:
(str, unicode)
"""
try:
string_types = (str, unicode)
except NameError:
string_types = (bytes, str)
return string_types
def valid_fmts():
r"""
Return a list of the valid formats that can be specified for the fmt argument of the sprint_varx function
(defined below).
"""
return [
'hexa',
'octal',
'binary',
'blank',
'verbose',
'quote_keys',
'show_type',
'strip_brackets',
'no_header',
'quote_values']
def create_fmt_definition():
r"""
Create a string consisting of function-definition code that can be executed to create constant fmt
definition functions.
These functions can be used by callers of sprint_var/sprint_varx to set the fmt argument correctly.
Likewise, the sprint_varx function will use these generated functions to correctly interpret the fmt
argument.
Example output from this function:
def hexa():
return 0x00000001
def octal_fmt():
return 0x00000002
etc.
"""
buffer = ""
bits = 0x00000001
for fmt_name in valid_fmts():
buffer += "def " + fmt_name + "():\n"
buffer += " return " + "0x%08x" % bits + "\n"
bits = bits << 1
return buffer
# Dynamically create fmt definitions (for use with the fmt argument of sprint_varx function):
exec(create_fmt_definition())
def terse():
r"""
Constant function to return fmt value of 0.
Now that sprint_varx defaults to printing in terse format, the terse option is deprecated. This function
is here for backward compatibility.
Once the repo has been purged of the use of terse, this function can be removed.
"""
return 0
def list_pop(a_list, index=0, default=None):
r"""
Pop the list entry indicated by the index and return the entry. If no such entry exists, return default.
Note that the list passed to this function will be modified.
Description of argument(s):
a_list The list from which an entry is to be popped.
index The index indicating which entry is to be popped.
default The value to be returned if there is no entry at the given index location.
"""
try:
return a_list.pop(index)
except IndexError:
return default
def parse_fmt(fmt):
r"""
Parse the fmt argument and return a tuple consisting of a format and a child format.
This function was written for use by the sprint_varx function defined in this module.
When sprint_varx is processing a multi-level object such as a list or dictionary (which in turn may
contain other lists or dictionaries), it will use the fmt value to dictate the print formatting of the
current level and the child_fmt value to dictate the print formatting of subordinate levels. Consider
the following example:
python code example:
ord_dict = \
collections.OrderedDict([
('one', 1),
('two', 2),
('sub',
collections.OrderedDict([
('three', 3), ('four', 4)]))])
print_var(ord_dict)
This would generate the following output:
ord_dict:
[one]: 1
[two]: 2
[sub]:
[three]: 3
[four]: 4
The first level in this example is the line that simply says "ord_dict". The second level is comprised
of the dictionary entries with the keys 'one', 'two' and 'sub'. The third level is comprised of the last
2 lines (i.e. printed values 3 and 4).
Given the data structure shown above, the programmer could code the following where fmt is a simple
integer value set by calling the verbose() function.
print_var(ord_dict, fmt=verbose())
The output would look like this:
ord_dict:
ord_dict[one]: 1
ord_dict[two]: 2
ord_dict[sub]:
ord_dict[sub][three]: 3
ord_dict[sub][four]: 4
Note the verbose format where the name of the object ("ord_dict") is repeated on every line.
If the programmer wishes to get more granular with the fmt argument, he/she can specify it as a list
where each entry corresponds to a level of the object being printed. The last such list entry governs
the print formatting of all subordinate parts of the given object.
Look at each of the following code examples and their corresponding output. See how the show_type()
formatting affects the printing depending on which position it occupies in the fmt list argument:
print_var(ord_dict, fmt=[show_type()])
ord_dict: <collections.OrderedDict>
ord_dict[one]: 1 <int>
ord_dict[two]: 2 <int>
ord_dict[sub]: <collections.OrderedDict>
ord_dict[sub][three]: 3 <int>
ord_dict[sub][four]: 4 <int>
print_var(ord_dict, fmt=[0, show_type()])
ord_dict:
ord_dict[one]: 1 <int>
ord_dict[two]: 2 <int>
ord_dict[sub]: <collections.OrderedDict>
ord_dict[sub][three]: 3 <int>
ord_dict[sub][four]: 4 <int>
print_var(ord_dict, fmt=[0, 0, show_type()])
ord_dict:
ord_dict[one]: 1
ord_dict[two]: 2
ord_dict[sub]:
ord_dict[sub][three]: 3 <int>
ord_dict[sub][four]: 4 <int>
Description of argument(s):
fmt The format argument such as is passed to sprint_varx. This argument may
be an integer or a list of integers. See the prolog of sprint_varx for
more details.
