blob: a8daedb637dfc8fb8e82dfebd198a4c594047bc9 [file] [log] [blame]
#include <attn/attn_handler.hpp>
#include <attn/attn_logging.hpp>
#include <attn/ti_handler.hpp>
#include <sdbusplus/bus.hpp>
#include <sdbusplus/exception.hpp>
#include <iomanip>
#include <iostream>
namespace attn
{
/**
* @brief Determine if this is a HB or PHYP TI event
*
* Use the TI info data area to determine if this is either a HB or a PHYP
* TI event then handle the event.
*
* @param i_tiDataArea pointer to the TI infor data
*/
int tiHandler(TiDataArea* i_tiDataArea)
{
int rc = RC_SUCCESS;
// check TI data area if it is available
if (nullptr != i_tiDataArea)
{
// HB v. PHYP TI logic: Only hosboot will fill in hbTerminateType
// and it will be non-zero. Only hostboot will fill out source and it
// it will be non-zero. Only PHYP will fill in srcFormat and it will
// be non-zero.
// source and only PHYP will fill in srcFormat.
if ((0 == i_tiDataArea->hbTerminateType) &&
(0 == i_tiDataArea->source) && (0 != i_tiDataArea->srcFormat))
{
handlePhypTi(i_tiDataArea);
}
else
{
handleHbTi(i_tiDataArea);
}
}
else
{
// TI data was not available, assume PHYP TI for now. When a host state
// management interface becomes availabe we may be able to make a more
// informed decision here.
handlePhypTi(i_tiDataArea);
}
return rc;
}
/**
* @brief Transition the host state
*
* We will transition the host state by starting the appropriate dbus target.
*
* @param i_target the dbus target to start
*/
void transitionHost(const char* i_target)
{
// We will be transitioning host by starting appropriate dbus target
auto bus = sdbusplus::bus::new_system();
auto method = bus.new_method_call(
"org.freedesktop.systemd1", "/org/freedesktop/systemd1",
"org.freedesktop.systemd1.Manager", "StartUnit");
method.append(i_target); // target unit to start
method.append("replace"); // mode = replace conflicting queued jobs
trace<level::INFO>(i_target);
bus.call_noreply(method); // start the service
}
/**
* @brief Handle a PHYP terminate immediate special attention
*
* The TI info data area will contain information pertaining to the TI
* condition. We will wither quiesce the host or initiate a MPIPL depending
* depending on the auto reboot configuration. We will also create a PEL which
* will contain the TI info data and FFDC data captured in the system journal.
*
* @param i_tiDataArea pointer to TI information filled in by hostboot
*/
void handlePhypTi(TiDataArea* i_tiDataArea)
{
trace<level::INFO>("PHYP TI");
if (autoRebootEnabled())
{
// If autoreboot is enabled we will start diagnostic mode target
// which will ultimately mpipl the host.
transitionHost("obmc-host-diagnostic-mode@0.target");
}
else
{
// If autoreboot is disabled we will quiesce the host
transitionHost("obmc-host-quiesce@0.target");
}
// gather additional data for PEL
std::map<std::string, std::string> tiAdditionalData;
if (nullptr != i_tiDataArea)
{
parsePhypOpalTiInfo(tiAdditionalData, i_tiDataArea);
parseRawTiInfo(tiAdditionalData, i_tiDataArea);
}
eventTerminate(tiAdditionalData); // generate PEL
}
/**
* @brief Handle a hostboot terminate immediate special attention
*
* The TI info data area will contain information pertaining to the TI
* condition. The course of action to take regarding the host state will
* depend on the contents of the TI info data area. We will also create a
* PEL containing the TI info data and FFDC data captured in the system
* journal.
