blob: efb43ae2d4b4202152af6d59b096600d0037e8b1 [file] [log] [blame]
#include <assert.h>
#include <analyzer_main.hpp>
#include <hei_main.hpp>
#include <hei_util.hpp>
#include <util/pdbg.hpp>
#include <algorithm>
#include <limits>
#include <string>
namespace analyzer
{
//------------------------------------------------------------------------------
bool __findRcsOscError(const std::vector<libhei::Signature>& i_list,
libhei::Signature& o_rootCause)
{
// TODO: Consider returning all of them instead of one as root cause.
auto itr = std::find_if(i_list.begin(), i_list.end(), [&](const auto& t) {
return (libhei::hash<libhei::NodeId_t>("TP_LOCAL_FIR") == t.getId() &&
(42 == t.getBit() || 43 == t.getBit()));
});
if (i_list.end() != itr)
{
o_rootCause = *itr;
return true;
}
return false;
}
//------------------------------------------------------------------------------
bool __findPllUnlock(const std::vector<libhei::Signature>& i_list,
libhei::Signature& o_rootCause)
{
// TODO: Consider returning all of them instead of one as root cause.
auto itr = std::find_if(i_list.begin(), i_list.end(), [&](const auto& t) {
return (libhei::hash<libhei::NodeId_t>("PLL_UNLOCK") == t.getId() &&
(0 == t.getBit() || 1 == t.getBit()));
});
if (i_list.end() != itr)
{
o_rootCause = *itr;
return true;
}
return false;
}
//------------------------------------------------------------------------------
bool __findMemoryChannelFailure(const std::vector<libhei::Signature>& i_list,
libhei::Signature& o_rootCause)
{
using namespace util::pdbg;
using func = libhei::NodeId_t (*)(const std::string& i_str);
func __hash = libhei::hash<libhei::NodeId_t>;
static const auto mc_dstl_fir = __hash("MC_DSTL_FIR");
static const auto mc_ustl_fir = __hash("MC_USTL_FIR");
static const auto mc_omi_dl_err_rpt = __hash("MC_OMI_DL_ERR_RPT");
for (const auto s : i_list)
{
const auto targetType = getTrgtType(getTrgt(s.getChip()));
const auto id = s.getId();
const auto bit = s.getBit();
const auto attnType = s.getAttnType();
// Look for any unit checkstop attentions from OCMBs.
if (TYPE_OCMB == targetType)
{
// Any unit checkstop attentions will trigger a channel failure.
if (libhei::ATTN_TYPE_UNIT_CS == attnType)
{
o_rootCause = s;
return true;
}
}
// Look for channel failure attentions on processors.
else if (TYPE_PROC == targetType)
{
// TODO: All of these channel failure bits are configurable.
// Eventually, we will need some mechanism to check that
// config registers for a more accurate analysis. For now,
// simply check for all bits that could potentially be
// configured to channel failure.
// Any unit checkstop bit in the MC_DSTL_FIR or MC_USTL_FIR could
// be a channel failure.
if (libhei::ATTN_TYPE_UNIT_CS == attnType)
{
// Ignore bits MC_DSTL_FIR[0:7] because they simply indicate
// attentions occurred on the attached OCMBs.
if ((mc_dstl_fir == id && 8 <= bit) || (mc_ustl_fir == id))
{
o_rootCause = s;
return true;
}
}
// All bits in MC_OMI_DL_ERR_RPT eventually feed into
// MC_OMI_DL_FIR[0,20] which are configurable to channel failure.
if (mc_omi_dl_err_rpt == id)
{
o_rootCause = s;
return true;
}
}
}
return false; // default, nothing found
}
//------------------------------------------------------------------------------
// Will query if a signature is a potential system checkstop root cause.
