blob: e9835c50f4af5e05bd1dd8895957a8ba275fa791 [file] [log] [blame]
#include <unistd.h>
#include <analyzer/service_data.hpp>
#include <analyzer/util.hpp>
#include <hei_main.hpp>
#include <phosphor-logging/elog.hpp>
#include <sdbusplus/bus.hpp>
#include <util/bin_stream.hpp>
#include <util/ffdc_file.hpp>
#include <util/pdbg.hpp>
#include <util/trace.hpp>
#include <xyz/openbmc_project/Logging/Create/server.hpp>
#include <xyz/openbmc_project/Logging/Entry/server.hpp>
#include <fstream>
#include <memory>
namespace LogSvr = sdbusplus::xyz::openbmc_project::Logging::server;
namespace analyzer
{
//------------------------------------------------------------------------------
enum FfdcSubType_t : uint8_t
{
FFDC_SIGNATURES = 0x01,
FFDC_REGISTER_DUMP = 0x02,
FFDC_GUARD = 0x03,
// For the callout section, the value of '0xCA' is required per the
// phosphor-logging openpower-pel extention spec.
FFDC_CALLOUTS = 0xCA,
};
enum FfdcVersion_t : uint8_t
{
FFDC_VERSION1 = 0x01,
};
//------------------------------------------------------------------------------
void __getSrc(const libhei::Signature& i_signature, uint32_t& o_word6,
uint32_t& o_word7, uint32_t& o_word8)
{
// [ 0:15] chip model
// [16:23] reserved space in chip ID
// [24:31] chip EC level
o_word6 = i_signature.getChip().getType();
// [ 0:15] chip position
// [16:23] node position
// [24:31] signature attention type
auto chipPos = util::pdbg::getChipPos(i_signature.getChip());
uint8_t nodePos = 0; // TODO: multi-node support
auto attn = i_signature.getAttnType();
o_word7 = (chipPos & 0xffff) << 16 | (nodePos & 0xff) << 8 | (attn & 0xff);
// [ 0:15] signature ID
// [16:23] signature instance
// [24:31] signature bit position
o_word8 = i_signature.toUint32();
// Word 9 is currently unused
}
//------------------------------------------------------------------------------
void __setSrc(const libhei::Signature& i_rootCause,
std::map<std::string, std::string>& io_logData)
{
uint32_t word6 = 0, word7 = 0, word8 = 0;
__getSrc(i_rootCause, word6, word7, word8);
io_logData["SRC6"] = std::to_string(word6);
io_logData["SRC7"] = std::to_string(word7);
io_logData["SRC8"] = std::to_string(word8);
}
//------------------------------------------------------------------------------
void __addCalloutList(const ServiceData& i_servData,
std::vector<util::FFDCFile>& io_userDataFiles)
{
// Get the JSON output for the callout list.
nlohmann::json json;
i_servData.getCalloutList(json);
// Create a new entry for the user data section containing the callout list.
io_userDataFiles.emplace_back(util::FFDCFormat::JSON, FFDC_CALLOUTS,
FFDC_VERSION1);
// Use a file stream to write the JSON to file.
std::ofstream o{io_userDataFiles.back().getPath()};
o << json;
}
//------------------------------------------------------------------------------
void __addGuardList(const ServiceData& i_servData,
std::vector<util::FFDCFile>& io_userDataFiles)
{
// Get the JSON output for the guard list.
nlohmann::json json;
i_servData.getGuardList(json);
// Create a new entry for the user data section containing the guard list.
io_userDataFiles.emplace_back(util::FFDCFormat::JSON, FFDC_GUARD,
FFDC_VERSION1);
// Use a file stream to write the JSON to file.
std::ofstream o{io_userDataFiles.back().getPath()};
o << json;
}
//------------------------------------------------------------------------------
void __captureSignatureList(const libhei::IsolationData& i_isoData,
std::vector<util::FFDCFile>& io_userDataFiles)
{
// Create a new entry for this user data section regardless if there are any
// signatures in the list.
io_userDataFiles.emplace_back(util::FFDCFormat::Custom, FFDC_SIGNATURES,
FFDC_VERSION1);
// Create a streamer for easy writing to the FFDC file.
auto path = io_userDataFiles.back().getPath();
util::BinFileWriter stream{path};
// The first 4 bytes in the FFDC contains the number of signatures in the
// list. Then, the list of signatures will follow.
auto list = i_isoData.getSignatureList();
uint32_t numSigs = list.size();
stream << numSigs;
for (const auto& sig : list)
{
// Each signature will use the same format as the SRC (12 bytes each).
uint32_t word6 = 0, word7 = 0, word8 = 0;
__getSrc(sig, word6, word7, word8);
stream << word6 << word7 << word8;
}
// If the stream failed for any reason, remove the FFDC file.
if (!stream.good())
{
trace::err("Unable to write signature list FFDC file: %s",
path.string().c_str());
io_userDataFiles.pop_back();
}
}
//------------------------------------------------------------------------------
void __captureRegisterDump(const libhei::IsolationData& i_isoData,
std::vector<util::FFDCFile>& io_userDataFiles)
{
// Create a new entry for this user data section regardless if there are any
// registers in the dump.
