blob: 55da5cd172b65da73123640a252eb9ad04461354 [file] [log] [blame]
/** @file hei_bit_string.cpp
* @brief BitString and BitStringBuffer class definitions
*/
#include <util/hei_bit_string.hpp>
#include <hei_user_defines.hpp>
#include <algorithm>
namespace libhei
{
//##############################################################################
// BitString class
//##############################################################################
// number of bits in a uint64_t
constexpr uint64_t BitString::UINT64_BIT_LEN = sizeof(uint64_t) * 8;
// number of bits in a uint8_t
constexpr uint64_t BitString::UINT8_BIT_LEN = sizeof(uint8_t) * 8;
//------------------------------------------------------------------------------
uint64_t BitString::getFieldRight( uint64_t i_pos, uint64_t i_len ) const
{
HEI_ASSERT( nullptr != getBufAddr() ); // must to have a valid address
HEI_ASSERT( 0 < i_len ); // must have at least one bit
HEI_ASSERT( i_len <= UINT64_BIT_LEN ); // i_len length must be valid
HEI_ASSERT( i_pos + i_len <= getBitLen() ); // field must be within range
// Get the relative address of this byte and the relative starting position
// within the byte.
uint64_t relPos = 0;
uint8_t * relAddr = getRelativePosition( relPos, i_pos );
// Get the length of the target bit field within this byte and the length of
// the bit field for any remaining bits.
uint64_t bf_len = i_len;
uint64_t remain_len = 0;
if ( UINT8_BIT_LEN < relPos + i_len )
{
// The target bit field crosses a byte boundary. So truncate the bit
// length for this byte and update the remaining length.
bf_len = UINT8_BIT_LEN - relPos;
remain_len = i_len - bf_len;
}
// Get the target bit field within this byte (right justified).
uint8_t bf = *relAddr;
bf <<= relPos; // Mask off uneeded bits on the left side.
bf >>= UINT8_BIT_LEN - bf_len; // Right justify the value.
// Check for any remaining bits after this target byte.
if ( 0 != remain_len )
{
// Recursively call this function on the remaining bits and push them
// into the right side of the return value.
uint64_t val = static_cast<uint64_t>(bf) << remain_len;
return val | getFieldRight( i_pos + bf_len, remain_len );
}
// Nothing more to do. Simply return this bit field.
return bf;
}
//------------------------------------------------------------------------------
void BitString::setFieldLeft( uint64_t i_pos, uint64_t i_len, uint64_t i_val )
{
HEI_ASSERT( nullptr != getBufAddr() ); // must to have a valid address
HEI_ASSERT( 0 < i_len ); // must have at least one bit
HEI_ASSERT( i_len <= UINT64_BIT_LEN ); // i_len length must be valid
HEI_ASSERT( i_pos + i_len <= getBitLen() ); // field must be within range
// Get the relative address of this byte and the relative starting position
// within the byte.
uint64_t relPos = 0;
uint8_t * relAddr = getRelativePosition( relPos, i_pos );
// Get the length of the target bit field within this byte and the length of
// the bit field for any remaining bits.
uint64_t bf_len = i_len;
uint64_t remain_len = 0;
if ( UINT8_BIT_LEN < relPos + i_len )
{
// The target bit field crosses a byte boundary. So truncate the bit
// length for this byte and update the remaining length.
bf_len = UINT8_BIT_LEN - relPos;
remain_len = i_len - bf_len;
}
// It is possible there are bits in this byte on either side of the target
// bit field that must be preserved. Get the length of each of those bit
// fields.
uint64_t bf_l_len = relPos;
uint64_t bf_r_len = UINT8_BIT_LEN - (bf_l_len + bf_len);
// Get the target bit field from the left justified inputed value.
uint8_t bf = (i_val >> (UINT64_BIT_LEN - bf_len)) << bf_r_len;
// Get the bit fields on either side of the target bit field.
uint64_t bf_l_shift = UINT8_BIT_LEN - bf_l_len;
uint64_t bf_r_shift = UINT8_BIT_LEN - bf_r_len;
uint8_t bf_l = *relAddr; bf_l >>= bf_l_shift; bf_l <<= bf_l_shift;
uint8_t bf_r = *relAddr; bf_r <<= bf_r_shift; bf_r >>= bf_r_shift;
// Combine all three parts of the byte and write it out to memory.
