blob: 5daf7bd7b36621ebae374b9f17bba596175bc12f [file] [log] [blame]
#include <assert.h>
#include <analyzer/analyzer_main.hpp>
#include <analyzer/ras-data/ras-data-parser.hpp>
#include <hei_main.hpp>
#include <hei_util.hpp>
#include <util/pdbg.hpp>
#include <algorithm>
#include <limits>
#include <string>
namespace analyzer
{
//------------------------------------------------------------------------------
bool __findRcsOscError(const std::vector<libhei::Signature>& i_list,
libhei::Signature& o_rootCause)
{
// TODO: Consider returning all of them instead of one as root cause.
auto itr = std::find_if(i_list.begin(), i_list.end(), [&](const auto& t) {
return (libhei::hash<libhei::NodeId_t>("TP_LOCAL_FIR") == t.getId() &&
(42 == t.getBit() || 43 == t.getBit()));
});
if (i_list.end() != itr)
{
o_rootCause = *itr;
return true;
}
return false;
}
//------------------------------------------------------------------------------
bool __findPllUnlock(const std::vector<libhei::Signature>& i_list,
libhei::Signature& o_rootCause)
{
// TODO: Consider returning all of them instead of one as root cause.
auto itr = std::find_if(i_list.begin(), i_list.end(), [&](const auto& t) {
return (libhei::hash<libhei::NodeId_t>("PLL_UNLOCK") == t.getId() &&
(0 == t.getBit() || 1 == t.getBit()));
});
if (i_list.end() != itr)
{
o_rootCause = *itr;
return true;
}
return false;
}
//------------------------------------------------------------------------------
bool __findIueTh(const std::vector<libhei::Signature>& i_list,
libhei::Signature& o_rootCause)
{
// TODO: These bit values propbably changed in Odyssey. Will need to
// consider flags instead of arbitrary values.
auto itr = std::find_if(i_list.begin(), i_list.end(), [&](const auto& t) {
return (libhei::hash<libhei::NodeId_t>("RDFFIR") == t.getId() &&
(17 == t.getBit() || 37 == t.getBit()));
});
if (i_list.end() != itr)
{
o_rootCause = *itr;
return true;
}
return false;
}
//------------------------------------------------------------------------------
bool __findMemoryChannelFailure(const std::vector<libhei::Signature>& i_list,
libhei::Signature& o_rootCause,
const RasDataParser& i_rasData)
{
using namespace util::pdbg;
using func = libhei::NodeId_t (*)(const std::string& i_str);
func __hash = libhei::hash<libhei::NodeId_t>;
static const auto mc_dstl_fir = __hash("MC_DSTL_FIR");
static const auto mc_ustl_fir = __hash("MC_USTL_FIR");
static const auto mc_omi_dl_err_rpt = __hash("MC_OMI_DL_ERR_RPT");
static const auto srqfir = __hash("SRQFIR");
// First, look for any chip checkstops from the connected OCMBs.
for (const auto& s : i_list)
{
if (TYPE_OCMB != getTrgtType(getTrgt(s.getChip())))
{
continue; // OCMBs only
}
// TODO: The chip data for Explorer chips currently report chip
// checkstops as unit checkstops. Once the chip data has been
// updated, the check for unit checkstops here will need to be
// removed.
if (libhei::ATTN_TYPE_CHIP_CS == s.getAttnType() ||
libhei::ATTN_TYPE_UNIT_CS == s.getAttnType())
{
// Special Case:
// If the channel fail was specifically a firmware initiated
// channel fail (SRQFIR[25]) check for any IUE bits that are on
// that would have caused that (RDFFIR[17,37]).
// TODO: These bit values probably changed in Odyssey. Will need to
// consider flags instead of arbitrary values.
if ((srqfir == s.getId() && 25 == s.getBit()) &&
__findIueTh(i_list, o_rootCause))
{
return true;
}
o_rootCause = s;
return true;
}
}
// Now, look for any channel failure attentions on the processor side of the
// memory bus.
for (const auto& s : i_list)
{
if (TYPE_PROC != getTrgtType(getTrgt(s.getChip())))
{
continue; // processors only
}
// Any unit checkstop attentions that originated from the MC_DSTL_FIR or
// MC_USTLFIR are considered a channel failure attention.