io_userDataFiles.emplace_back(util::FFDCFormat::Custom, FFDC_REGISTER_DUMP,
FFDC_VERSION1);
// Create a streamer for easy writing to the FFDC file.
auto path = io_userDataFiles.back().getPath();
util::BinFileWriter stream{path};
// The first 4 bytes in the FFDC contains the number of chips with register
// data. Then the data for each chip will follow.
auto dump = i_isoData.getRegisterDump();
uint32_t numChips = dump.size();
stream << numChips;
for (const auto& entry : dump)
{
auto chip = entry.first;
auto regList = entry.second;
// Each chip will have the following information:
// 4 byte chip model/EC
// 2 byte chip position
// 1 byte node position
// 4 byte number of registers
// Then the data for each register will follow.
uint32_t chipType = chip.getType();
uint16_t chipPos = util::pdbg::getChipPos(chip);
uint8_t nodePos = 0; // TODO: multi-node support
uint32_t numRegs = regList.size();
stream << chipType << chipPos << nodePos << numRegs;
for (const auto& reg : regList)
{
// Each register will have the following information:
// 3 byte register ID
// 1 byte register instance
// 1 byte data size
// * byte data buffer (* depends on value of data size)
libhei::RegisterId_t regId = reg.regId; // 3 byte
libhei::Instance_t regInst = reg.regInst; // 1 byte
auto tmp = libhei::BitString::getMinBytes(reg.data->getBitLen());
if (255 < tmp)
{
trace::inf("Register data execeeded 255 and was truncated: "
"regId=0x%06x regInst=%u",
regId, regInst);
tmp = 255;
}
uint8_t dataSize = tmp;
stream << regId << regInst << dataSize;
stream.write(reg.data->getBufAddr(), dataSize);
}
}
// If the stream failed for any reason, remove the FFDC file.
if (!stream.good())
{
trace::err("Unable to write register dump FFDC file: %s",
path.string().c_str());
io_userDataFiles.pop_back();
}
}
//------------------------------------------------------------------------------
std::string __getMessageRegistry(bool i_isCheckstop)
{
// For now, there are only two choices:
return i_isCheckstop ? "org.open_power.HwDiags.Error.Checkstop"
: "org.open_power.HwDiags.Error.Predictive";
}
//------------------------------------------------------------------------------
std::string __getMessageSeverity(bool i_isCheckstop)
{
// We could specify the PEL severity in the message registry entry. However,
// that would require multiple copies of each entry for each possible
// severity. As a workaround, we will not explicitly state the PEL severity
// in the message registry. Instead, the message severity will be converted
// into a PEL severity via the openpower-pels extention of phosphor-logging.
// Initially, we'll use a severity that will generate a predictive PEL. This
// is intended for Terminate Immediate (TI) errors and will require service.
LogSvr::Entry::Level severity = LogSvr::Entry::Level::Warning;
// If the reason for analysis was due to a system checsktop, the severity
// will be upgraded to a unrecoverable PEL.
if (i_isCheckstop)
severity = LogSvr::Entry::Level::Error;
// Convert the message severity to a string.
return LogSvr::Entry::convertLevelToString(severity);
}
//------------------------------------------------------------------------------
void createPel(const libhei::IsolationData& i_isoData,
const ServiceData& i_servData)
{
// The message registry will require additional log data to fill in keywords
// and additional log data.
std::map<std::string, std::string> logData;
// Keep track of the temporary files associated with the user data FFDC.
// WARNING: Once the objects stored in this vector go out of scope, the
// temporary files will be deleted. So they must remain in scope
// until the PEL is submitted.
std::vector<util::FFDCFile> userDataFiles;
// In several cases, it is important to know if the reason for analysis was
// due to a system checsktop.
bool isCheckstop = i_isoData.queryCheckstop();
// Set words 6-9 of the SRC.
__setSrc(i_servData.getRootCause(), logData);
// Add the list of callouts to the PEL.
__addCalloutList(i_servData, userDataFiles);
// Add the list of guard requests to the PEL.
__addGuardList(i_servData, userDataFiles);
// Capture the complete signature list.
__captureSignatureList(i_isoData, userDataFiles);
// Capture the complete signature list.
__captureRegisterDump(i_isoData, userDataFiles);
// Now, that all of the user data files have been created, transform the
// data into the proper format for the PEL.
std::vector<util::FFDCTuple> userData;
util::transformFFDC(userDataFiles, userData);
// Get access to logging interface and method for creating log.
auto bus = sdbusplus::bus::new_default_system();
// Using direct create method (for additional data).
auto method = bus.new_method_call(
"xyz.openbmc_project.Logging", "/xyz/openbmc_project/logging",
"xyz.openbmc_project.Logging.Create", "CreateWithFFDCFiles");
// The "Create" method requires manually adding the process ID.
logData["_PID"] = std::to_string(getpid());
// Get the message registry entry for this failure.
auto message = __getMessageRegistry(isCheckstop);
// Get the message severity for this failure.
auto severity = __getMessageSeverity(isCheckstop);
// Add the message, with additional log and user data.
method.append(message, severity, logData, userData);
// Log the event.
bus.call_noreply(method);
}
} // namespace analyzer