*relAddr = bf_l | bf | bf_r;
// Check for any remaining bits after this target byte.
if ( 0 != remain_len )
{
// Recursively call this function on the remaining bits.
setFieldLeft( i_pos + bf_len, remain_len, i_val << bf_len );
}
}
//------------------------------------------------------------------------------
void BitString::setPattern( uint64_t i_sPos, uint64_t i_sLen,
uint64_t i_pattern, uint64_t i_pLen )
{
HEI_ASSERT(nullptr != getBufAddr()); // must to have a valid address
HEI_ASSERT(0 < i_sLen); // must have at least one bit
HEI_ASSERT(i_sPos + i_sLen <= getBitLen()); // field must be within range
HEI_ASSERT(0 < i_pLen); // must have at least one bit
HEI_ASSERT(i_pLen <= UINT64_BIT_LEN); // i_pLen length must be valid
// Get a bit string for the pattern subset (right justified).
// Note that we cannot use a BitStringBuffer here because this function
// could be used in the constructor of BitStringBuffer, which could causes
// an infinite loop.
uint8_t a[sizeof(i_pattern)] = {};
BitString bs { sizeof(i_pattern)*8, a };
bs.setFieldRight(0, i_pLen, i_pattern);
// Iterate the range in chunks the size of i_pLen.
uint64_t endPos = i_sPos + i_sLen;
for ( uint64_t pos = i_sPos; pos < endPos; pos += i_pLen )
{
// The true chunk size is either i_pLen or the leftovers at the end.
uint64_t len = std::min( i_pLen, endPos - pos );
// Get this chunk's pattern value, truncate (right justified) if needed.
uint64_t pattern = bs.getFieldRight( 0, len );
// Set the pattern in this string.
setFieldRight( pos, len, pattern );
}
}
//------------------------------------------------------------------------------
void BitString::setString( const BitString & i_sStr, uint64_t i_sPos,
uint64_t i_sLen, uint64_t i_dPos )
{
// Ensure the source parameters are valid.
HEI_ASSERT( nullptr != i_sStr.getBufAddr() );
HEI_ASSERT( 0 < i_sLen ); // at least one bit to copy
HEI_ASSERT( i_sPos + i_sLen <= i_sStr.getBitLen() );
// Ensure the destination has at least one bit available to copy.
HEI_ASSERT( nullptr != getBufAddr() );
HEI_ASSERT( i_dPos < getBitLen() );
// If the source length is greater than the destination length than the
// extra source bits are ignored.
uint64_t actLen = std::min( i_sLen, getBitLen() - i_dPos );
// The bit strings may be in overlapping memory spaces. So we need to copy
// the data in the correct direction to prevent overlapping.
uint64_t sRelOffset = 0, dRelOffset = 0;
uint8_t * sRelAddr = i_sStr.getRelativePosition( sRelOffset, i_sPos );
uint8_t * dRelAddr = getRelativePosition( dRelOffset, i_dPos );
// Copy the data.
if ( (dRelAddr == sRelAddr) && (dRelOffset == sRelOffset) )
{
// Do nothing. The source and destination are the same.
}
else if ( (dRelAddr < sRelAddr) ||
((dRelAddr == sRelAddr) && (dRelOffset < sRelOffset)) )
{
// Copy the data forward.
for ( uint64_t pos = 0; pos < actLen; pos += UINT64_BIT_LEN )
{
uint64_t len = std::min( actLen - pos, UINT64_BIT_LEN );
uint64_t value = i_sStr.getFieldRight( i_sPos + pos, len );
setFieldRight( i_dPos + pos, len, value );
}
}
else // Copy the data backwards.
