| #!/usr/bin/env perl |
| |
| use warnings; |
| use strict; |
| |
| use Data::Dumper; |
| use Getopt::Long qw(:config no_ignore_case); |
| use File::Path qw(make_path); |
| use XML::Simple qw(:strict); |
| |
| # Pull in from the lib directory |
| use FindBin qw($RealBin); |
| use FindBin qw($RealScript); |
| use lib "$RealBin/lib"; |
| |
| use BitRange; |
| |
| #------------------------------------------------------------------------------- |
| # Global Variables |
| #------------------------------------------------------------------------------- |
| |
| # Supported file versions and their values. |
| my $FILE_VERSION = |
| { |
| VER_01 => 0x01, |
| }; |
| |
| # This is a map of all currently supported models/ECs and their IDs. |
| my $SUPPORTED_MODEL_EC = |
| { |
| EXPLORER_11 => 0x60D20011, # Explorer Chip DD1.0 |
| EXPLORER_20 => 0x60D20020, # Explorer Chip DD1.0 |
| P10_10 => 0x20DA0010, # P10 Chip DD1.0 |
| P10_20 => 0x20DA0020, # P10 Chip DD2.0 |
| }; |
| |
| # All models/ECs that may exist in the XML, but no longer needs to be built. |
| # This is useful for build optimization and also help prevent build breaks when |
| # the XML still exists, but not needed anymore. |
| my $DEPRECATED_MODEL_EC = []; |
| |
| # Supported register types and their values. |
| my $REGISTER_TYPE = |
| { |
| SCOM => { id => 0x01, addr_size => 4, reg_size => 8 }, |
| IDSCOM => { id => 0x02, addr_size => 8, reg_size => 8 }, |
| }; |
| |
| # Supported attention types and their values. |
| my $ATTN_TYPE = |
| { |
| CS => 1, # System checkstop hardware attention |
| UCS => 2, # Unit checkstop hardware attention |
| RE => 3, # Recoverable hardware attention |
| SPA => 4, # SW or HW event requiring action by the service processor FW |
| HA => 5, # SW or HW event requiring action by the host FW |
| }; |
| |
| #------------------------------------------------------------------------------- |
| # Help function |
| #------------------------------------------------------------------------------- |
| |
| sub help() |
| { |
| print <<EOF; |
| Usage: $RealScript -h |
| $RealScript -i <input_dir> -o <output_dir> |
| |
| Builds Chip Data Binary files from the input Chip Data XML. |
| |
| Options: |
| -h, --help Prints this menu. |
| -i, --input Directory containing the Chip Data XML files. |
| -o, --output Directory that will contain the Chip Data Binary files. |
| EOF |
| |
| exit; |
| } |
| |
| #------------------------------------------------------------------------------- |
| # Input |
| #------------------------------------------------------------------------------- |
| |
| help() unless @ARGV; # print help if no arguments |
| |
| # Get options |
| my ( $help, $src_dir, $dest_dir ); |
| help() unless GetOptions( 'h|help' => \$help, |
| 'i|input=s' => \$src_dir, |
| 'o|output=s' => \$dest_dir ); |
| |
| help() if @ARGV; # print usage if there are extra arguments |
| |
| # -h,--help |
| help() if ( $help ); |
| |
| # -i,--input |
| die "ERROR> Option -i required." unless ( defined $src_dir ); |
| die "ERROR> '$src_dir' is not a directory" unless ( -d $src_dir ); |
| |
| # -o,--output |
| die "ERROR> Option -o required." unless ( defined $dest_dir ); |
| make_path( $dest_dir, {error => \my $err} ); |
| if ( @{$err} ) |
| { |
| my ( $file, $message ) = %{shift @{$err}}; |
| die "ERROR> $message: $file\n"; |
| } |
| |
| #------------------------------------------------------------------------------- |
| # Prototypes |
| #------------------------------------------------------------------------------- |
| |
| sub importXML($); |
| sub normalizeXML($); |
| sub buildBinary($$); |
| |
| #------------------------------------------------------------------------------- |
| # Main |
| #------------------------------------------------------------------------------- |
| |
| # Validate and import the XML. |
| my $chip_data_xml = importXML( $src_dir ); |
| |
| # There are some fields in the XML that are shorthand and need to be expanded |