// TODO: The "channel failure" designation is actually configurable via
// other registers. We just happen to expect anything that is
// configured to channel failure to also be configured to unit
// checkstop. Eventually, we will need some mechanism to check the
// configuration registers for a more accurate analysis.
if (libhei::ATTN_TYPE_UNIT_CS == s.getAttnType() &&
(mc_dstl_fir == s.getId() || mc_ustl_fir == s.getId()) &&
!i_rasData.isFlagSet(s,
RasDataParser::RasDataFlags::ATTN_FROM_OCMB))
{
o_rootCause = s;
return true;
}
// Any signatures from MC_OMI_DL_ERR_RPT feed into the only bits in
// MC_OMI_DL_FIR that are hardwired to channel failure.
else if (mc_omi_dl_err_rpt == s.getId())
{
o_rootCause = s;
return true;
}
}
return false; // default, nothing found
}
//------------------------------------------------------------------------------
// Will query if a signature is a potential system checkstop root cause.
// attention. Note that this function excludes memory channel failure attentions
// which are checked in __findMemoryChannelFailure().
bool __findCsRootCause(const libhei::Signature& i_signature,
const RasDataParser& i_rasData)
{
// Check if the input signature has the CS_POSSIBLE or SUE_SOURCE flag set.
if (i_rasData.isFlagSet(i_signature,
RasDataParser::RasDataFlags::CS_POSSIBLE) ||
i_rasData.isFlagSet(i_signature,
RasDataParser::RasDataFlags::SUE_SOURCE))
{
return true;
}
return false; // default, nothing found
}
//------------------------------------------------------------------------------
bool __findCsRootCause_RE(const std::vector<libhei::Signature>& i_list,
libhei::Signature& o_rootCause,
const RasDataParser& i_rasData)
{
for (const auto& s : i_list)
{
// Only looking for recoverable attentions.
if (libhei::ATTN_TYPE_RECOVERABLE != s.getAttnType())
{
continue;
}
if (__findCsRootCause(s, i_rasData))
{
o_rootCause = s;
return true;
}
}
return false; // default, nothing found
}
//------------------------------------------------------------------------------
bool __findCsRootCause_UCS(const std::vector<libhei::Signature>& i_list,
libhei::Signature& o_rootCause,
const RasDataParser& i_rasData)
{
for (const auto& s : i_list)
{
// Only looking for unit checkstop attentions.
if (libhei::ATTN_TYPE_UNIT_CS != s.getAttnType())
{
continue;
}
if (__findCsRootCause(s, i_rasData))
{
o_rootCause = s;
return true;
}
}
return false; // default, nothing found
}
//------------------------------------------------------------------------------
bool __findOcmbAttnBits(const std::vector<libhei::Signature>& i_list,
libhei::Signature& o_rootCause,
const RasDataParser& i_rasData)
{
using namespace util::pdbg;
// If we have any attentions from an OCMB, assume isolation to the OCMBs
// was successful and the ATTN_FROM_OCMB flag does not need to be checked.
for (const auto& s : i_list)
{
if (TYPE_OCMB == getTrgtType(getTrgt(s.getChip())))
{
return false;
}
}
for (const auto& s : i_list)
{
if (i_rasData.isFlagSet(s, RasDataParser::RasDataFlags::ATTN_FROM_OCMB))
{
o_rootCause = s;
return true;
}
}
return false; // default, nothing found
}
//------------------------------------------------------------------------------
bool __findNonExternalCs(const std::vector<libhei::Signature>& i_list,
libhei::Signature& o_rootCause)
{
using namespace util::pdbg;
static const auto pb_ext_fir = libhei::hash<libhei::NodeId_t>("PB_EXT_FIR");
for (const auto& s : i_list)
{
const auto targetType = getTrgtType(getTrgt(s.getChip()));
const auto id = s.getId();
const auto attnType = s.getAttnType();
// Find any processor with chip checkstop attention that did not
// originate from the PB_EXT_FIR.
