blob: 30efd74f84d9f55b8e2f9069ded3a02d3cb6c263 [file] [log] [blame]
#include <assert.h>
#include <libpdbg.h>
#include <unistd.h>
#include <hei_main.hpp>
#include <phosphor-logging/log.hpp>
#include <util/pdbg.hpp>
#include <util/trace.hpp>
#include <algorithm>
#include <fstream>
#include <iostream>
#include <map>
#include <string>
namespace analyzer
{
//------------------------------------------------------------------------------
// Forward references for externally defined functions.
void initializeIsolator(std::vector<libhei::Chip>& o_chips);
//------------------------------------------------------------------------------
const char* __attn(libhei::AttentionType_t i_attnType)
{
const char* str = "";
switch (i_attnType)
{
case libhei::ATTN_TYPE_CHECKSTOP:
str = "CHECKSTOP";
break;
case libhei::ATTN_TYPE_UNIT_CS:
str = "UNIT_CS";
break;
case libhei::ATTN_TYPE_RECOVERABLE:
str = "RECOVERABLE";
break;
case libhei::ATTN_TYPE_SP_ATTN:
str = "SP_ATTN";
break;
case libhei::ATTN_TYPE_HOST_ATTN:
str = "HOST_ATTN";
break;
default:
trace::err("Unsupported attention type: %u", i_attnType);
assert(0);
}
return str;
}
uint32_t __trgt(const libhei::Signature& i_sig)
{
uint8_t type = util::pdbg::getTrgtType(i_sig.getChip());
uint32_t pos = util::pdbg::getChipPos(i_sig.getChip());
// Technically, the FapiPos attribute is 32-bit, but not likely to ever go
// over 24-bit.
return type << 24 | (pos & 0xffffff);
}
uint32_t __sig(const libhei::Signature& i_sig)
{
return i_sig.getId() << 16 | i_sig.getInstance() << 8 | i_sig.getBit();
}
//------------------------------------------------------------------------------
// Takes a signature list that will be filtered and sorted. The first entry in
// the returned list will be the root cause. If the returned list is empty,
// analysis failed.
void __filterRootCause(std::vector<libhei::Signature>& io_list)
{
// For debug, trace out the original list of signatures before filtering.
for (const auto& sig : io_list)
{
trace::inf("Signature: %s 0x%0" PRIx32 " %s",
util::pdbg::getPath(sig.getChip()), __sig(sig),
__attn(sig.getAttnType()));
}
// Special and host attentions are not supported by this user application.
auto newEndItr =
std::remove_if(io_list.begin(), io_list.end(), [&](const auto& t) {
return (libhei::ATTN_TYPE_SP_ATTN == t.getAttnType() ||
libhei::ATTN_TYPE_HOST_ATTN == t.getAttnType());
});
// Shrink the vector, if needed.
io_list.resize(std::distance(io_list.begin(), newEndItr));
// START WORKAROUND
// TODO: Filtering should be determined by the RAS Data Files provided by
// the host firmware via the PNOR (similar to the Chip Data Files).
// Until that support is available, use a rudimentary filter that
// first looks for any recoverable attention, then any unit checkstop,
// and then any system checkstop. This is built on the premise that
// recoverable errors could be the root cause of an system checkstop
// attentions. Fortunately, we just need to sort the list by the
// greater attention type value.
std::sort(io_list.begin(), io_list.end(),
[&](const auto& a, const auto& b) {
return a.getAttnType() > b.getAttnType();
});
// END WORKAROUND
}
//------------------------------------------------------------------------------
bool __logError(const std::vector<libhei::Signature>& i_sigList,
const libhei::IsolationData& i_isoData)
{
bool attnFound = false;
// Get numerical values for the root cause.
uint32_t word6 = 0; // [ 0: 7]: chip target type
// [ 8:31]: chip FAPI position
// uint32_t word7 = 0; // TODO: chip target info
uint32_t word8 = 0; // [ 0:15]: node ID
// [16:23]: node instance
// [24:31]: bit position
// uint32_t word9 = 0; // [ 0: 7]: attention type
if (i_sigList.empty())
{
trace::inf("No active attentions found");
}
else
{
attnFound = true;
// The root cause attention is the first in the filtered list.
libhei::Signature root = i_sigList.front();
word6 = __trgt(root);
word8 = __sig(root);
trace::inf("Root cause attention: %s 0x%0" PRIx32 " %s",
util::pdbg::getPath(root.getChip()), word8,
__attn(root.getAttnType()));
}
// Get the log data.
std::map<std::string, std::string> logData;
logData["_PID"] = std::to_string(getpid());
logData["CHIP_ID"] = std::to_string(word6);
logData["SIGNATURE"] = std::to_string(word8);
// Get access to logging interface and method for creating log.
auto bus = sdbusplus::bus::new_default_system();
// Using direct create method (for additional data)
auto method = bus.new_method_call(
"xyz.openbmc_project.Logging", "/xyz/openbmc_project/logging",
"xyz.openbmc_project.Logging.Create", "Create");
// Attach additional data
method.append("org.open_power.HwDiags.Error.Checkstop",
"xyz.openbmc_project.Logging.Entry.Level.Error", logData);
// Log the event.
// TODO: Should the reply be handled?
bus.call(method);
return attnFound;
}
//------------------------------------------------------------------------------
bool analyzeHardware()
{
bool attnFound = false;
trace::inf(">>> enter analyzeHardware()");
// Initialize the isolator and get all of the chips to be analyzed.
trace::inf("Initializing the isolator...");
std::vector<libhei::Chip> chips;
initializeIsolator(chips);
// Isolate attentions.
trace::inf("Isolating errors: # of chips=%u", chips.size());
libhei::IsolationData isoData{};
libhei::isolate(chips, isoData);
// Filter signatures to determine root cause. We'll need to make a copy of
// the list so that the original list is maintained for the log.
std::vector<libhei::Signature> sigList{isoData.getSignatureList()};
__filterRootCause(sigList);
// Create and commit a log.
attnFound = __logError(sigList, isoData);
// All done, clean up the isolator.
trace::inf("Uninitializing isolator...");
libhei::uninitialize();
trace::inf("<<< exit analyzeHardware()");
return attnFound;
}
} // namespace analyzer