| # before building the binary files. |
| my $normalized_data = normalizeXML( $chip_data_xml ); |
| |
| # The XML should now be in a format to start building the binary files. |
| buildBinary( $dest_dir, $normalized_data ); |
| |
| #------------------------------------------------------------------------------- |
| # Helper functions |
| #------------------------------------------------------------------------------- |
| |
| sub FAIL($) { die( "ERROR> " . shift @_ ); } |
| |
| #------------------------------------------------------------------------------- |
| # Import functions |
| #------------------------------------------------------------------------------- |
| |
| # For each supported XML file in the given directory: |
| # - Ensures the XML is well-formed. |
| # - Ensures the XML validates against the schema. |
| # - Imports the XML into Perl data structures. |
| sub importXML($) |
| { |
| my ( $dir ) = @_; |
| |
| my $data = {}; |
| |
| # Get a list of all the XML files. |
| opendir DIR, $dir or die "Couldn't open dir '$dir': $!"; |
| my @files = grep { /^.+\.xml$/ } readdir DIR; |
| closedir DIR; |
| |
| # Iterate each supported file type. |
| for my $type ( "chip", "node" ) |
| { |
| for my $file ( grep { /^$type\_.+\.xml$/ } @files ) |
| { |
| my $path = "$dir/$file"; |
| |
| # Ensure the XML is well-formed and validates against the schema. |
| system( "xmllint --noout --schema $RealBin/$type.xsd $path" ); |
| die "RAS XML validation failed on $file" if ( 0 != $? ); |
| |
| # Import the XML. |
| my $xml = XMLin( $path, KeyAttr => {}, ForceArray => 1 ); |
| |
| # Add the file path to the XML for error output. |
| $xml->{path} = $path; |
| |
| # Push each file's data to a list for each file type. |
| push @{$data->{$type}}, $xml; |
| } |
| } |
| |
| return $data; |
| } |
| |
| #------------------------------------------------------------------------------- |
| # Normalize functions |
| #------------------------------------------------------------------------------- |
| |
| # Takes a string of models/ECs separated by ',' and returns a list of supported |
| # models/ECs. See $SUPPORTED_MODEL_EC and $DEPRECATED_MODEL_EC. |
| sub __expandModelEc($) |
| { |
| my ( $str ) = @_; |
| |
| my @list = split(/,/, $str); |
| |
| # Remove any deprecated models/ECs. |
| for my $d ( @{$DEPRECATED_MODEL_EC} ) |
| { |
| @list = grep { $d ne $_ } @list; |
| } |
| |
| # Validate the remaining models/ECs. |
| for my $m ( @list ) |
| { |
| unless ( defined $SUPPORTED_MODEL_EC->{$m} ) |
| { |
| FAIL("Unsupported model/EC: $m"); |
| } |
| } |
| |
| return @list; |
| } |
| |
| #------------------------------------------------------------------------------- |
| |
| sub __getInstRange($) |
| { |
| my ( $insts ) = @_; |
| |
| my $list = []; |
| for ( @{$insts} ) { push @{$list}, $_->{reg_inst}; } |
| |
| @{$list} = sort @{$list}; # Sort the list just in case. |
| |
| return BitRange::compress($list); |
| } |
| |
| sub __getReg($$$$) |
| { |
| my ( $inst_in, $reg_type, $name, $addr_mod ) = @_; |
| |
| my $inst_out = []; |
| for ( @{$inst_in} ) |
| { |
| my $addr = ""; |
| if ( "SCOM" eq $reg_type ) |
| { |
| $addr = sprintf( "0x%08x", hex($_->{addr}) + $addr_mod ); |
| } |
| elsif ( "IDSCOM" eq $reg_type ) |
| { |
| # TODO: Need a portable way of handling 64-bit numbers. |
| FAIL("IDSCOM address currently not supported"); |
| } |
| else |
| { |
| FAIL("Unsupported register type for node: $name"); |
| } |
| |
| push @{$inst_out}, { reg_inst => $_->{reg_inst}, addr => $addr }; |
| } |
| |
| return { name => $name, instance => $inst_out }; |
| } |
| |
| sub __getExpr($$) |
| { |
| my ( $name, $config ) = @_; |
| |
| # Get the register expression. |
| my $expr = { type => 'reg', value1 => $name }; |
| |
| if ( '0' eq $config ) |
| { |
| # Take the NOT of the register expression. |
| $expr = { type => 'not', expr => [ $expr ] }; |
| } |
| |
| return $expr; |
| } |
| |
| sub __getAct($$$$) |