if ((TYPE_PROC == targetType) &&
(libhei::ATTN_TYPE_CHIP_CS == attnType) && (pb_ext_fir != id))
{
o_rootCause = s;
return true;
}
}
return false; // default, nothing found
}
//------------------------------------------------------------------------------
bool __findTiRootCause(const std::vector<libhei::Signature>& i_list,
libhei::Signature& o_rootCause)
{
using namespace util::pdbg;
using func = libhei::NodeId_t (*)(const std::string& i_str);
func __hash = libhei::hash<libhei::NodeId_t>;
// PROC registers
static const auto tp_local_fir = __hash("TP_LOCAL_FIR");
static const auto occ_fir = __hash("OCC_FIR");
static const auto pbao_fir = __hash("PBAO_FIR");
static const auto n0_local_fir = __hash("N0_LOCAL_FIR");
static const auto int_cq_fir = __hash("INT_CQ_FIR");
static const auto nx_cq_fir = __hash("NX_CQ_FIR");
static const auto nx_dma_eng_fir = __hash("NX_DMA_ENG_FIR");
static const auto vas_fir = __hash("VAS_FIR");
static const auto n1_local_fir = __hash("N1_LOCAL_FIR");
static const auto mcd_fir = __hash("MCD_FIR");
static const auto pb_station_fir_en_1 = __hash("PB_STATION_FIR_EN_1");
static const auto pb_station_fir_en_2 = __hash("PB_STATION_FIR_EN_2");
static const auto pb_station_fir_en_3 = __hash("PB_STATION_FIR_EN_3");
static const auto pb_station_fir_en_4 = __hash("PB_STATION_FIR_EN_4");
static const auto pb_station_fir_es_1 = __hash("PB_STATION_FIR_ES_1");
static const auto pb_station_fir_es_2 = __hash("PB_STATION_FIR_ES_2");
static const auto pb_station_fir_es_3 = __hash("PB_STATION_FIR_ES_3");
static const auto pb_station_fir_es_4 = __hash("PB_STATION_FIR_ES_4");
static const auto pb_station_fir_eq = __hash("PB_STATION_FIR_EQ");
static const auto psihb_fir = __hash("PSIHB_FIR");
static const auto pbaf_fir = __hash("PBAF_FIR");
static const auto lpc_fir = __hash("LPC_FIR");
static const auto eq_core_fir = __hash("EQ_CORE_FIR");
static const auto eq_l2_fir = __hash("EQ_L2_FIR");
static const auto eq_l3_fir = __hash("EQ_L3_FIR");
static const auto eq_ncu_fir = __hash("EQ_NCU_FIR");
static const auto eq_local_fir = __hash("EQ_LOCAL_FIR");
static const auto eq_qme_fir = __hash("EQ_QME_FIR");
static const auto iohs_local_fir = __hash("IOHS_LOCAL_FIR");
static const auto iohs_dlp_fir_oc = __hash("IOHS_DLP_FIR_OC");
static const auto iohs_dlp_fir_smp = __hash("IOHS_DLP_FIR_SMP");
static const auto mc_local_fir = __hash("MC_LOCAL_FIR");
static const auto mc_fir = __hash("MC_FIR");
static const auto mc_dstl_fir = __hash("MC_DSTL_FIR");
static const auto mc_ustl_fir = __hash("MC_USTL_FIR");
static const auto nmmu_cq_fir = __hash("NMMU_CQ_FIR");
static const auto nmmu_fir = __hash("NMMU_FIR");
static const auto mc_omi_dl = __hash("MC_OMI_DL");
static const auto pau_local_fir = __hash("PAU_LOCAL_FIR");
static const auto pau_ptl_fir = __hash("PAU_PTL_FIR");
static const auto pau_phy_fir = __hash("PAU_PHY_FIR");
static const auto pau_fir_0 = __hash("PAU_FIR_0");
static const auto pau_fir_2 = __hash("PAU_FIR_2");
static const auto pci_local_fir = __hash("PCI_LOCAL_FIR");
static const auto pci_iop_fir = __hash("PCI_IOP_FIR");
static const auto pci_nest_fir = __hash("PCI_NEST_FIR");
// OCMB registers
static const auto ocmb_lfir = __hash("OCMB_LFIR");
static const auto mmiofir = __hash("MMIOFIR");
static const auto srqfir = __hash("SRQFIR");
static const auto rdffir = __hash("RDFFIR");
static const auto tlxfir = __hash("TLXFIR");
static const auto omi_dl = __hash("OMI_DL");
for (const auto& signature : i_list)
{
const auto targetType = getTrgtType(getTrgt(signature.getChip()));
const auto attnType = signature.getAttnType();
const auto id = signature.getId();
const auto bit = signature.getBit();
// Only looking for recoverable or unit checkstop attentions.