*
* @param i_tiDataArea pointer to TI information filled in by hostboot
*/
void handleHbTi(TiDataArea* i_tiDataArea)
{
trace<level::INFO>("HB TI");
bool hbDumpRequested = true; // HB dump is common case
bool generatePel = true; // assume PEL will be created
bool terminateHost = true; // transition host state
// handle specific hostboot reason codes
if (nullptr != i_tiDataArea)
{
std::stringstream ss;
ss << std::hex << std::showbase;
switch (i_tiDataArea->hbTerminateType)
{
case TI_WITH_PLID:
case TI_WITH_EID:
ss << "TI with PLID/EID: " << be32toh(i_tiDataArea->asciiData1);
trace<level::INFO>(ss.str().c_str());
if (0 == i_tiDataArea->hbDumpFlag)
{
hbDumpRequested = false; // no HB dump requested
}
break;
case TI_WITH_SRC:
// SRC is byte 2 and 3 of 4 byte srcWord12HbWord0
uint16_t hbSrc = be32toh(i_tiDataArea->srcWord12HbWord0);
// trace some info
ss << "TI with SRC: " << (int)hbSrc;
trace<level::INFO>(ss.str().c_str());
ss.str(std::string()); // clear stream
switch (hbSrc)
{
case HB_SRC_SHUTDOWN_REQUEST:
trace<level::INFO>("shutdown request");
generatePel = false;
break;
case HB_SRC_KEY_TRANSITION:
trace<level::INFO>("key transition");
terminateHost = false;
break;
case HB_SRC_INSUFFICIENT_HW:
trace<level::INFO>("insufficient hardware");
break;
case HB_SRC_TPM_FAIL:
trace<level::INFO>("TPM fail");
break;
case HB_SRC_ROM_VERIFY:
trace<level::INFO>("ROM verify");
break;
case HB_SRC_EXT_MISMATCH:
trace<level::INFO>("EXT mismatch");
break;
case HB_SRC_ECC_UE:
trace<level::INFO>("ECC UE");
break;
case HB_SRC_UNSUPPORTED_MODE:
trace<level::INFO>("unsupported mode");
break;
case HB_SRC_UNSUPPORTED_SFCRANGE:
trace<level::INFO>("unsupported SFC range");
break;
case HB_SRC_PARTITION_TABLE:
trace<level::INFO>("partition table invalid");
break;
case HB_SRC_UNSUPPORTED_HARDWARE:
trace<level::INFO>("unsupported hardware");
break;
case HB_SRC_PNOR_CORRUPTION:
trace<level::INFO>("PNOR corruption");
break;
default:
trace<level::INFO>("reason: other");
}
break;
}
}
if (true == terminateHost)
{
// if hostboot dump is requested initiate dump
if (hbDumpRequested)
{
// Until HB dump support available just quiesce the host - once
// dump support is available the dump component will transition
// (ipl/halt) the host.
transitionHost("obmc-host-quiesce@0.target");
}
else
{
// Quiese the host - when the host is quiesced it will either
// "halt" or IPL depending on autoreboot setting.
transitionHost("obmc-host-quiesce@0.target");
}
}
// gather additional data for PEL
std::map<std::string, std::string> tiAdditionalData;
if (nullptr != i_tiDataArea)
{
parseHbTiInfo(tiAdditionalData, i_tiDataArea);
parseRawTiInfo(tiAdditionalData, i_tiDataArea);
}
if (true == generatePel)
{
eventTerminate(tiAdditionalData); // generate PEL
}
}
/** @brief Parse the TI info data area into map as raw 32-bit fields */
void parseRawTiInfo(std::map<std::string, std::string>& i_map,
TiDataArea* i_buffer)
{
if (nullptr == i_buffer)
{
return;
}
uint32_t* tiDataArea = (uint32_t*)i_buffer;
std::stringstream ss;
ss << std::hex << std::setfill('0');
ss << "raw:";
while (tiDataArea <= (uint32_t*)((char*)i_buffer + sizeof(TiDataArea)))
{
ss << std::setw(8) << std::endl << be32toh(*tiDataArea);
tiDataArea++;
}
std::string key, value;
char delim = ':';
while (std::getline(ss, key, delim))
{
std::getline(ss, value, delim);
i_map[key] = value;
}
}
/** @brief Parse the TI info data area into map as PHYP/OPAL data */
void parsePhypOpalTiInfo(std::map<std::string, std::string>& i_map,
TiDataArea* i_tiDataArea)
{
if (nullptr == i_tiDataArea)
{
return;
}
std::stringstream ss;
ss << std::hex << std::showbase;
ss << "0x00 TI Area Valid:" << (int)i_tiDataArea->tiAreaValid << ":";
ss << "0x01 Command:" << (int)i_tiDataArea->command << ":";
ss << "0x02 Num. Data Bytes:" << be16toh(i_tiDataArea->numDataBytes) << ":";
ss << "0x04 Reserved:" << (int)i_tiDataArea->reserved1 << ":";
ss << "0x06 HWDump Type:" << be16toh(i_tiDataArea->hardwareDumpType) << ":";
ss << "0x08 SRC Format:" << (int)i_tiDataArea->srcFormat << ":";
ss << "0x09 SRC Flags:" << (int)i_tiDataArea->srcFlags << ":";
