| |
| /* |
| * File: EINTR_wrappers.c |
| * |
| * This file implements the wrapper functions for some of the System APIs |
| * |
| * Copyright (C) <2019> <American Megatrends International LLC> |
| * |
| */ |
| |
| #include "EINTR_wrappers.h" |
| #if defined(__linux__) |
| #include <sys/msg.h> |
| #include <sys/file.h> |
| #endif |
| #include <errno.h> |
| #include <unistd.h> |
| |
| static const int OneSecondasNS = 1000000000; |
| |
| #ifndef bool |
| typedef int bool; |
| #endif |
| |
| #ifndef TRUE |
| #define TRUE (1) |
| #endif |
| |
| #ifndef FALSE |
| #define FALSE (0) |
| #endif |
| |
| typedef struct |
| { |
| bool OnePoll; |
| struct timespec EndTime, Timeout; |
| } SIGWRAP_TIMEOUT; |
| |
| static void sigwrap_InitTimeout(SIGWRAP_TIMEOUT *pDst, const struct timespec *timeout) |
| { |
| pDst->Timeout = *timeout; |
| |
| if ((timeout->tv_sec == 0) && (timeout->tv_nsec == 0)) // If both value are zero than only a single poll is requested! |
| { |
| pDst->OnePoll = 1; |
| return; |
| } |
| |
| pDst->OnePoll = 0; |
| |
| struct timespec Now; |
| |
| (void)clock_gettime(CLOCK_MONOTONIC_RAW, &Now); // CLOCK_MONOTONIC_RAW is not affected by NTP etc. |
| |
| pDst->EndTime.tv_sec = Now.tv_sec + pDst->Timeout.tv_sec; // Check necessary in 2038 due to signed integer variables |
| pDst->EndTime.tv_nsec = Now.tv_nsec + pDst->Timeout.tv_nsec; |
| |
| if (pDst->EndTime.tv_nsec >= OneSecondasNS) |
| { |
| pDst->EndTime.tv_sec += (pDst->EndTime.tv_nsec / OneSecondasNS); |
| pDst->EndTime.tv_nsec = (pDst->EndTime.tv_nsec % OneSecondasNS); |
| } |
| } |
| |
| |
| static bool sigwrap_CheckTimeout(SIGWRAP_TIMEOUT *pTo) |
| { |
| if (pTo->OnePoll == TRUE) // Make sure, that in the case that a single poll is requested at least one call is not terminated with EINTR |
| return FALSE; |
| |
| struct timespec Now; |
| |
| (void)clock_gettime(CLOCK_MONOTONIC_RAW, &Now); |
| |
| if (Now.tv_sec > pTo->EndTime.tv_sec) // Can become a problem already in 2038 due to signed integer variables |
| return TRUE; |
| |
| pTo->Timeout.tv_nsec = pTo->EndTime.tv_nsec - Now.tv_nsec; |
| pTo->Timeout.tv_sec = pTo->EndTime.tv_sec - Now.tv_sec; |
| |
| if (pTo->Timeout.tv_sec == 0) |
| { |
| if (pTo->Timeout.tv_nsec <= 0) |
| return TRUE; |
| } |
| else if (pTo->Timeout.tv_nsec < 0) |
| { |
| pTo->Timeout.tv_nsec += OneSecondasNS; |
| pTo->Timeout.tv_sec--; |
| } |
| |
| return FALSE; |
| } |
| |
| |
| |
| int sigwrap_semop(int semid, struct sembuf *sops, size_t nsops) |
| { |
| while (1) |
| { |
| if (semop(semid, sops, nsops) == 0) |
| return 0; |
| |
| if (errno != EINTR) |
| return -1; |
| } |
| } |
| |
| #if 0 |
| int sigwrap_semtimedop(int semid, struct sembuf *sops, size_t nsops, const struct timespec *timeout) |
| { |
| SIGWRAP_TIMEOUT To; |
| |
| if (timeout == NULL) |
| return (sigwrap_semop(semid, sops, nsops)); |
| |
| sigwrap_InitTimeout(&To, timeout); |
| |
| while (1) |
| { |
| if (semtimedop(semid, sops, nsops, &To.Timeout) == 0) |
| return 0; |
| |
| if (errno != EINTR) |
| return -1; |
| |
| if (sigwrap_CheckTimeout(&To)) |
| { |
| errno = EAGAIN; |
| return -1; |
| } |
| } |
| } |
| #endif |
| |
| int sigwrap_epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout) |
| { |
| SIGWRAP_TIMEOUT To; |
| |
| if (timeout != -1) |
| { |
| struct timespec Timeout; |
| |
| Timeout.tv_sec = timeout / 1000; |
| Timeout.tv_nsec = (timeout % 1000) * 1000000; // Convert msec to nsec |
| |
| sigwrap_InitTimeout(&To, &Timeout); |
| } |
| |
| while (1) |
| { |
| int Result = epoll_wait(epfd, events, maxevents, timeout); |
| |
| if (Result != -1) |