if (libhei::ATTN_TYPE_RECOVERABLE != attnType &&
libhei::ATTN_TYPE_UNIT_CS != attnType)
{
continue;
}
// Ignore attentions that should not be blamed as root cause of a TI.
// This would include informational only FIRs or correctable errors.
if (TYPE_PROC == targetType)
{
if (tp_local_fir == id &&
(0 == bit || 1 == bit || 2 == bit || 3 == bit || 4 == bit ||
5 == bit || 7 == bit || 8 == bit || 9 == bit || 10 == bit ||
11 == bit || 20 == bit || 22 == bit || 23 == bit ||
24 == bit || 38 == bit || 40 == bit || 41 == bit ||
46 == bit || 47 == bit || 48 == bit || 55 == bit ||
56 == bit || 57 == bit || 58 == bit || 59 == bit))
{
continue;
}
if (occ_fir == id &&
(9 == bit || 10 == bit || 15 == bit || 20 == bit || 21 == bit ||
22 == bit || 23 == bit || 32 == bit || 33 == bit ||
34 == bit || 36 == bit || 42 == bit || 43 == bit ||
46 == bit || 47 == bit || 48 == bit || 51 == bit ||
52 == bit || 53 == bit || 54 == bit || 57 == bit))
{
continue;
}
if (pbao_fir == id &&
(0 == bit || 1 == bit || 2 == bit || 8 == bit || 11 == bit ||
13 == bit || 15 == bit || 16 == bit || 17 == bit))
{
continue;
}
if ((n0_local_fir == id || n1_local_fir == id ||
iohs_local_fir == id || mc_local_fir == id ||
pau_local_fir == id || pci_local_fir == id) &&
(0 == bit || 1 == bit || 2 == bit || 3 == bit || 4 == bit ||
5 == bit || 6 == bit || 7 == bit || 8 == bit || 9 == bit ||
10 == bit || 11 == bit || 20 == bit || 21 == bit))
{
continue;
}
if (int_cq_fir == id &&
(0 == bit || 3 == bit || 5 == bit || 7 == bit || 36 == bit ||
47 == bit || 48 == bit || 49 == bit || 50 == bit ||
58 == bit || 59 == bit || 60 == bit))
{
continue;
}
if (nx_cq_fir == id &&
(1 == bit || 4 == bit || 18 == bit || 32 == bit || 33 == bit))
{
continue;
}
if (nx_dma_eng_fir == id &&
(4 == bit || 6 == bit || 9 == bit || 10 == bit || 11 == bit ||
34 == bit || 35 == bit || 36 == bit || 37 == bit || 39 == bit))
{
continue;
}
if (vas_fir == id &&
(8 == bit || 9 == bit || 11 == bit || 12 == bit || 13 == bit))
{
continue;
}
if (mcd_fir == id && (0 == bit))
{
continue;
}
if ((pb_station_fir_en_1 == id || pb_station_fir_en_2 == id ||
pb_station_fir_en_3 == id || pb_station_fir_en_4 == id ||
pb_station_fir_es_1 == id || pb_station_fir_es_2 == id ||
pb_station_fir_es_3 == id || pb_station_fir_es_4 == id ||
pb_station_fir_eq == id) &&
(9 == bit))
{
continue;
}
if (psihb_fir == id && (0 == bit || 23 == bit))
{
continue;
}
if (pbaf_fir == id &&
(0 == bit || 1 == bit || 3 == bit || 4 == bit || 5 == bit ||
6 == bit || 7 == bit || 8 == bit || 9 == bit || 10 == bit ||
11 == bit || 19 == bit || 20 == bit || 21 == bit ||
28 == bit || 29 == bit || 30 == bit || 31 == bit ||
32 == bit || 33 == bit || 34 == bit || 35 == bit || 36 == bit))
{
continue;
}
if (lpc_fir == id && (5 == bit))
{
continue;
}
if (eq_core_fir == id &&
(0 == bit || 2 == bit || 4 == bit || 7 == bit || 9 == bit ||
11 == bit || 13 == bit || 18 == bit || 21 == bit ||
24 == bit || 29 == bit || 31 == bit || 37 == bit ||
43 == bit || 56 == bit || 57 == bit))
{
continue;
}
if (eq_l2_fir == id &&
(0 == bit || 6 == bit || 11 == bit || 19 == bit || 36 == bit))
{
continue;
}
if (eq_l3_fir == id &&