| { |
| my ( $fir, $range, $type, $config ) = @_; |
| |
| FAIL("Invalid action config: $config") unless ( $config =~ /^[01]{2,3}$/ ); |
| |
| my @c = split( //, $config ); |
| |
| my $e = []; |
| push( @{$e}, __getExpr("${fir}", '1' ) ); |
| push( @{$e}, __getExpr("${fir}_MASK", '0' ) ); |
| push( @{$e}, __getExpr("${fir}_ACT0", shift @c) ); |
| push( @{$e}, __getExpr("${fir}_ACT1", shift @c) ); |
| push( @{$e}, __getExpr("${fir}_ACT2", shift @c) ) if ( 0 < scalar @c ); |
| |
| return { node_inst => $range, attn_type => $type, |
| expr => [ { type => 'and', expr => $e } ] }; |
| } |
| |
| #------------------------------------------------------------------------------- |
| |
| sub __normalizeLocalFir($) |
| { |
| my ( $node ) = @_; |
| |
| return unless ( defined $node->{local_fir} ); |
| |
| # Note that the isolator will implicitly add all register referenced by the |
| # rules to the capture group. To reduce redundancy and overall file size, we |
| # won't add these registers to the capture group. |
| |
| $node->{register} = [] unless ( defined $node->{register} ); |
| $node->{rule} = [] unless ( defined $node->{rule} ); |
| |
| for my $l ( @{$node->{local_fir}} ) |
| { |
| my $n = $l->{name}; |
| my $i = $l->{instance}; |
| my $t = $node->{reg_type}; |
| |
| my $inst_range = __getInstRange($i); |
| |
| my $r = []; |
| push @{$r}, __getReg($i, $t, "${n}", 0); |
| push @{$r}, __getReg($i, $t, "${n}_MASK", 3); |
| push @{$r}, __getReg($i, $t, "${n}_ACT0", 6); |
| push @{$r}, __getReg($i, $t, "${n}_ACT1", 7); |
| push @{$r}, __getReg($i, $t, "${n}_WOF", 8) if ($l->{config} =~ /W/); |
| push @{$r}, __getReg($i, $t, "${n}_ACT2", 9) if ($l->{config} =~ /2/); |
| |
| push @{$node->{register}}, @{$r}; |
| |
| for ( @{$l->{action}} ) |
| { |
| push @{$node->{rule}}, |
| __getAct( $n, $inst_range, $_->{attn_type}, $_->{config} ); |
| } |
| } |
| |
| delete $node->{local_fir}; |
| } |
| |
| #------------------------------------------------------------------------------- |
| |
| # This is not very efficient, especially for large data structures. It is |
| # recommended to use Data::Compare, but that is not available on the pool |
| # machines. |
| sub __dirtyCompare($$) |
| { |
| local $Data::Dumper::Terse = 1; |
| local $Data::Dumper::Indent = 0; |
| local $Data::Dumper::Sortkeys = 1; |
| my ( $a, $b ) = ( Dumper(shift), Dumper(shift) ); |
| return $a eq $b; |
| } |
| |
| #------------------------------------------------------------------------------- |
| |
| sub __normalizeRegister($$) |
| { |
| my ( $node, $regs ) = @_; |
| |
| # There must be at least one register entry. |
| unless ( defined $node->{register} and 0 < scalar @{$node->{register}} ) |
| { |
| FAIL( "Node $node->{name} does not contain at least one register" ); |
| } |
| |
| # All of the registers will be put in the master register list for the chip. |
| for my $r ( @{$node->{register}} ) |
| { |
| # Set the default access if needed. |
| $r->{access} = 'RW' unless ( defined $r->{access} ); |
| |
| # Each register will keep track of its type. |
| $r->{reg_type} = $node->{reg_type}; |
| |
| for my $model_ec ( __expandModelEc($node->{model_ec}) ) |
| { |
| if ( defined $regs->{$model_ec}->{$r->{name}} ) |
| { |
| # This register already exists so check the contents for |
| # accuracy |
| unless ( __dirtyCompare($r, $regs->{$model_ec}->{$r->{name}}) ) |
| { |
| FAIL("Duplicate register: $r->{name}"); |
| } |
| } |
| else |
| { |
| # Add this node's register to the master register list. |
| $regs->{$model_ec}->{$r->{name}} = $r; |
| } |
| } |
| } |
| |
| # Clean up this node's register data. |
| delete $node->{register}; |
| } |
| |
| #------------------------------------------------------------------------------- |
| |
| sub __normalizeCaptureGroup($$) |
| { |
| my ( $node, $insts_data ) = @_; |
| |
| # Capture groups are optional (although recommended). |
| return unless ( defined $node->{capture_group} ); |
| |