| return Result; |
| |
| if (errno != EINTR) |
| return Result; |
| |
| if (timeout == -1) |
| continue; |
| |
| if (sigwrap_CheckTimeout(&To)) |
| return 0; |
| |
| timeout = To.Timeout.tv_sec * 1000 + To.Timeout.tv_nsec / 1000000; |
| } |
| } |
| |
| |
| int sigwrap_epoll_pwait(int epfd, struct epoll_event *events, int maxevents, int timeout, const sigset_t *sigmask) |
| { |
| SIGWRAP_TIMEOUT To; |
| |
| if (timeout != -1) |
| { |
| struct timespec Timeout; |
| |
| Timeout.tv_sec = timeout / 1000; |
| Timeout.tv_nsec = (timeout % 1000) * 1000000; // Convert msec to nsec |
| |
| sigwrap_InitTimeout(&To, &Timeout); |
| } |
| |
| while (1) |
| { |
| int Result = epoll_pwait(epfd, events, maxevents, timeout, sigmask); |
| |
| if (Result != -1) |
| return Result; |
| |
| if (errno != EINTR) |
| return Result; |
| |
| if (timeout == -1) |
| continue; |
| |
| if (sigwrap_CheckTimeout(&To)) |
| return 0; |
| |
| timeout = To.Timeout.tv_sec * 1000 + To.Timeout.tv_nsec / 1000000; |
| } |
| } |
| |
| |
| int sigwrap_sigwaitinfo(const sigset_t *set, siginfo_t *info) |
| { |
| while (1) |
| { |
| int Result = sigwaitinfo(set, info); |
| |
| if (Result != -1) |
| return Result; |
| |
| if (errno != EINTR) |
| return Result; |
| } |
| } |
| |
| |
| int sigwrap_sigtimedwait(const sigset_t *set, siginfo_t *info, const struct timespec *timeout) |
| { |
| SIGWRAP_TIMEOUT To; |
| |
| sigwrap_InitTimeout(&To, timeout); |
| |
| while (1) |
| { |
| int Result = sigtimedwait(set, info, &To.Timeout); |
| |
| if (Result != -1) |
| return Result; |
| |
| if (errno != EINTR) |
| return Result; |
| |
| if (sigwrap_CheckTimeout(&To)) |
| return 0; |
| } |
| } |
| |
| |
| int sigwrap_nanosleep(const struct timespec *req, struct timespec *rem) |
| { |
| struct timespec Wait, Remain; |
| |
| if (!rem) |
| rem = &Remain; |
| |
| Wait = *req; |
| |
| while (1) |
| { |
| if (nanosleep(&Wait, rem) == 0) |
| return 0; |
| |
| if (errno != EINTR) |
| return -1; |
| |
| Wait = *rem; |
| } |
| } |
| |
| |
| int sigwrap_clock_nanosleep(clockid_t clock_id, int flags, const struct timespec *request, struct timespec *remain) |
| { |
| struct timespec Wait, Remain; |
| |
| if (!remain) |
| remain = &Remain; |
| |
| Wait = *request; |
| |
| while (1) |
| { |
| int Result = clock_nanosleep(clock_id, flags, &Wait, remain); |
| |
| if (Result == 0) |
| return Result; |
| |
| if (Result != EINTR) |
| return Result; |
| |
| if (flags != TIMER_ABSTIME) |
| Wait = *remain; |
| } |
| } |
| |
| |
| int sigwrap_usleep(useconds_t usec) |
| { |
| SIGWRAP_TIMEOUT To; |
| |
| struct timespec Timeout; |
| |
| Timeout.tv_sec = usec / 1000000; |
| Timeout.tv_nsec = (usec % 1000000) * 1000; |
| |
| sigwrap_InitTimeout(&To, &Timeout); |
| |
| while (1) |
| { |
| if (usleep(usec) == 0) |
| return 0; |
| |
| if (errno != EINTR) |
| return -1; |
| |
| if (sigwrap_CheckTimeout(&To)) |
| return 0; |
| |
| usec = To.Timeout.tv_sec * 1000000 + To.Timeout.tv_nsec / 1000; |
| } |
| } |
| |
| |
| int sigwrap_poll(struct pollfd *fds, nfds_t nfds, int timeout) |
| { |
| SIGWRAP_TIMEOUT To; |
| |
| if (timeout > 0) |
| { |
| struct timespec Timeout; |
| |
| Timeout.tv_sec = timeout / 1000; |
| Timeout.tv_nsec = (timeout % 1000) * 1000000; |
| |
| sigwrap_InitTimeout(&To, &Timeout); |
| } |
| |
| while (1) |
| { |
| int Result = poll(fds, nfds, timeout); |
| |
| if (Result != -1) |
| return Result; |
| |
| if (errno != EINTR) |
| return Result; |
| |
| if (timeout < 0) // Specifying a negative value in timeout means an infinite/no timeout. |
| continue; |
| else if (timeout == 0) |