(3 == bit || 4 == bit || 7 == bit || 10 == bit || 13 == bit))
{
continue;
}
if (eq_ncu_fir == id && (9 == bit))
{
continue;
}
if (eq_local_fir == id &&
(0 == bit || 1 == bit || 2 == bit || 3 == bit || 5 == bit ||
6 == bit || 7 == bit || 8 == bit || 9 == bit || 10 == bit ||
11 == bit || 12 == bit || 13 == bit || 14 == bit ||
15 == bit || 16 == bit || 20 == bit || 21 == bit ||
22 == bit || 23 == bit || 24 == bit || 25 == bit ||
26 == bit || 27 == bit || 28 == bit || 29 == bit ||
30 == bit || 31 == bit || 32 == bit || 33 == bit ||
34 == bit || 35 == bit || 36 == bit || 37 == bit ||
38 == bit || 39 == bit))
{
continue;
}
if (eq_qme_fir == id && (7 == bit || 25 == bit))
{
continue;
}
if (iohs_dlp_fir_oc == id &&
(6 == bit || 7 == bit || 8 == bit || 9 == bit || 10 == bit ||
48 == bit || 49 == bit || 52 == bit || 53 == bit))
{
continue;
}
if (iohs_dlp_fir_smp == id &&
(6 == bit || 7 == bit || 14 == bit || 15 == bit || 16 == bit ||
17 == bit || 38 == bit || 39 == bit || 44 == bit ||
45 == bit || 50 == bit || 51 == bit))
{
continue;
}
if (mc_fir == id &&
(5 == bit || 8 == bit || 15 == bit || 16 == bit))
{
continue;
}
if (mc_dstl_fir == id &&
(0 == bit || 1 == bit || 2 == bit || 3 == bit || 4 == bit ||
5 == bit || 6 == bit || 7 == bit || 14 == bit || 15 == bit))
{
continue;
}
if (mc_ustl_fir == id &&
(6 == bit || 20 == bit || 33 == bit || 34 == bit))
{
continue;
}
if (nmmu_cq_fir == id && (8 == bit || 11 == bit || 14 == bit))
{
continue;
}
if (nmmu_fir == id &&
(0 == bit || 3 == bit || 8 == bit || 9 == bit || 10 == bit ||
11 == bit || 12 == bit || 13 == bit || 14 == bit ||
15 == bit || 30 == bit || 31 == bit || 41 == bit))
{
continue;
}
if (mc_omi_dl == id && (2 == bit || 3 == bit || 6 == bit ||
7 == bit || 9 == bit || 10 == bit))
{
continue;
}
if (pau_ptl_fir == id && (5 == bit || 9 == bit))
{
continue;
}
if (pau_phy_fir == id &&
(2 == bit || 3 == bit || 6 == bit || 7 == bit || 15 == bit))
{
continue;
}
if (pau_fir_0 == id && (13 == bit || 30 == bit || 41 == bit))
{
continue;
}
if (pau_fir_2 == id && (19 == bit || 46 == bit || 49 == bit))
{
continue;
}
if (pci_iop_fir == id &&
(0 == bit || 2 == bit || 4 == bit || 6 == bit || 7 == bit ||
8 == bit || 10 == bit))
{
continue;
}
if (pci_nest_fir == id && (2 == bit || 5 == bit))
{
continue;
}
}
else if (TYPE_OCMB == targetType)
{
if (ocmb_lfir == id &&
(0 == bit || 1 == bit || 2 == bit || 8 == bit || 23 == bit ||
37 == bit || 63 == bit))
{
continue;
}
if (mmiofir == id && (2 == bit))
{
continue;
}
if (srqfir == id &&
(2 == bit || 4 == bit || 14 == bit || 15 == bit || 23 == bit ||
25 == bit || 28 == bit))
{
continue;
}
if (rdffir == id &&
(0 == bit || 1 == bit || 2 == bit || 3 == bit || 4 == bit ||
5 == bit || 6 == bit || 7 == bit || 8 == bit || 9 == bit ||
18 == bit || 38 == bit || 40 == bit || 41 == bit ||
45 == bit || 46 == bit))
{
continue;
}
if (tlxfir == id && (0 == bit || 9 == bit || 26 == bit))
{
continue;
}
if (omi_dl == id && (2 == bit || 3 == bit || 6 == bit || 7 == bit ||
9 == bit || 10 == bit))
{
continue;
}
}
// At this point, the attention has not been explicitly ignored. So
// return this signature and exit.