"""
# Make a deep copy of the fmt argument in order to avoid modifying the caller's fmt value when it is a
# list.
fmt = copy.deepcopy(fmt)
try:
# Assume fmt is a list. Pop the first element from the list.
first_element = list_pop(fmt, index=0, default=0)
# Return the first list element along with either 1) the remainder of the fmt list if not null or 2)
# another copy of the first element.
return first_element, fmt if len(fmt) else first_element
except AttributeError:
# fmt is not a list so treat it as a simple integer value.
return fmt, fmt
def sprint_varx(var_name,
var_value,
fmt=0,
indent=dft_indent,
col1_width=dft_col1_width,
trailing_char="\n",
key_list=None,
delim=":"):
r"""
Print the var name/value passed to it. If the caller lets col1_width default, the printing lines up
nicely with output generated by the print_time functions.
Note that the sprint_var function (defined below) can be used to call this function so that the
programmer does not need to pass the var_name. sprint_var will figure out the var_name. The sprint_var
function is the one that would normally be used by the general user.
For example, the following python code:
first_name = "Mike"
print_time("Doing this...\n")
print_varx("first_name", first_name)
print_time("Doing that...\n")
Will generate output like this:
#(CDT) 2016/08/10 17:34:42.847374 - 0.001285 - Doing this...
first_name: Mike
#(CDT) 2016/08/10 17:34:42.847510 - 0.000136 - Doing that...
This function recognizes several complex types of data such as dict, list or tuple.
For example, the following python code:
my_dict = dict(one=1, two=2, three=3)
print_var(my_dict)
Will generate the following output:
my_dict:
my_dict[three]: 3
my_dict[two]: 2
my_dict[one]: 1
Description of argument(s).
var_name The name of the variable to be printed.
var_value The value of the variable to be printed.
fmt A bit map to dictate the format of the output. For printing multi-level
objects like lists and dictionaries, this argument may also be a list of
bit maps. The first list element pertains to the highest level of
output, the second element pertains to the 2nd level of output, etc. The
last element in the list pertains to all subordinate levels. The bits
can be set using the dynamically created functionhs above. Example:
sprint_varx("var1", var1, fmt=verbose()). Note that these values can be
OR'ed together: print_var(var1, hexa() | verbose()). If the caller ORs
mutually exclusive bits (hexa() | octal()), behavior is not guaranteed.
The following features are supported:
hexa Print all integer values in hexadecimal format.
octal Print all integer values in octal format.
binary Print all integer values in binary format.
blank For blank string values, print "<blank>" instead of an actual blank.
verbose For structured values like dictionaries, lists, etc. repeat the name of
the variable on each line to the right of the key or subscript value.
Example: print "my_dict[key1]" instead of just "[key1]".
quote_keys Quote dictionary keys in the output. Example: my_dict['key1'] instead of
my_dict[key1].
show_type Show the type of the data in angled brackets just to the right of the
data.
strip_brackets Strip the brackets from the variable name portion of the output. This is
applicable when printing complex objects like lists or dictionaries.
no_header For complex objects like dictionaries, do not include a header line.
This necessarily means that the member lines will be indented 2
characters less than they otherwise would have been.
quote_values Quote the values printed.
indent The number of spaces to indent the output.
col1_width The width of the output column containing the variable name. The default
value of this is adjusted so that the var_value lines up with text
printed via the print_time function.
trailing_char The character to be used at the end of the returned string. The default
value is a line feed.
key_list A list of which dictionary keys should be printed. All others keys will
be skipped. Each value in key_list will be regarded as a regular
expression and it will be regarded as anchored to the beginning and ends
of the dictionary key being referenced. For example if key_list is
["one", "two"], the resulting regex used will be "^one|two$", i.e. only
keys "one" and "two" from the var_value dictionary will be printed. As
another example, if the caller were to specify a key_list of ["one.*"],
then only dictionary keys whose names begin with "one" will be printed.
Note: This argument pertains only to var_values which are dictionaries.
delim The value to be used to delimit the variable name from the variable value
in the output.
"""
fmt, child_fmt = parse_fmt(fmt)
if fmt & show_type():
type_str = "<" + str(type(var_value)).split("'")[1] + ">"
# Compose object type categories.
int_types = get_int_types()
string_types = get_string_types()
simple_types = int_types + string_types + (float, bool, type, type(None))
# Determine the type.
if type(var_value) in simple_types:
# The data type is simple in the sense that it has no subordinate parts.
# Adjust col1_width.
col1_width = col1_width - indent
# Set default value for value_format.
value_format = "%s"
# Process format requests.
if type(var_value) in int_types:
# Process format values pertaining to int types.
if fmt & hexa():
num_hex_digits = max(dft_num_hex_digits(),
get_req_num_hex_digits(var_value))
# Convert a negative number to its positive twos complement for proper printing. For
# example, instead of printing -1 as "0x-000000000000001" it will be printed as
# "0xffffffffffffffff".
var_value = var_value & (2 ** (num_hex_digits * 4) - 1)
value_format = "0x%0" + str(num_hex_digits) + "x"
elif fmt & octal():
value_format = "0o%016o"
elif fmt & binary():
num_digits, remainder = \
divmod(max(bit_length(var_value), 1), 8)
num_digits *= 8
if remainder:
num_digits += 8
num_digits += 2
value_format = '#0' + str(num_digits) + 'b'
var_value = format(var_value, value_format)
value_format = "%s"
elif type(var_value) in string_types:
# Process format values pertaining to string types.
if fmt & blank() and var_value == "":
value_format = "%s"
var_value = "<blank>"
elif type(var_value) is type:
var_value = str(var_value).split("'")[1]
format_string = "%" + str(indent) + "s%-" + str(col1_width) + "s" \
+ value_format
if fmt & show_type():
if var_value != "":
format_string += " "
format_string += type_str
format_string += trailing_char
if fmt & quote_values():
var_value = "'" + var_value + "'"
if not (fmt & verbose()):
# Strip everything leading up to the first left square brace.
var_name = re.sub(r".*\[", "[", var_name)
if (fmt & strip_brackets()):
var_name = re.sub(r"[\[\]]", "", var_name)
if value_format == "0x%08x":
return format_string % ("", str(var_name) + delim,
var_value & 0xffffffff)
else:
return format_string % ("", str(var_name) + delim, var_value)
else:
# The data type is complex in the sense that it has subordinate parts.
if (fmt & no_header()):
buffer = ""
else:
# Create header line.
if not (fmt & verbose()):
# Strip everything leading up to the first square brace.
loc_var_name = re.sub(r".*\[", "[", var_name)
else:
loc_var_name = var_name
if (fmt & strip_brackets()):
loc_var_name = re.sub(r"[\[\]]", "", loc_var_name)
format_string = "%" + str(indent) + "s%s\n"
buffer = format_string % ("", loc_var_name + ":")
if fmt & show_type():
buffer = buffer.replace("\n", " " + type_str + "\n")
indent += 2
try:
length = len(var_value)
except TypeError:
length = 0
ix = 0
loc_trailing_char = "\n"
if is_dict(var_value):
if type(child_fmt) is list:
child_quote_keys = (child_fmt[0] & quote_keys())
else:
child_quote_keys = (child_fmt & quote_keys())
for key, value in var_value.items():
if key_list is not None:
key_list_regex = "^" + "|".join(key_list) + "$"
if not re.match(key_list_regex, key):
continue
ix += 1
if ix == length:
loc_trailing_char = trailing_char
if child_quote_keys:
key = "'" + key + "'"
key = "[" + str(key) + "]"
buffer += sprint_varx(var_name + key, value, child_fmt, indent,
col1_width, loc_trailing_char, key_list,
delim)
elif type(var_value) in (list, tuple, set):
for key, value in enumerate(var_value):
ix += 1
if ix == length:
loc_trailing_char = trailing_char
key = "[" + str(key) + "]"
buffer += sprint_varx(var_name + key, value, child_fmt, indent,
col1_width, loc_trailing_char, key_list,
delim)
elif isinstance(var_value, argparse.Namespace):
for key in var_value.__dict__:
ix += 1
if ix == length:
loc_trailing_char = trailing_char
cmd_buf = "buffer += sprint_varx(var_name + \".\" + str(key)" \
+ ", var_value." + key + ", child_fmt, indent," \
+ " col1_width, loc_trailing_char, key_list," \
+ " delim)"
exec(cmd_buf)
else:
var_type = type(var_value).__name__
func_name = sys._getframe().f_code.co_name
var_value = "<" + var_type + " type not supported by " + \
func_name + "()>"
value_format = "%s"
indent -= 2
# Adjust col1_width.
col1_width = col1_width - indent
format_string = "%" + str(indent) + "s%-" \
+ str(col1_width) + "s" + value_format + trailing_char
return format_string % ("", str(var_name) + ":", var_value)
return buffer
return ""
def sprint_var(*args, **kwargs):
r"""
Figure out the name of the first argument for the caller and then call sprint_varx with it. Therefore,
the following 2 calls are equivalent:
sprint_varx("var1", var1)
sprint_var(var1)
See sprint_varx for description of arguments.
"""
stack_frame = 2
caller_func_name = sprint_func_name(2)
if caller_func_name.endswith("print_var"):
stack_frame += 1
# Get the name of the first variable passed to this function.
var_name = get_arg_name(None, 1, stack_frame)
return sprint_varx(var_name, *args, **kwargs)
def sprint_vars(*args, **kwargs):
r"""
Sprint the values of one or more variables.