| continue; // We want to make sure that at least one check was not aborted with EINTR |
| |
| if (sigwrap_CheckTimeout(&To)) |
| return 0; |
| |
| timeout = To.Timeout.tv_sec * 1000 + To.Timeout.tv_nsec / 1000000; |
| } |
| } |
| |
| #if 0 |
| int sigwrap_ppoll(struct pollfd *fds, nfds_t nfds, const struct timespec *tmo_p, const sigset_t *sigmask) |
| { |
| SIGWRAP_TIMEOUT To; |
| |
| if (tmo_p != NULL) |
| { |
| sigwrap_InitTimeout(&To, tmo_p); |
| tmo_p = &To.Timeout; |
| } |
| |
| while (1) |
| { |
| int Result = ppoll(fds, nfds, tmo_p, sigmask); |
| |
| if (Result != -1) |
| return Result; |
| |
| if (errno != EINTR) |
| return Result; |
| |
| if (tmo_p == NULL) |
| continue; |
| |
| if (sigwrap_CheckTimeout(&To)) |
| return 0; |
| } |
| } |
| #endif |
| |
| int sigwrap_select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout) |
| { |
| while (1) |
| { |
| int Result = select(nfds, readfds, writefds, exceptfds, timeout); |
| |
| if (Result != -1) |
| return Result; |
| |
| if (errno != EINTR) |
| return Result; |
| } |
| } |
| |
| |
| int sigwrap_pselect(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, const struct timespec *timeout, |
| const sigset_t *sigmask) |
| { |
| SIGWRAP_TIMEOUT To; |
| |
| if (timeout != NULL) |
| { |
| sigwrap_InitTimeout(&To, timeout); |
| timeout = &To.Timeout; |
| } |
| |
| while (1) |
| { |
| int Result = pselect(nfds, readfds, writefds, exceptfds, timeout, sigmask); |
| |
| if (Result != -1) |
| return Result; |
| |
| if (errno != EINTR) |
| return Result; |
| |
| if (timeout == NULL) |
| continue; |
| |
| if (sigwrap_CheckTimeout(&To)) |
| return 0; |
| } |
| } |
| |
| |
| int sigwrap_msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg) |
| { |
| while (1) |
| { |
| int Result = msgsnd(msqid, msgp, msgsz, msgflg); |
| |
| if (Result != -1) |
| return Result; |
| |
| if (errno != EINTR) |
| return Result; |
| } |
| } |
| |
| |
| ssize_t sigwrap_msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg) |
| { |
| while (1) |
| { |
| ssize_t Result = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg); |
| |
| if (Result != -1) |
| return Result; |
| |
| if (errno != EINTR) |
| return Result; |
| } |
| } |
| |
| |
| int sigwrap_connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen) |
| { |
| while (1) |
| { |
| int Result = connect(sockfd, addr, addrlen); |
| |
| if (Result != -1) |
| return Result; |
| |
| if (errno != EINTR) |
| return Result; |
| } |
| } |
| |
| |
| ssize_t sigwrap_send(int sockfd, const void *buf, size_t len, int flags) |
| { |
| while (1) |
| { |
| ssize_t Result = send(sockfd, buf, len, flags); |
| |
| if (Result != -1) |
| return Result; |
| |
| if (errno != EINTR) |
| return Result; |
| } |
| } |
| |
| |
| ssize_t sigwrap_sendto(int sockfd, const void *buf, size_t len, int flags, const struct sockaddr *dest_addr, |
| socklen_t addrlen) |
| { |
| while (1) |
| { |
| ssize_t Result = sendto(sockfd, buf, len, flags, dest_addr, addrlen); |
| |
| if (Result != -1) |
| return Result; |
| |
| if (errno != EINTR) |
| return Result; |
| } |
| } |
| |
| |
| ssize_t sigwrap_sendsendmsg(int sockfd, const struct msghdr *msg, int flags) |
| { |
| while (1) |
| { |
| ssize_t Result = sendmsg(sockfd, msg, flags); |
| |
| if (Result != -1) |
| return Result; |
| |
| if (errno != EINTR) |
| return Result; |
| } |
| } |
| |
| |
| int sigwrap_accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen) |
| { |
| while (1) |
| { |
| int Result = accept(sockfd, addr, addrlen); |
| |
| if (Result != -1) |
| return Result; |
| |
| if (errno != EINTR) |
| return Result; |
| } |