// attention. Note that this function excludes memory channel failure attentions
// and core unit checkstop attentions.
bool __findCsRootCause(const libhei::Signature& i_signature)
{
using namespace util::pdbg;
using func = libhei::NodeId_t (*)(const std::string& i_str);
func __hash = libhei::hash<libhei::NodeId_t>;
// PROC registers
static const auto eq_core_fir = __hash("EQ_CORE_FIR");
static const auto eq_l2_fir = __hash("EQ_L2_FIR");
static const auto eq_l3_fir = __hash("EQ_L3_FIR");
static const auto eq_ncu_fir = __hash("EQ_NCU_FIR");
static const auto iohs_dlp_fir_oc = __hash("IOHS_DLP_FIR_OC");
static const auto iohs_dlp_fir_smp = __hash("IOHS_DLP_FIR_SMP");
static const auto nx_cq_fir = __hash("NX_CQ_FIR");
static const auto nx_dma_eng_fir = __hash("NX_DMA_ENG_FIR");
static const auto pau_fir_0 = __hash("PAU_FIR_0");
static const auto pau_fir_1 = __hash("PAU_FIR_1");
static const auto pau_fir_2 = __hash("PAU_FIR_2");
static const auto pau_ptl_fir = __hash("PAU_PTL_FIR");
// OCMB registers
static const auto rdffir = __hash("RDFFIR");
const auto targetType = getTrgtType(getTrgt(i_signature.getChip()));
const auto id = i_signature.getId();
const auto bit = i_signature.getBit();
if (TYPE_PROC == targetType)
{
if (eq_core_fir == id &&
(3 == bit || 5 == bit || 8 == bit || 12 == bit || 22 == bit ||
25 == bit || 32 == bit || 36 == bit || 38 == bit || 46 == bit ||
47 == bit))
{
return true;
}
if (eq_l2_fir == id &&
(1 == bit || 12 == bit || 13 == bit || 17 == bit || 18 == bit ||
20 == bit || 27 == bit))
{
return true;
}
if (eq_l3_fir == id &&
(2 == bit || 5 == bit || 8 == bit || 11 == bit || 17 == bit))
{
return true;
}
if (eq_ncu_fir == id && (3 == bit || 4 == bit || 5 == bit || 7 == bit ||
8 == bit || 10 == bit || 17 == bit))
{
return true;
}
if (iohs_dlp_fir_oc == id && (54 <= bit && bit <= 61))
{
return true;
}
if (iohs_dlp_fir_smp == id && (54 <= bit && bit <= 61))
{
return true;
}
if (nx_cq_fir == id && (7 == bit || 16 == bit || 21 == bit))
{
return true;
}
if (nx_dma_eng_fir == id && (0 == bit))
{
return true;
}
if (pau_fir_0 == id &&
(15 == bit || 18 == bit || 19 == bit || 25 == bit || 26 == bit ||
29 == bit || 33 == bit || 34 == bit || 35 == bit || 40 == bit ||
42 == bit || 44 == bit || 45 == bit))
{
return true;
}
if (pau_fir_1 == id &&
(13 == bit || 14 == bit || 15 == bit || 37 == bit || 39 == bit ||
40 == bit || 41 == bit || 42 == bit))
{
return true;
}
if (pau_fir_2 == id &&
((4 <= bit && bit <= 18) || (20 <= bit && bit <= 31) ||
(36 <= bit && bit <= 41) || 45 == bit || 47 == bit || 48 == bit ||
50 == bit || 51 == bit || 52 == bit))
{
return true;
}
if (pau_ptl_fir == id && (4 == bit || 8 == bit))
{
return true;
}
}
else if (TYPE_OCMB == targetType)
{
if (rdffir == id && (14 == bit || 15 == bit || 17 == bit || 37 == bit))
{
return true;
}
}
return false; // default, nothing found
}
//------------------------------------------------------------------------------
bool __findCsRootCause_RE(const std::vector<libhei::Signature>& i_list,
libhei::Signature& o_rootCause)
{
for (const auto s : i_list)
{
// Only looking for recoverable attentions.
if (libhei::ATTN_TYPE_RECOVERABLE != s.getAttnType())
{
continue;
}
if (__findCsRootCause(s))
{
o_rootCause = s;
return true;
}
}
return false; // default, nothing found
}
//------------------------------------------------------------------------------
bool __findCsRootCause_UCS(const std::vector<libhei::Signature>& i_list,
libhei::Signature& o_rootCause)
{
for (const auto s : i_list)
{
// Only looking for unit checkstop attentions.