Description of argument(s):
args The variable values which are to be printed.
kwargs See sprint_varx (above) for description of additional arguments.
"""
stack_frame = 2
caller_func_name = sprint_func_name(2)
if caller_func_name.endswith("print_vars"):
stack_frame += 1
buffer = ""
arg_num = 1
for var_value in args:
var_name = get_arg_name(None, arg_num, stack_frame)
buffer += sprint_varx(var_name, var_value, **kwargs)
arg_num += 1
return buffer
def sprint_dashes(indent=dft_indent,
width=80,
line_feed=1,
char="-"):
r"""
Return a string of dashes to the caller.
Description of argument(s):
indent The number of characters to indent the output.
width The width of the string of dashes.
line_feed Indicates whether the output should end with a line feed.
char The character to be repeated in the output string.
"""
width = int(width)
buffer = " " * int(indent) + char * width
if line_feed:
buffer += "\n"
return buffer
def sindent(text="",
indent=0):
r"""
Pre-pend the specified number of characters to the text string (i.e. indent it) and return it.
Description of argument(s):
text The string to be indented.
indent The number of characters to indent the string.
"""
format_string = "%" + str(indent) + "s%s"
buffer = format_string % ("", text)
return buffer
func_line_style_std = None
func_line_style_short = 1
def sprint_func_line(stack_frame, style=None, max_width=160):
r"""
For the given stack_frame, return a formatted string containing the function name and all its arguments.
Example:
func1(last_name = 'walsh', first_name = 'mikey')
Description of argument(s):
stack_frame A stack frame (such as is returned by inspect.stack()).
style Indicates the style or formatting of the result string. Acceptable
values are shown above.
max_width The max width of the result. If it exceeds this length, it will be
truncated on the right.
Description of styles:
func_line_style_std The standard formatting.
func_line_style_short 1) The self parm (associated with methods) will be dropped. 2) The args
and kwargs values will be treated as special. In both cases the arg name
('args' or 'kwargs') will be dropped and only the values will be shown.
"""
func_name = str(stack_frame[3])
if func_name == "?":
# "?" is the name used when code is not in a function.
func_name = "(none)"
if func_name == "<module>":
# If the func_name is the "main" program, we simply get the command line call string.
func_and_args = ' '.join(sys.argv)
else:
# Get the program arguments.
(args, varargs, keywords, locals) =\
inspect.getargvalues(stack_frame[0])
args_list = []
for arg_name in filter(None, args + [varargs, keywords]):
# Get the arg value from frame locals.
arg_value = locals[arg_name]
if arg_name == 'self':
if style == func_line_style_short:
continue
# Manipulations to improve output for class methods.
func_name = arg_value.__class__.__name__ + "." + func_name
args_list.append(arg_name + " = <self>")
elif (style == func_line_style_short
and arg_name == 'args'
and type(arg_value) in (list, tuple)):
if len(arg_value) == 0:
continue
args_list.append(repr(', '.join(arg_value)))
elif (style == func_line_style_short
and arg_name == 'kwargs'
and type(arg_value) is dict):
for key, value in arg_value.items():
args_list.append(key + "=" + repr(value))
else:
args_list.append(arg_name + " = " + repr(arg_value))
args_str = "(" + ', '.join(map(str, args_list)) + ")"
# Now we need to print this in a nicely-wrapped way.
func_and_args = func_name + args_str
if len(func_and_args) > max_width:
func_and_args = func_and_args[0:max_width] + "..."
return func_and_args
def sprint_call_stack(indent=0,
stack_frame_ix=0,
style=None):
r"""
Return a call stack report for the given point in the program with line numbers, function names and
function parameters and arguments.
Sample output:
-------------------------------------------------------------------------
Python function call stack
Line # Function name and arguments
------ ------------------------------------------------------------------
424 sprint_call_stack()
4 print_call_stack()
31 func1(last_name = 'walsh', first_name = 'mikey')
59 /tmp/scr5.py
-------------------------------------------------------------------------
Description of argument(s):
indent The number of characters to indent each line of output.
stack_frame_ix The index of the first stack frame which is to be returned.
style See the sprint_line_func prolog above for details.