| } |
| |
| #if 0 |
| int sigwrap_accept4(int sockfd, struct sockaddr *addr, socklen_t *addrlen, int flags) |
| { |
| while (1) |
| { |
| int Result = accept4(sockfd, addr, addrlen, flags); |
| |
| if (Result != -1) |
| return Result; |
| |
| if (errno != EINTR) |
| return Result; |
| } |
| } |
| #endif |
| |
| // EINTR wrapper for the standard read() function. Can be used for sockets that are the to non-blocking mode. |
| // The length of the returned data can be shorter than the requested one! |
| |
| ssize_t sigwrap_read(int fd, void *buf, size_t count) |
| { |
| while (1) |
| { |
| ssize_t Result = read(fd, buf, count); |
| |
| if (Result != -1) |
| return (Result); |
| |
| if (errno != EINTR) |
| return (Result); |
| } |
| } |
| |
| |
| // EINTR wrapper for the standard read() function. Waits until ALL requested data is available. Use the non-blocking version (sigwrap_read) |
| // for sockets that are set to non-blocking mode or when partial data is okay |
| // Although the description for the read() function describes it differently, it seems possible that the original function may already return |
| // even though partial data has already been read. This implementation makes sure that all requested data have been read. |
| // See the comment in the signal description https://linux.die.net/man/7/signal |
| //* read(2), readv(2), write(2), writev(2), and ioctl(2) calls on "slow" devices. |
| //* A "slow" device is one where the I/O call may block for an indefinite time, for example, a terminal, pipe, or socket. |
| //* (A disk is not a slow device according to this definition.) If an I/O call on a slow device has already transferred |
| //* some data by the time it is interrupted by a signal handler, then the call will return a success status (normally, the number of bytes transferred). |
| |
| ssize_t sigwrap_blocking_read(int hFile, void *pData, size_t RdLen) |
| { |
| ssize_t Transfered; |
| ssize_t Len = RdLen; |
| |
| while ((Transfered = read(hFile, pData, Len)) != Len) |
| { |
| if (Transfered == 0) // EOF reached? |
| return 0; |
| |
| if (Transfered != -1) |
| { |
| pData += Transfered; |
| Len -= Transfered; |
| continue; |
| } |
| |
| if (errno != EINTR) |
| return -1; |
| } |
| |
| return RdLen; |
| } |
| |
| |
| ssize_t sigwrap_readv(int fd, const struct iovec *iov, int iovcnt) |
| { |
| while (1) |
| { |
| ssize_t Result = readv(fd, iov, iovcnt); |
| |
| if (Result != -1) |
| return (Result); |
| |
| if (errno != EINTR) |
| return (Result); |
| } |
| } |
| |
| |
| ssize_t sigwrap_recv(int sockfd, void *buf, size_t len, int flags) |
| { |
| while (1) |
| { |
| ssize_t Result = recv(sockfd, buf, len, flags); |
| |
| if (Result != -1) |
| return (Result); |
| |
| if (errno != EINTR) |
| return (Result); |
| } |
| } |
| |
| |
| ssize_t sigwrap_recvfrom(int sockfd, void *buf, size_t len, int flags, struct sockaddr *src_addr, socklen_t *addrlen) |
| { |
| while (1) |
| { |
| ssize_t Result = recvfrom(sockfd, buf, len, flags, src_addr, addrlen); |
| |
| if (Result != -1) |
| return (Result); |
| |
| if (errno != EINTR) |
| return (Result); |
| } |
| } |
| |
| |
| ssize_t sigwrap_recvmsg(int sockfd, struct msghdr *msg, int flags) |
| { |
| while (1) |
| { |
| ssize_t Result = recvmsg(sockfd, msg, flags); |
| |
| if (Result != -1) |
| return (Result); |
| |
| if (errno != EINTR) |
| return (Result); |
| } |
| } |
| |
| |
| // EINTR wrapper for the standard write() function. Can be used for sockets that are the to non-blocking mode. |
| // The length of the effectively written data can be shorter than the length specified at the function call! |