{
// Get the first position of the last chunk (byte aligned).
uint64_t lastPos = ((actLen-1) / UINT64_BIT_LEN) * UINT64_BIT_LEN;
// Start with the last chunk and work backwards.
for ( int32_t pos = lastPos; 0 <= pos; pos -= UINT64_BIT_LEN )
{
uint64_t len = std::min( actLen - pos, UINT64_BIT_LEN );
uint64_t value = i_sStr.getFieldRight( i_sPos + pos, len );
setFieldRight( i_dPos + pos, len, value );
}
}
}
//------------------------------------------------------------------------------
void BitString::maskString( const BitString & i_mask )
{
// Get the length of the smallest string.
uint64_t actLen = std::min( getBitLen(), i_mask.getBitLen() );
for ( uint64_t pos = 0; pos < actLen; pos += UINT64_BIT_LEN )
{
uint64_t len = std::min( actLen - pos, UINT64_BIT_LEN );
uint64_t dVal = getFieldRight( pos, len );
uint64_t sVal = i_mask.getFieldRight( pos, len );
setFieldRight( pos, len, dVal & ~sVal );
}
}
//------------------------------------------------------------------------------
bool BitString::isEqual( const BitString & i_str ) const
{
if ( getBitLen() != i_str.getBitLen() )
return false; // size not equal
for ( uint64_t pos = 0; pos < getBitLen(); pos += UINT64_BIT_LEN )
{
uint64_t len = std::min( getBitLen() - pos, UINT64_BIT_LEN );
if ( getFieldRight(pos, len) != i_str.getFieldRight(pos, len) )
return false; // bit strings do not match
}
return true; // bit strings match
}
//------------------------------------------------------------------------------
bool BitString::isZero() const
{
for ( uint64_t pos = 0; pos < getBitLen(); pos += UINT64_BIT_LEN )
{
uint64_t len = std::min( getBitLen() - pos, UINT64_BIT_LEN );
if ( 0 != getFieldRight(pos, len) )
return false; // something is non-zero
}
return true; // everything was zero
}
//------------------------------------------------------------------------------
uint64_t BitString::getSetCount( uint64_t i_pos, uint64_t i_len ) const
{
uint64_t endPos = i_pos + i_len;
HEI_ASSERT( endPos <= getBitLen() );
uint64_t count = 0;
for ( uint64_t i = i_pos; i < endPos; i++ )
{
if ( isBitSet(i) ) count++;
}
return count;
}
//------------------------------------------------------------------------------
BitStringBuffer BitString::operator~() const
{
BitStringBuffer bsb( getBitLen() );
for ( uint64_t pos = 0; pos < getBitLen(); pos += UINT64_BIT_LEN )
{
uint64_t len = std::min( getBitLen() - pos, UINT64_BIT_LEN );
uint64_t dVal = getFieldRight( pos, len );
bsb.setFieldRight( pos, len, ~dVal );
}
return bsb;
}
//------------------------------------------------------------------------------
BitStringBuffer BitString::operator&( const BitString & i_bs ) const
{
// Get the length of the smallest string.
uint64_t actLen = std::min( getBitLen(), i_bs.getBitLen() );
BitStringBuffer bsb( actLen );
for ( uint64_t pos = 0; pos < actLen; pos += UINT64_BIT_LEN )
{
uint64_t len = std::min( actLen - pos, UINT64_BIT_LEN );
uint64_t dVal = getFieldRight( pos, len );
uint64_t sVal = i_bs.getFieldRight( pos, len );
bsb.setFieldRight( pos, len, dVal & sVal );
}
return bsb;
}
//------------------------------------------------------------------------------
BitStringBuffer BitString::operator|( const BitString & i_bs ) const
{
// Get the length of the smallest string.
uint64_t actLen = std::min( getBitLen(), i_bs.getBitLen() );
BitStringBuffer bsb( actLen );
for ( uint64_t pos = 0; pos < actLen; pos += UINT64_BIT_LEN )
{
uint64_t len = std::min( actLen - pos, UINT64_BIT_LEN );
uint64_t dVal = getFieldRight( pos, len );
uint64_t sVal = i_bs.getFieldRight( pos, len );
bsb.setFieldRight( pos, len, dVal | sVal );
}
return bsb;
}
//------------------------------------------------------------------------------
BitStringBuffer BitString::operator>>( uint64_t i_shift ) const
{
BitStringBuffer bsb( getBitLen() ); // default all zeros
if ( i_shift < getBitLen() )
{
// bso overlays bsb, containing the shifted offset.