"""
buffer = ""
buffer += sprint_dashes(indent)
buffer += sindent("Python function call stack\n\n", indent)
buffer += sindent("Line # Function name and arguments\n", indent)
buffer += sprint_dashes(indent, 6, 0) + " " + sprint_dashes(0, 73)
# Grab the current program stack.
work_around_inspect_stack_cwd_failure()
current_stack = inspect.stack()
# Process each frame in turn.
format_string = "%6s %s\n"
ix = 0
for stack_frame in current_stack:
if ix < stack_frame_ix:
ix += 1
continue
# Make the line number shown to be the line where one finds the line shown.
try:
line_num = str(current_stack[ix + 1][2])
except IndexError:
line_num = ""
func_and_args = sprint_func_line(stack_frame, style=style)
buffer += sindent(format_string % (line_num, func_and_args), indent)
ix += 1
buffer += sprint_dashes(indent)
return buffer
def sprint_executing(stack_frame_ix=None, style=None, max_width=None):
r"""
Print a line indicating what function is executing and with what parameter values. This is useful for
debugging.
Sample output:
#(CDT) 2016/08/25 17:54:27 - Executing: func1(x = 1)
Description of argument(s):
stack_frame_ix The index of the stack frame whose function info should be returned. If
the caller does not specify a value, this function will set the value to
1 which is the index of the caller's stack frame. If the caller is the
wrapper function "print_executing", this function will bump it up by 1.
style See the sprint_line_func prolog above for details.
max_width See the sprint_line_func prolog above for details.
"""
# If user wants default stack_frame_ix.
if stack_frame_ix is None:
func_name = sys._getframe().f_code.co_name
caller_func_name = sys._getframe(1).f_code.co_name
if caller_func_name.endswith(func_name[1:]):
stack_frame_ix = 2
else:
stack_frame_ix = 1
work_around_inspect_stack_cwd_failure()
stack_frame = inspect.stack()[stack_frame_ix]
if max_width is None:
max_width = 160 - (dft_col1_width + 11)
func_and_args = sprint_func_line(stack_frame, style, max_width=max_width)
return sprint_time() + "Executing: " + func_and_args + "\n"
def sprint_pgm_header(indent=0,
linefeed=1):
r"""
Return a standardized header that programs should print at the beginning of the run. It includes useful
information like command line, pid, userid, program parameters, etc.
Description of argument(s):
indent The number of characters to indent each line of output.
linefeed Indicates whether a line feed be included at the beginning and end of the
report.
"""
col1_width = dft_col1_width + indent
buffer = ""
if linefeed:
buffer = "\n"
if robot_env:
suite_name = BuiltIn().get_variable_value("${suite_name}")
buffer += sindent(sprint_time("Running test suite \"" + suite_name
+ "\".\n"), indent)
buffer += sindent(sprint_time() + "Running " + pgm_name + ".\n", indent)
buffer += sindent(sprint_time() + "Program parameter values, etc.:\n\n",
indent)
buffer += sprint_varx("command_line", ' '.join(sys.argv), 0, indent,
col1_width)
# We want the output to show a customized name for the pid and pgid but we want it to look like a valid
# variable name. Therefore, we'll use pgm_name_var_name which was set when this module was imported.
buffer += sprint_varx(pgm_name_var_name + "_pid", os.getpid(), 0, indent,
col1_width)
buffer += sprint_varx(pgm_name_var_name + "_pgid", os.getpgrp(), 0, indent,
col1_width)
userid_num = str(os.geteuid())
try:
username = os.getlogin()
except OSError:
if userid_num == "0":
username = "root"
else:
username = "?"
buffer += sprint_varx("uid", userid_num + " (" + username
+ ")", 0, indent, col1_width)
buffer += sprint_varx("gid", str(os.getgid()) + " ("
+ str(grp.getgrgid(os.getgid()).gr_name) + ")", 0,
indent, col1_width)
buffer += sprint_varx("host_name", socket.gethostname(), 0, indent,
col1_width)
try:
DISPLAY = os.environ['DISPLAY']
except KeyError:
DISPLAY = ""
buffer += sprint_var(DISPLAY, 0, indent, col1_width)
PYTHON_VERSION = os.environ.get('PYTHON_VERSION', None)
if PYTHON_VERSION is not None:
buffer += sprint_var(PYTHON_VERSION, 0, indent, col1_width)
PYTHON_PGM_PATH = os.environ.get('PYTHON_PGM_PATH', None)
if PYTHON_PGM_PATH is not None:
buffer += sprint_var(PYTHON_PGM_PATH, 0, indent, col1_width)
python_version = sys.version.replace("\n", "")
buffer += sprint_var(python_version, 0, indent, col1_width)
ROBOT_VERSION = os.environ.get('ROBOT_VERSION', None)
if ROBOT_VERSION is not None:
buffer += sprint_var(ROBOT_VERSION, 0, indent, col1_width)
ROBOT_PGM_PATH = os.environ.get('ROBOT_PGM_PATH', None)
if ROBOT_PGM_PATH is not None:
buffer += sprint_var(ROBOT_PGM_PATH, 0, indent, col1_width)
# __builtin__.arg_obj is created by the get_arg module function, gen_get_options.
try:
buffer += ga.sprint_args(__builtin__.arg_obj, indent)
except AttributeError:
pass
if robot_env:
# Get value of global parm_list.
parm_list = BuiltIn().get_variable_value("${parm_list}")
for parm in parm_list:
parm_value = BuiltIn().get_variable_value("${" + parm + "}")
buffer += sprint_varx(parm, parm_value, 0, indent, col1_width)