if (libhei::ATTN_TYPE_UNIT_CS != s.getAttnType())
{
continue;
}
if (__findCsRootCause(s))
{
o_rootCause = s;
return true;
}
}
return false; // default, nothing found
}
//------------------------------------------------------------------------------
bool __findNonExternalCs(const std::vector<libhei::Signature>& i_list,
libhei::Signature& o_rootCause)
{
using namespace util::pdbg;
static const auto pb_ext_fir = libhei::hash<libhei::NodeId_t>("PB_EXT_FIR");
for (const auto s : i_list)
{
const auto targetType = getTrgtType(getTrgt(s.getChip()));
const auto id = s.getId();
const auto attnType = s.getAttnType();
// Find any processor with system checkstop attention that did not
// originate from the PB_EXT_FIR.
if ((TYPE_PROC == targetType) &&
(libhei::ATTN_TYPE_CHECKSTOP == attnType) && (pb_ext_fir != id))
{
o_rootCause = s;
return true;
}
}
return false; // default, nothing found
}
//------------------------------------------------------------------------------
bool filterRootCause(AnalysisType i_type,
const libhei::IsolationData& i_isoData,
libhei::Signature& o_rootCause)
{
// We'll need to make a copy of the list so that the original list is
// maintained for the PEL.
std::vector<libhei::Signature> list{i_isoData.getSignatureList()};
// START WORKAROUND
// TODO: Filtering should be data driven. Until that support is available,
// use the following isolation rules.
// Ensure the list is not empty before continuing.
if (list.empty())
{
return false; // nothing more to do
}
// First, look for any RCS OSC errors. This must always be first because
// they can cause downstream PLL unlock attentions.
if (__findRcsOscError(list, o_rootCause))
{
return true;
}
// Second, look for any PLL unlock attentions. This must always be second
// because PLL unlock attentions can cause any number of downstream
// attentions, including a system checkstop.
if (__findPllUnlock(list, o_rootCause))
{
return true;
}
// Regardless of the analysis type, always look for anything that could be
// blamed as the root cause of a system checkstop.
// Memory channel failure attentions will produce SUEs and likely cause
// downstream attentions, including a system checkstop.
if (__findMemoryChannelFailure(list, o_rootCause))
{
return true;
}
// Look for any recoverable attentions that have been identified as a
// potential root cause of a system checkstop attention. These would include
// any attention that would generate an SUE. Note that is it possible for
// recoverables to generate unit checkstop attentions so we must check them
// first.
if (__findCsRootCause_RE(list, o_rootCause))
{
return true;
}
// Look for any unit checkstop attentions (other than memory channel
// failures) that have been identified as a potential root cause of a
// system checkstop attention. These would include any attention that would
// generate an SUE.
if (__findCsRootCause_UCS(list, o_rootCause))
{
return true;
}
// Look for any system checkstop attentions that originated from within the
// chip that reported the attention. In other words, no external checkstop
// attentions.
if (__findNonExternalCs(list, o_rootCause))
{
return true;
}
if (AnalysisType::SYSTEM_CHECKSTOP != i_type)
{
// No system checkstop root cause attentions were found. Next, look for
// any recoverable or unit checkstop attentions that could be associated
// with a TI. Also, ignore any attentions from EQ_CORE_FIR[56:57]
// because they simply indicate an attention came from the other core in
// the fused core pair.
auto itr = std::find_if(list.begin(), list.end(), [&](const auto& t) {
return (
(libhei::ATTN_TYPE_RECOVERABLE == t.getAttnType() ||
libhei::ATTN_TYPE_UNIT_CS == t.getAttnType()) &&
!(libhei::hash<libhei::NodeId_t>("EQ_CORE_FIR") == t.getId() &&
(56 == t.getBit() || 57 == t.getBit())));
});
if (list.end() != itr)
{
o_rootCause = *itr;
return true;
}
if (AnalysisType::TERMINATE_IMMEDIATE != i_type)
{
// No attentions associated with a system checkstop or TI were
// found. Simply, return the first entry in the list.
o_rootCause = list.front();
return true;
}
}
// END WORKAROUND
return false; // default, no active attentions found.
}
//------------------------------------------------------------------------------
} // namespace analyzer