| |
| ssize_t sigwrap_write(int fd, const void *buf, size_t count) |
| { |
| while (1) |
| { |
| ssize_t Result = write(fd, buf, count); |
| |
| if (Result != -1) |
| return (Result); |
| |
| if (errno != EINTR) |
| return (Result); |
| } |
| } |
| |
| // EINTR wrapper for the standard write() function. Waits until ALL data is written! Use the non-blocking version (sigwrap_write) |
| // for sockets that are set to non-blocking mode, or when it is OK to write only partial data. |
| // Although the description for the write() function describes it differently, it seems possible that the original function may already return |
| // even though partial data has already been written. This implementation makes sure that all requested data have been written. |
| // See the comment in the signal description https://linux.die.net/man/7/signal |
| //* read(2), readv(2), write(2), writev(2), and ioctl(2) calls on "slow" devices. |
| //* A "slow" device is one where the I/O call may block for an indefinite time, for example, a terminal, pipe, or socket. |
| //* (A disk is not a slow device according to this definition.) If an I/O call on a slow device has already transferred |
| //* some data by the time it is interrupted by a signal handler, then the call will return a success status (normally, the number of bytes transferred). |
| |
| ssize_t sigwrap_blocking_write(int hFile, const void *pData, ssize_t WrtLen) |
| { |
| ssize_t Written; |
| ssize_t Len = WrtLen; |
| |
| while ((Written = write(hFile, pData, Len)) != Len) |
| { |
| if (Written != -1) |
| { |
| pData += Written; |
| Len -= Written; |
| continue; |
| } |
| |
| if (errno != EINTR) |
| return -1; |
| } |
| |
| return WrtLen; |
| } |
| |
| |
| ssize_t sigwrap_writev(int fd, const struct iovec *iov, int iovcnt) |
| { |
| while (1) |
| { |
| ssize_t Result = writev(fd, iov, iovcnt); |
| |
| if (Result != -1) |
| return (Result); |
| |
| if (errno != EINTR) |
| return (Result); |
| } |
| } |
| |
| |
| int sigwrap_close(int hFile) |
| { |
| while (close(hFile) == -1) |
| { |
| if (errno != EINTR) |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| |
| int sigwrap_open_mode(const char *pathname, int flags, mode_t mode) |
| { |
| while (1) |
| { |
| int hFile = open(pathname, flags, mode); |
| |
| if(hFile != -1) |
| return hFile; |
| |
| if (errno != EINTR) |
| return hFile; |
| } |
| } |
| |
| int sigwrap_open(const char *pathname, int flags) |
| { |
| while (1) |
| { |
| int hFile = open(pathname, flags); |
| |
| if(hFile != -1) |
| return hFile; |
| |
| if (errno != EINTR) |
| return hFile; |
| } |
| } |
| |
| |
| pid_t sigwrap_wait(int *status) |
| { |
| while(1) |
| { |
| pid_t Result = wait(status); |
| |
| if(Result != -1) |
| return Result; |
| |
| if(errno != EINTR) |
| return Result; |
| } |
| } |
| |
| |
| pid_t sigwrap_waitpid(pid_t pid, int *status, int options) |
| { |
| while(1) |
| { |
| pid_t Result = waitpid(pid, status, options); |
| |
| if(Result != -1) |
| return Result; |
| |
| if(errno != EINTR) |
| return Result; |
| } |
| } |
| |
| |
| int sigwrap_waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options) |
| { |
| while(1) |
| { |
| int Result = waitid(idtype, id, infop, options); |
| |
| if(Result != -1) |
| return Result; |
| |
| if(errno != EINTR) |
| return Result; |
| } |
| } |
| |
| |
| int sigwrap_flock(int fd, int operation) |
| { |
| while(1) |
| { |
| int Result = flock(fd, operation); |
| |
| if(Result != -1) |
| return Result; |
| |
| if(errno != EINTR) |
| return Result; |
| } |
| } |
| |
| |