# Setting global program_pid.
BuiltIn().set_global_variable("${program_pid}", os.getpid())
if linefeed:
buffer += "\n"
return buffer
def sprint_error_report(error_text="\n",
indent=2,
format=None,
stack_frame_ix=None):
r"""
Return a string with a standardized report which includes the caller's error text, the call stack and the
program header.
Description of argument(s):
error_text The error text to be included in the report. The caller should include
any needed linefeeds.
indent The number of characters to indent each line of output.
format Long or short format. Long includes extras like lines of dashes, call
stack, etc.
stack_frame_ix The index of the first stack frame which is to be shown in the
print_call_stack portion of the error report.
"""
# Process input.
indent = int(indent)
if format is None:
if robot_env:
format = 'short'
else:
format = 'long'
error_text = error_text.rstrip('\n') + '\n'
if format == 'short':
return sprint_error(error_text)
buffer = ""
buffer += sprint_dashes(width=120, char="=")
buffer += sprint_error(error_text)
buffer += "\n"
if not stack_frame_ix:
# Calling sprint_call_stack with stack_frame_ix of 0 causes it to show itself and this function in
# the call stack. This is not helpful to a debugger and is therefore clutter. We will adjust the
# stack_frame_ix to hide that information.
stack_frame_ix = 1
caller_func_name = sprint_func_name(1)
if caller_func_name.endswith("print_error_report"):
stack_frame_ix += 1
caller_func_name = sprint_func_name(2)
if caller_func_name.endswith("print_error_report"):
stack_frame_ix += 1
buffer += sprint_call_stack(indent, stack_frame_ix)
buffer += sprint_pgm_header(indent)
buffer += sprint_dashes(width=120, char="=")
return buffer
def sprint_issuing(cmd_buf,
test_mode=0):
r"""
Return a line indicating a command that the program is about to execute.
Sample output for a cmd_buf of "ls"
#(CDT) 2016/08/25 17:57:36 - Issuing: ls
Description of argument(s):
cmd_buf The command to be executed by caller.
test_mode With test_mode set, the output will look like this:
#(CDT) 2016/08/25 17:57:36 - (test_mode) Issuing: ls
"""
buffer = sprint_time()
if test_mode:
buffer += "(test_mode) "
if type(cmd_buf) is list:
# Assume this is a robot command in the form of a list.
cmd_buf = ' '.join([str(element) for element in cmd_buf])
buffer += "Issuing: " + cmd_buf + "\n"
return buffer
def sprint_pgm_footer():
r"""
Return a standardized footer that programs should print at the end of the program run. It includes
useful information like total run time, etc.
"""
buffer = "\n" + sprint_time() + "Finished running " + pgm_name + ".\n\n"
total_time = time.time() - start_time
total_time_string = "%0.6f" % total_time
buffer += sprint_varx(pgm_name_var_name + "_runtime", total_time_string)
buffer += "\n"
return buffer
def sprint_file(file_path):
r"""
Return the file data as a string.
Description of argument(s):
file_path The path to a file (e.g. "/tmp/file1").
"""
with open(file_path, 'r') as file:
buffer = file.read()
return buffer
def sprint(buffer=""):
r"""
Simply return the user's buffer. This function is used by the qprint and dprint functions defined
dynamically below, i.e. it would not normally be called for general use.
Description of argument(s).
buffer This will be returned to the caller.
"""
try:
return str(buffer)
except UnicodeEncodeError:
return buffer
def sprintn(buffer=""):
r"""
Simply return the user's buffer with a line feed. This function is used by the qprint and dprint
functions defined dynamically below, i.e. it would not normally be called for general use.
Description of argument(s).
buffer This will be returned to the caller.
"""
try:
buffer = str(buffer) + "\n"
except UnicodeEncodeError:
buffer = buffer + "\n"
return buffer
def gp_print(buffer,
stream='stdout'):
r"""
Print the buffer using either sys.stdout.write or BuiltIn().log_to_console depending on whether we are
running in a robot environment.
This function is intended for use only by other functions in this module.
Description of argument(s):
buffer The string to be printed.
stream Either "stdout" or "stderr".
"""
if robot_env:
BuiltIn().log_to_console(buffer, stream=stream, no_newline=True)
else:
if stream == "stdout":
sys.stdout.write(buffer)
sys.stdout.flush()
else:
sys.stderr.write(buffer)
sys.stderr.flush()
def gp_log(buffer):
r"""
Log the buffer using either python logging or BuiltIn().log depending on whether we are running in a
robot environment.
