blob: b84153bd8361e93a5c7b09db56fc29e3a626b31d [file] [log] [blame]
#include <assert.h>
#include <libpdbg.h>
#include <hei_main.hpp>
#include <util/trace.hpp>
#include <algorithm>
#include <fstream>
#include <iostream>
#include <map>
#include <string>
namespace analyzer
{
/** @brief Chip types that coorelate device tree nodes to chip data files */
static constexpr uint8_t chipTypeOcmb[4] = {0x00, 0x20, 0x0d, 0x16};
static constexpr uint8_t chipTypeProc[4] = {0x49, 0xa0, 0x0d, 0x12};
/**
* @brief send chip data file to isolator
*
* Read a chip data file into memory and then send it to the isolator via
* the initialize interface.
*
* @param i_filePath The file path and name to read into memory
*
* @return Returns true if the isolator was successfully initialized with
* a single chip data file. Returns false otherwise.
*
*/
void initWithFile(const char* i_filePath)
{
// open the file and seek to the end to get length
std::ifstream fileStream(i_filePath, std::ios::binary | std::ios::ate);
if (!fileStream.good())
{
trace::err("Unable to open file: %s", i_filePath);
assert(0);
}
else
{
// get file size based on seek position
fileStream.seekg(0, std::ios::end);
std::ifstream::pos_type fileSize = fileStream.tellg();
// create a buffer large enough to hold the entire file
std::vector<char> fileBuffer(fileSize);
// seek to the beginning of the file
fileStream.seekg(0, std::ios::beg);
// read the entire file into the buffer
fileStream.read(fileBuffer.data(), fileSize);
// done with the file
fileStream.close();
// initialize the isolator with the chip data
libhei::initialize(fileBuffer.data(), fileSize);
}
}
//------------------------------------------------------------------------------
// Returns the chip model/level of the given target. Also, adds the chip
// model/level to the list of type types needed to initialize the isolator.
libhei::ChipType_t __getChipType(pdbg_target* i_trgt,
std::vector<libhei::ChipType_t>& o_types)
{
libhei::ChipType_t type;
// START WORKAROUND
// TODO: Will need to grab the model/level from the target attributes when
// they are available. For now, use ATTR_TYPE to determine which
// currently supported value to use supported.
char* attrType = new char[1];
pdbg_target_get_attribute(i_trgt, "ATTR_TYPE", 1, 1, attrType);
switch (attrType[0])
{
case 0x05: // PROC
type = 0x120DA049;
break;
case 0x4b: // OCMB_CHIP
type = 0x160D2000;
break;
default:
trace::err("Unsupported ATTR_TYPE value: 0x%02x", attrType[0]);
assert(0);
}
delete[] attrType;
// END WORKAROUND
o_types.push_back(type);
return type;
}
//------------------------------------------------------------------------------
// Gathers list of active chips to analyze. Also, returns the list of chip types
// needed to initialize the isolator.
void __getActiveChips(std::vector<libhei::Chip>& o_chips,
std::vector<libhei::ChipType_t>& o_types)
{
// Iterate each processor.
pdbg_target* procTrgt;
pdbg_for_each_class_target("proc", procTrgt)
{
// Active processors only.
if (PDBG_TARGET_ENABLED != pdbg_target_probe(procTrgt))
continue;
// Add the processor to the list.
o_chips.emplace_back(procTrgt, __getChipType(procTrgt, o_types));
// Iterate the connected OCMBs, if they exist.
pdbg_target* ocmbTrgt;
pdbg_for_each_target("ocmb_chip", procTrgt, ocmbTrgt)
{
// Active OCMBs only.
if (PDBG_TARGET_ENABLED != pdbg_target_probe(ocmbTrgt))
continue;
// Add the OCMB to the list.
o_chips.emplace_back(ocmbTrgt, __getChipType(ocmbTrgt, o_types));
}
}
// Make sure the model/level list is of unique values only.
auto itr = std::unique(o_types.begin(), o_types.end());
o_types.resize(std::distance(o_types.begin(), itr));
}
//------------------------------------------------------------------------------
// Initializes the isolator for each specified chip type.
void __initializeIsolator(const std::vector<libhei::ChipType_t>& i_types)
{
// START WORKAROUND
// TODO: The chip data will eventually come from the CHIPDATA section of the
// PNOR. Until that support is available, we'll use temporary chip
// data files.
for (const auto& type : i_types)
{
switch (type)
{
case 0x120DA049: // PROC
initWithFile(
"/usr/share/openpower-hw-diags/chip_data_proc.cdb");
break;
case 0x160D2000: // OCMB_CHIP
initWithFile(
"/usr/share/openpower-hw-diags/chip_data_ocmb.cdb");
break;
default:
trace::err("Unsupported ChipType_t value: 0x%0" PRIx32, type);
assert(0);
}
}
// END WORKAROUND
}
//------------------------------------------------------------------------------
// Takes a signature list that will be filtered and sorted. The first entry in
// the returned list will be the root cause. If the returned list is empty,
// analysis failed.
void __filterRootCause(std::vector<libhei::Signature>& io_list)
{
// Special and host attentions are not supported by this user application.
auto newEndItr =
std::remove_if(io_list.begin(), io_list.end(), [&](const auto& t) {
return (libhei::ATTN_TYPE_SP_ATTN == t.getAttnType() ||
libhei::ATTN_TYPE_HOST_ATTN == t.getAttnType());
});
// Shrink the vector, if needed.
io_list.resize(std::distance(io_list.begin(), newEndItr));
// START WORKAROUND
// TODO: Filtering should be determined by the RAS Data Files provided by
// the host firmware via the PNOR (similar to the Chip Data Files).
// Until that support is available, use a rudimentary filter that
// first looks for any recoverable attention, then any unit checkstop,
// and then any system checkstop. This is built on the premise that
// recoverable errors could be the root cause of an system checkstop
// attentions. Fortunately, we just need to sort the list by the
// greater attention type value.
std::sort(io_list.begin(), io_list.end(),
[&](const auto& a, const auto& b) {
return a.getAttnType() > b.getAttnType();
});
// END WORKAROUND
}
//------------------------------------------------------------------------------
bool analyzeHardware(std::map<std::string, std::string>& o_errors)
{
bool attnFound = false;
// Get the active chips to be analyzed and their types.
std::vector<libhei::Chip> chipList;
std::vector<libhei::ChipType_t> chipTypes;
__getActiveChips(chipList, chipTypes);
// Initialize the isolator for all chip types.
__initializeIsolator(chipTypes);
// Isolate attentions.
libhei::IsolationData isoData{};
libhei::isolate(chipList, isoData);
// Filter signatures to determine root cause.
std::vector<libhei::Signature> sigList{isoData.getSignatureList()};
__filterRootCause(sigList);
if (sigList.empty())
{
// Don't throw an error here because it could happen for during TI
// analysis. Attention Handler will need to determine if this is an
// actual problem.
trace::inf("No active attentions found");
}
else
{
attnFound = true;
trace::inf("Active attentions found: %d", sigList.size());
libhei::Signature root = sigList.front();
trace::inf("Root cause attention: %p 0x%04x%02x%02x %d",
root.getChip().getChip(), root.getId(), root.getInstance(),
root.getBit(), root.getAttnType());
// TODO: generate log information
}
// All done, clean up the isolator.
libhei::uninitialize();
return attnFound;
}
} // namespace analyzer