o_rootCause = signature;
return true;
}
return false; // default, nothing found
}
//------------------------------------------------------------------------------
bool filterRootCause(AnalysisType i_type,
const libhei::IsolationData& i_isoData,
libhei::Signature& o_rootCause,
const RasDataParser& i_rasData)
{
// We'll need to make a copy of the list so that the original list is
// maintained for the PEL.
std::vector<libhei::Signature> list{i_isoData.getSignatureList()};
// START WORKAROUND
// TODO: Filtering should be data driven. Until that support is available,
// use the following isolation rules.
// Ensure the list is not empty before continuing.
if (list.empty())
{
return false; // nothing more to do
}
// First, look for any RCS OSC errors. This must always be first because
// they can cause downstream PLL unlock attentions.
if (__findRcsOscError(list, o_rootCause))
{
return true;
}
// Second, look for any PLL unlock attentions. This must always be second
// because PLL unlock attentions can cause any number of downstream
// attentions, including a system checkstop.
if (__findPllUnlock(list, o_rootCause))
{
return true;
}
// Regardless of the analysis type, always look for anything that could be
// blamed as the root cause of a system checkstop.
// Memory channel failure attentions will produce SUEs and likely cause
// downstream attentions, including a system checkstop.
if (__findMemoryChannelFailure(list, o_rootCause, i_rasData))
{
return true;
}
// Look for any recoverable attentions that have been identified as a
// potential root cause of a system checkstop attention. These would include
// any attention that would generate an SUE. Note that is it possible for
// recoverables to generate unit checkstop attentions so we must check them
// first.
if (__findCsRootCause_RE(list, o_rootCause, i_rasData))
{
return true;
}
// Look for any unit checkstop attentions (other than memory channel
// failures) that have been identified as a potential root cause of a
// system checkstop attention. These would include any attention that would
// generate an SUE.
if (__findCsRootCause_UCS(list, o_rootCause, i_rasData))
{
return true;
}
// If no other viable root cause has been found, check for any signatures
// with the ATTN_FROM_OCMB flag in case there was an attention from an
// inaccessible OCMB.
if (__findOcmbAttnBits(list, o_rootCause, i_rasData))
{
return true;
}
// Look for any system checkstop attentions that originated from within the
// chip that reported the attention. In other words, no external checkstop
// attentions.
if (__findNonExternalCs(list, o_rootCause))
{
return true;
}
if (AnalysisType::SYSTEM_CHECKSTOP != i_type)
{
// No system checkstop root cause attentions were found. Next, look for
// any recoverable or unit checkstop attentions that could be associated
// with a TI.
if (__findTiRootCause(list, o_rootCause))
{
return true;
}
if (AnalysisType::TERMINATE_IMMEDIATE != i_type)
{
// No attentions associated with a system checkstop or TI were
// found. Simply, return the first entry in the list.
o_rootCause = list.front();
return true;
}
}
// END WORKAROUND
return false; // default, no active attentions found.
}
//------------------------------------------------------------------------------
} // namespace analyzer