This function is intended for use only by other functions in this module.
Description of argument(s):
buffer The string to be logged.
"""
if robot_env:
BuiltIn().log(buffer)
else:
logging.warning(buffer)
def gp_debug_print(buffer):
r"""
Print with gp_print only if gen_print_debug is set.
This function is intended for use only by other functions in this module.
Description of argument(s):
buffer The string to be printed.
"""
if not gen_print_debug:
return
gp_print(buffer)
def get_var_value(var_value=None,
default=1,
var_name=None):
r"""
Return either var_value, the corresponding global value or default.
If var_value is not None, it will simply be returned.
If var_value is None, this function will return the corresponding global value of the variable in
question.
Note: For global values, if we are in a robot environment, get_variable_value will be used. Otherwise,
the __builtin__ version of the variable is returned (which are set by gen_arg.py functions).
If there is no global value associated with the variable, default is returned.
This function is useful for other functions in setting default values for parameters.
Example use:
def my_func(quiet=None):
quiet = int(get_var_value(quiet, 0))
Example calls to my_func():
In the following example, the caller is explicitly asking to have quiet be set to 1.
my_func(quiet=1)
In the following example, quiet will be set to the global value of quiet, if defined, or to 0 (the
default).
my_func()
Description of argument(s):
var_value The value to be returned (if not equal to None).
default The value that is returned if var_value is None and there is no
corresponding global value defined.
var_name The name of the variable whose value is to be returned. Under most
circumstances, this value need not be provided. This function can figure
out the name of the variable passed as var_value. One exception to this
would be if this function is called directly from a .robot file.
"""
if var_value is not None:
return var_value
if var_name is None:
var_name = get_arg_name(None, 1, 2)
if robot_env:
var_value = BuiltIn().get_variable_value("${" + var_name + "}",
default)
else:
var_value = getattr(__builtin__, var_name, default)
return var_value
def get_stack_var(var_name,
default="",
init_stack_ix=2):
r"""
Starting with the caller's stack level, search upward in the call stack for a variable named var_name and
return its value. If the variable cannot be found in the stack, attempt to get the global value. If the
variable still cannot be found, return default.
Example code:
def func12():
my_loc_var1 = get_stack_var('my_var1', "default value")
def func11():
my_var1 = 11
func12()
In this example, get_stack_var will find the value of my_var1 in func11's stack and will therefore return
the value 11. Therefore, my_loc_var1 would get set to 11.
Description of argument(s):
var_name The name of the variable to be searched for.
default The value to return if the the variable cannot be found.
init_stack_ix The initial stack index from which to begin the search. 0 would be the
index of this func1tion ("get_stack_var"), 1 would be the index of the
function calling this function, etc.
"""
work_around_inspect_stack_cwd_failure()
default = get_var_value(var_name=var_name, default=default)
return next((frame[0].f_locals[var_name]
for frame in inspect.stack()[init_stack_ix:]
if var_name in frame[0].f_locals), default)
# hidden_text is a list of passwords which are to be replaced with asterisks by print functions defined in
# this module.
hidden_text = []
# password_regex is created based on the contents of hidden_text.
password_regex = ""
def register_passwords(*args):
r"""
Register one or more passwords which are to be hidden in output produced by the print functions in this
module.
Note: Blank password values are NOT registered. They are simply ignored.
Description of argument(s):
args One or more password values. If a given password value is already
registered, this function will simply do nothing.
"""
global hidden_text
global password_regex
for password in args:
if password == "":
break
if password in hidden_text:
break
# Place the password into the hidden_text list.
hidden_text.append(password)
# Create a corresponding password regular expression. Escape regex special characters too.
password_regex = '(' +\
'|'.join([re.escape(x) for x in hidden_text]) + ')'
def replace_passwords(buffer):
r"""
Return the buffer but with all registered passwords replaced by a string of asterisks.
Description of argument(s):
buffer The string to be returned but with passwords replaced.
"""
global password_regex
if int(os.environ.get("DEBUG_SHOW_PASSWORDS", "0")):
return buffer
if password_regex == "":
# No passwords to replace.
return buffer
return re.sub(password_regex, "********", buffer)
def create_print_wrapper_funcs(func_names,
stderr_func_names,
replace_dict,
func_prefix=""):
r"""
Generate code for print wrapper functions and return the generated code as a string.
To illustrate, suppose there is a "print_foo_bar" function in the func_names list.
This function will...
- Expect that there is an sprint_foo_bar function already in existence.
- Create a print_foo_bar function which calls sprint_foo_bar and prints the result.