BitString bso ( bsb.getBitLen() - i_shift, bsb.getBufAddr(), i_shift );
// Copy this into bso.
bso.setString( *this );
}
return bsb;
}
//------------------------------------------------------------------------------
BitStringBuffer BitString::operator<<( uint64_t i_shift ) const
{
BitStringBuffer bsb( getBitLen() ); // default all zeros
if ( i_shift < getBitLen() )
{
// bso overlays *this, containing the shifted offset.
BitString bso ( this->getBitLen() - i_shift, this->getBufAddr(),
i_shift );
// Copy bso into bsb.
bsb.setString( bso );
}
return bsb;
}
//------------------------------------------------------------------------------
uint8_t * BitString::getRelativePosition( uint64_t & o_relPos,
uint64_t i_absPos ) const
{
HEI_ASSERT( nullptr != getBufAddr() ); // must to have a valid address
HEI_ASSERT( i_absPos < getBitLen() ); // must be a valid position
o_relPos = (i_absPos + iv_offset) % UINT8_BIT_LEN;
return ((uint8_t *)iv_bufAddr + ((i_absPos + iv_offset) / UINT8_BIT_LEN));
}
//##############################################################################
// BitStringBuffer class
//##############################################################################
BitStringBuffer::BitStringBuffer( uint64_t i_bitLen ) :
BitString( i_bitLen, nullptr )
{
initBuffer();
}
//------------------------------------------------------------------------------
BitStringBuffer::~BitStringBuffer()
{
delete [] (uint8_t *)getBufAddr();
}
//------------------------------------------------------------------------------
BitStringBuffer::BitStringBuffer( const BitString & i_bs ) :
BitString( i_bs.getBitLen(), nullptr )
{
initBuffer();
if ( !i_bs.isZero() ) setString( i_bs );
}
//------------------------------------------------------------------------------
BitStringBuffer::BitStringBuffer( const BitStringBuffer & i_bsb ) :
BitString( i_bsb.getBitLen(), nullptr )
{
initBuffer();
if ( !i_bsb.isZero() ) setString( i_bsb );
}
//------------------------------------------------------------------------------
BitStringBuffer & BitStringBuffer::operator=( const BitString & i_bs )
{
// The initBuffer() function will deallocate the buffer as well, however we
// also need to deallocate the buffer here before we set the length.
delete [] (uint8_t *)getBufAddr();
setBufAddr( nullptr );
setBitLen( i_bs.getBitLen() );
initBuffer();
if ( !i_bs.isZero() ) setString( i_bs );
return *this;
}
//------------------------------------------------------------------------------
BitStringBuffer & BitStringBuffer::operator=( const BitStringBuffer & i_bsb )
{
if ( this != &i_bsb ) // Check for assignment to self
{
// The initBuffer() function will deallocate the buffer as well, however
// we also need to deallocate the buffer here before we set the length.
delete [] (uint8_t *)getBufAddr();
setBufAddr( nullptr );
setBitLen( i_bsb.getBitLen() );
initBuffer();
if ( !i_bsb.isZero() ) setString( i_bsb );
}
return *this;
}
//------------------------------------------------------------------------------
void BitStringBuffer::initBuffer()
{
// Deallocate the current buffer.
delete [] (uint8_t *)getBufAddr();
// create new buffer, initialized to 0's
setBufAddr( new uint8_t[ getMinBytes(getBitLen()) ]() );
}
} // end namespace libhei