blob: 1ba5df4390119723bc7cf09a6b254f9e7ca52f0a [file] [log] [blame]
#include <libpdbg.h>
#include <attn/attn_common.hpp>
#include <attn/attn_handler.hpp>
#include <attn/attn_logging.hpp>
#include <sdbusplus/bus.hpp>
#include <util/pdbg.hpp>
#include <util/trace.hpp>
#include <iomanip>
#include <iostream>
#include <map>
namespace attn
{
/** @brief Traces some regs for hostboot */
void addHbStatusRegs()
{
// Only do this for P10 systems
if (util::pdbg::queryHardwareAnalysisSupported())
{
// We only need this for PRIMARY processor
pdbg_target* pibTarget = pdbg_target_from_path(nullptr, "/proc0/pib");
pdbg_target* fsiTarget = pdbg_target_from_path(nullptr, "/proc0/fsi");
uint32_t l_cfamData = 0xFFFFFFFF;
uint64_t l_scomData1 = 0xFFFFFFFFFFFFFFFFull;
uint64_t l_scomData2 = 0xFFFFFFFFFFFFFFFFull;
uint32_t l_cfamAddr = 0x283C;
uint64_t l_scomAddr1 = 0x4602F489;
uint64_t l_scomAddr2 = 0x4602F487;
if ((nullptr != fsiTarget) && (nullptr != pibTarget))
{
// get first debug reg (CFAM)
if (RC_SUCCESS != fsi_read(fsiTarget, l_cfamAddr, &l_cfamData))
{
trace::err("cfam read error: 0x%08x", l_cfamAddr);
l_cfamData = 0xFFFFFFFF;
}
// Get SCOM regs next (just 2 of them)
if (RC_SUCCESS != pib_read(pibTarget, l_scomAddr1, &l_scomData1))
{
trace::err("scom read error: 0x%016" PRIx64 "", l_scomAddr1);
l_scomData1 = 0xFFFFFFFFFFFFFFFFull;
}
if (RC_SUCCESS != pib_read(pibTarget, l_scomAddr2, &l_scomData2))
{
trace::err("scom read error: 0x%016" PRIx64 "", l_scomAddr2);
l_scomData2 = 0xFFFFFFFFFFFFFFFFull;
}
}
// Trace out the results here of all 3 regs
// (Format should resemble FSP: HostBoot Reg:0000283C Data:AA801504
// 00000000 Proc:00050001 )
trace::inf("HostBoot Reg:%08x Data:%08x Proc:00000000", l_cfamAddr,
l_cfamData);
trace::inf("HostBoot Reg:%08" PRIx64 " Data:%016" PRIx64
" Proc:00000000",
l_scomAddr1, l_scomData1);
trace::inf("HostBoot Reg:%08" PRIx64 " Data:%016" PRIx64
" Proc:00000000",
l_scomAddr2, l_scomData2);
}
return;
} // end addHbStatusRegs
/** @brief Capture some scratch registers for PRD */
void addPrdScratchRegs(std::vector<util::FFDCFile>& o_files)
{
// Get primary processor FSI target for CFAM reads
pdbg_target* fsiTarget = pdbg_target_from_path(nullptr, "/proc0/fsi");
if (nullptr == fsiTarget)
{
trace::err("error getting scratch register target");
}
else
{
uint32_t chipId = 0;
uint32_t signatureId = 0;
// get scratch register 9 (CFAM)
if (RC_SUCCESS != fsi_read(fsiTarget, 0x2980, &chipId))
{
trace::err("error reading scratch register 9");
chipId = 0;
}
// get scratch register 10 (CFAM)
if (RC_SUCCESS != fsi_read(fsiTarget, 0x2981, &signatureId))
{
trace::err("error reading scratch register 10");
signatureId = 0;
}
// Add data to traces and create user data section
if (0 != chipId || 0 != signatureId)
{
// trace scratch register data
trace::inf("PRD scratch Proc0, Chip ID: %08x, Signature ID: %08x",
chipId, signatureId);
// create ffdc data for user data section
try
{
util::FFDCFile file{util::FFDCFormat::Text};
int fd = file.getFileDescriptor();
char buffer[150];
int len = sprintf(buffer,
"Scratch Register Error Signature\n"
"Processor : 0\n"
"Chip ID : %08x\n"
"Signature ID : %08x\n",
chipId, signatureId);
if (write(fd, buffer, len) < 0)
{
trace::err("error writing scratch register user data");
}
else
{
o_files.push_back(std::move(file));
}
}
catch (const std::exception& e)
{
trace::err(
"exception when creating scratch register user data");
trace::inf(e.what());
}
}
}
return;
}
/** @brief Check for recoverable errors present */
bool recoverableErrors()
{
bool recoverableErrors = false; // assume no recoverable attentions
pdbg_target* target;
pdbg_for_each_class_target("proc", target)
{
if (PDBG_TARGET_ENABLED == pdbg_target_probe(target))
{
auto proc = pdbg_target_index(target); // get processor number
// Use PIB target to determine if a processor is enabled
char path[16];
sprintf(path, "/proc%d/pib", proc);
pdbg_target* pibTarget = pdbg_target_from_path(nullptr, path);
// sanity check
if (nullptr == pibTarget)
{
trace::inf("pib path or target not found");
continue;
}
// check if pib target is enabled - indicates proc is enabled
if (PDBG_TARGET_ENABLED == pdbg_target_probe(pibTarget))
{
// The processor FSI target is required for CFAM read
sprintf(path, "/proc%d/fsi", proc);
pdbg_target* fsiTarget = pdbg_target_from_path(nullptr, path);
// sanity check
if (nullptr == fsiTarget)
{
trace::inf("fsi path or target not found");
continue;
}
uint32_t isr_val = 0xffffffff; // invalid isr value
// get active attentions on processor
if (RC_SUCCESS != fsi_read(fsiTarget, 0x1007, &isr_val))
{
// log cfam read error
trace::err("cfam read 0x1007 FAILED");
eventAttentionFail((int)AttnSection::attnHandler |
ATTN_PDBG_CFAM);
}
// check for invalid/stale value
else if (0xffffffff == isr_val)
{
trace::err("cfam read 0x1007 INVALID");
continue;
}
// check recoverable error status bit
else if (0 != (isr_val & RECOVERABLE_ATTN))
{
recoverableErrors = true;
break;
}
} // fsi target enabled
} // pib target enabled
} // next processor
return recoverableErrors;
}
/** @brief timesec less-than-equal-to compare */
bool operator<=(const timespec& lhs, const timespec& rhs)
{
if (lhs.tv_sec == rhs.tv_sec)
return lhs.tv_nsec <= rhs.tv_nsec;
else
return lhs.tv_sec <= rhs.tv_sec;
}
/** @brief sleep for n-seconds */
void sleepSeconds(const unsigned int seconds)
{
auto count = seconds;
struct timespec requested, remaining;
while (0 < count)
{
requested.tv_sec = 1;
requested.tv_nsec = 0;
remaining = requested;
while (-1 == nanosleep(&requested, &remaining))
{
// if not changing or implausible then abort
if (requested <= remaining)
{
break;
}
// back to sleep
requested = remaining;
}
count--;
}
}
} // namespace attn