ss << "0x0a Num. ASCII Words:" << (int)i_tiDataArea->numAsciiWords << ":";
ss << "0x0b Num. Hex Words:" << (int)i_tiDataArea->numHexWords << ":";
ss << "0x0e Length of SRC:" << be16toh(i_tiDataArea->lenSrc) << ":";
ss << "0x10 SRC Word 12:" << be32toh(i_tiDataArea->srcWord12HbWord0) << ":";
ss << "0x14 SRC Word 13:" << be32toh(i_tiDataArea->srcWord13HbWord2) << ":";
ss << "0x18 SRC Word 14:" << be32toh(i_tiDataArea->srcWord14HbWord3) << ":";
ss << "0x1c SRC Word 15:" << be32toh(i_tiDataArea->srcWord15HbWord4) << ":";
ss << "0x20 SRC Word 16:" << be32toh(i_tiDataArea->srcWord16HbWord5) << ":";
ss << "0x24 SRC Word 17:" << be32toh(i_tiDataArea->srcWord17HbWord6) << ":";
ss << "0x28 SRC Word 18:" << be32toh(i_tiDataArea->srcWord18HbWord7) << ":";
ss << "0x2c SRC Word 19:" << be32toh(i_tiDataArea->srcWord19HbWord8) << ":";
ss << "0x30 ASCII Data:" << be32toh(i_tiDataArea->asciiData0) << ":";
ss << "0x34 ASCII Data:" << be32toh(i_tiDataArea->asciiData1) << ":";
ss << "0x38 ASCII Data:" << be32toh(i_tiDataArea->asciiData2) << ":";
ss << "0x3c ASCII Data:" << be32toh(i_tiDataArea->asciiData3) << ":";
ss << "0x40 ASCII Data:" << be32toh(i_tiDataArea->asciiData4) << ":";
ss << "0x44 ASCII Data:" << be32toh(i_tiDataArea->asciiData5) << ":";
ss << "0x48 ASCII Data:" << be32toh(i_tiDataArea->asciiData6) << ":";
ss << "0x4c ASCII Data:" << be32toh(i_tiDataArea->asciiData7) << ":";
ss << "0x50 Location:" << (int)i_tiDataArea->location << ":";
ss << "0x51 Code Sections:" << (int)i_tiDataArea->codeSection << ":";
ss << "0x52 Additional Size:" << (int)i_tiDataArea->additionalSize << ":";
ss << "0x53 Additional Data:" << (int)i_tiDataArea->andData;
std::string key, value;
char delim = ':';
while (std::getline(ss, key, delim))
{
std::getline(ss, value, delim);
i_map[key] = value;
}
}
/** @brief Parse the TI info data area into map as hostboot data */
void parseHbTiInfo(std::map<std::string, std::string>& i_map,
TiDataArea* i_tiDataArea)
{
if (nullptr == i_tiDataArea)
{
return;
}
std::stringstream ss;
ss << std::hex << std::showbase;
ss << "0x00 TI Area Valid:" << (int)i_tiDataArea->tiAreaValid << ":";
ss << "0x04 Reserved:" << (int)i_tiDataArea->reserved1 << ":";
ss << "0x05 HB_Term. Type:" << (int)i_tiDataArea->hbTerminateType << ":";
ss << "0x0c HB Dump Flag:" << (int)i_tiDataArea->hbDumpFlag << ":";
ss << "0x0d Source:" << (int)i_tiDataArea->source << ":";
ss << "0x10 HB Word 0:" << be32toh(i_tiDataArea->srcWord12HbWord0) << ":";
ss << "0x14 HB Word 2:" << be32toh(i_tiDataArea->srcWord13HbWord2) << ":";
ss << "0x18 HB Word 3:" << be32toh(i_tiDataArea->srcWord14HbWord3) << ":";
ss << "0x1c HB Word 4:" << be32toh(i_tiDataArea->srcWord15HbWord4) << ":";
ss << "0x20 HB Word 5:" << be32toh(i_tiDataArea->srcWord16HbWord5) << ":";
ss << "0x24 HB Word 6:" << be32toh(i_tiDataArea->srcWord17HbWord6) << ":";
ss << "0x28 HB Word 7:" << be32toh(i_tiDataArea->srcWord18HbWord7) << ":";
ss << "0x2c HB Word 8:" << be32toh(i_tiDataArea->srcWord19HbWord8) << ":";
ss << "0x30 error_data:" << be32toh(i_tiDataArea->asciiData0) << ":";
ss << "0x34 EID:" << be32toh(i_tiDataArea->asciiData1);
std::string key, value;
char delim = ':';
while (std::getline(ss, key, delim))
{
std::getline(ss, value, delim);
i_map[key] = value;
}
}
/** @brief Read state of autoreboot propertyi via dbus */
bool autoRebootEnabled()
{
// Use dbus get-property interface to read the autoreboot property
auto bus = sdbusplus::bus::new_system();
auto method =
bus.new_method_call("xyz.openbmc_project.Settings",
"/xyz/openbmc_project/control/host0/auto_reboot",
"org.freedesktop.DBus.Properties", "Get");
method.append("xyz.openbmc_project.Control.Boot.RebootPolicy",
"AutoReboot");
bool autoReboot = false; // assume autoreboot attribute not available
try
{
auto reply = bus.call(method);
std::variant<bool> result;
reply.read(result);
autoReboot = std::get<bool>(result);
}
catch (const sdbusplus::exception::SdBusError& ec)
{
std::string traceMessage =
"Error in AutoReboot Get: " + std::string(ec.what());
trace<level::INFO>(traceMessage.c_str());
}
return autoReboot;
}
} // namespace attn