- Create a qprint_foo_bar function which calls upon sprint_foo_bar only if global value quiet is 0.
- Create a dprint_foo_bar function which calls upon sprint_foo_bar only if global value debug is 1.
Also, code will be generated to define aliases for each function as well. Each alias will be created by
replacing "print_" in the function name with "p" For example, the alias for print_foo_bar will be
pfoo_bar.
Description of argument(s):
func_names A list of functions for which print wrapper function code is to be
generated.
stderr_func_names A list of functions whose generated code should print to stderr rather
than to stdout.
replace_dict Please see the create_func_def_string function in wrap_utils.py for
details on this parameter. This parameter will be passed directly to
create_func_def_string.
func_prefix Prefix to be pre-pended to the generated function name.
"""
buffer = ""
for func_name in func_names:
if func_name in stderr_func_names:
replace_dict['output_stream'] = "stderr"
else:
replace_dict['output_stream'] = "stdout"
s_func_name = "s" + func_name
q_func_name = "q" + func_name
d_func_name = "d" + func_name
# We don't want to try to redefine the "print" function, thus the following if statement.
if func_name != "print":
func_def = create_func_def_string(s_func_name,
func_prefix + func_name,
print_func_template,
replace_dict)
buffer += func_def
func_def = create_func_def_string(s_func_name,
func_prefix + "q" + func_name,
qprint_func_template, replace_dict)
buffer += func_def
func_def = create_func_def_string(s_func_name,
func_prefix + "d" + func_name,
dprint_func_template, replace_dict)
buffer += func_def
func_def = create_func_def_string(s_func_name,
func_prefix + "l" + func_name,
lprint_func_template, replace_dict)
buffer += func_def
# Create abbreviated aliases (e.g. spvar is an alias for sprint_var).
alias = re.sub("print_", "p", func_name)
alias = re.sub("print", "p", alias)
prefixes = [func_prefix + "", "s", func_prefix + "q",
func_prefix + "d", func_prefix + "l"]
for prefix in prefixes:
if alias == "p":
continue
func_def = prefix + alias + " = " + prefix + func_name
buffer += func_def + "\n"
return buffer
# In the following section of code, we will dynamically create print versions for each of the sprint
# functions defined above. So, for example, where we have an sprint_time() function defined above that
# returns the time to the caller in a string, we will create a corresponding print_time() function that will
# print that string directly to stdout.
# It can be complicated to follow what's being created below. Here is an example of the print_time()
# function that will be created:
# def print_time(buffer=''):
# gp_print(replace_passwords(sprint_time(buffer=buffer)), stream='stdout')
# For each print function defined below, there will also be a qprint, a dprint and an lprint version defined
# (e.g. qprint_time, dprint_time, lprint_time).
# The q version of each print function will only print if the quiet variable is 0.
# The d version of each print function will only print if the debug variable is 1.
# The l version of each print function will print the contents as log data. For conventional programs, this
# means use of the logging module. For robot programs it means use of the BuiltIn().log() function.
# Templates for the various print wrapper functions.
print_func_template = \
[
" <mod_qualifier>gp_print(<mod_qualifier>replace_passwords("
+ "<call_line>), stream='<output_stream>')"
]
qprint_func_template = \
[
" quiet = <mod_qualifier>get_stack_var(\"quiet\", 0)",
" if int(quiet): return"
] + print_func_template
dprint_func_template = \
[
" debug = <mod_qualifier>get_stack_var(\"debug\", 0)",
" if not int(debug): return"
] + print_func_template
lprint_func_template = \
[
" <mod_qualifier>set_last_seconds_ix(<mod_qualifier>"
+ "lprint_last_seconds_ix())",
" <mod_qualifier>gp_log(<mod_qualifier>replace_passwords"
+ "(<call_line>))",
" <mod_qualifier>set_last_seconds_ix(<mod_qualifier>"
+ "standard_print_last_seconds_ix())"
]
replace_dict = {'output_stream': 'stdout', 'mod_qualifier': ''}
gp_debug_print("robot_env: " + str(robot_env) + "\n")
# func_names contains a list of all print functions which should be created from their sprint counterparts.
func_names = ['print_time', 'print_timen', 'print_error', 'print_varx',
'print_var', 'print_vars', 'print_dashes', 'indent',
'print_call_stack', 'print_func_name', 'print_executing',
'print_pgm_header', 'print_issuing', 'print_pgm_footer',
'print_file', 'print_error_report', 'print', 'printn']
# stderr_func_names is a list of functions whose output should go to stderr rather than stdout.
stderr_func_names = ['print_error', 'print_error_report']
func_defs = create_print_wrapper_funcs(func_names, stderr_func_names,
replace_dict)
gp_debug_print(func_defs)
exec(func_defs)