| for my $c ( @{$node->{capture_group}} ) |
| { |
| # There must be at least one capture_register. |
| unless ( defined $c->{capture_register} and |
| 0 < scalar @{$c->{capture_register}} ) |
| { |
| FAIL("<capture_group> for node $node->{name} does not contain at " . |
| "least one <capture_register>" ); |
| } |
| |
| my @node_insts = BitRange::expand($c->{node_inst}); |
| |
| for my $r ( @{$c->{capture_register}} ) |
| { |
| # node_inst and reg_inst must be the same size. |
| my @reg_insts = BitRange::expand($r->{reg_inst}); |
| unless ( scalar @node_insts == scalar @reg_insts ) |
| { |
| FAIL("capture_group/\@node_inst and capture_register/" . |
| "\@reg_inst list sized not equal for node $node->{name}"); |
| } |
| |
| # Expand the capture groups so there is one per node instance. |
| for ( 0 .. (scalar @node_insts - 1) ) |
| { |
| my ( $ni, $ri ) = ( $node_insts[$_], $reg_insts[$_] ); |
| push @{$insts_data->{$ni}->{capture_group}}, |
| { reg_name => $r->{reg_name}, reg_inst => $ri }; |
| } |
| } |
| } |
| |
| # Clean up this node's capture group data. |
| delete $node->{capture_group}; |
| } |
| |
| #------------------------------------------------------------------------------- |
| |
| sub __normalizeExpr($$$$); # Called recursively |
| |
| sub __normalizeExpr($$$$) |
| { |
| my ( $in, $ni, $idx, $size ) = @_; |
| |
| my ( $t, $e, $v1, $v2 ) = ( $in->{type}, $in->{expr}, |
| $in->{value1}, $in->{value2} ); |
| |
| my $out = { type => $t }; |
| |
| if ( "and" eq $t or "or" eq $t ) |
| { |
| if ( defined $v1 or defined $v2 or |
| not defined $e or not (0 < scalar @{$e}) ) |
| { |
| FAIL("Invalid parameters for and/or expression"); |
| } |
| |
| # Iterate each sub expression. |
| push @{$out->{expr}}, __normalizeExpr($_, $ni, $idx, $size) for (@{$e}); |
| } |
| elsif ( "not" eq $t ) |
| { |
| if ( defined $v1 or defined $v2 or |
| not defined $e or not (1 == scalar @{$e}) ) |
| { |
| FAIL("Invalid parameters for not expression"); |
| } |
| |
| # Iterate each sub expression. |
| push @{$out->{expr}}, __normalizeExpr($_, $ni, $idx, $size) for (@{$e}); |
| } |
| elsif ( "lshift" eq $t or "rshift" eq $t ) |
| { |
| if ( not defined $v1 or defined $v2 or |
| not defined $e or not (1 == scalar @{$e}) ) |
| { |
| FAIL("Invalid parameters for lshift/rshift expression"); |
| } |
| |
| # Copy value1. |
| $out->{value1} = $v1; |
| |
| # Iterate each sub expression. |
| push @{$out->{expr}}, __normalizeExpr($_, $ni, $idx, $size) for (@{$e}); |
| } |
| elsif ( "reg" eq $t ) |
| { |
| if ( not defined $v1 or defined $e ) |
| { |
| FAIL("Invalid parameters for reg expression"); |
| } |
| |
| # Copy value1. |
| $out->{value1} = $v1; |
| |
| # value2 is optional in the XML, update the value to the node or |
| # register instance. |
| if ( defined $v2 ) |
| { |
| my @reg_insts = BitRange::expand($v2); |
| unless ( $size == scalar @reg_insts ) |
| { |
| FAIL("reg expression value2:$v2 list not the same ". |
| "size as containing node's rule instances:$size"); |
| } |
| |
| $out->{value2} = $reg_insts[$idx]; |
| } |
| else |
| { |
| # The register instance is the same as the node instance. |
| $out->{value2} = $ni; |
| } |
| } |
| elsif ( "int" eq $t ) |
| { |
| if ( not defined $v1 or defined $v2 or defined $e ) |
| { |
| FAIL("Invalid parameters for int expression"); |
| } |
| |
| # Copy value1. |
| $out->{value1} = $v1; |
| } |
| else |
| { |
| FAIL("Unsupported expression type: $t"); |
| } |
| |
| return $out; |
| } |
| |
| #------------------------------------------------------------------------------- |
| |
| sub __normalizeRule($$) |
| { |
| my ( $node, $insts_data ) = @_; |
| |
| # There must be at least one rule entry. |
| unless ( defined $node->{rule} and 0 < scalar @{$node->{rule}} ) |
| { |
| FAIL( "Node $node->{name} does not contain at least one rule" ); |
| } |
| |
| # There should be only one rule per attention type and node instance for |
| # this node. |
| my $rule_dups = {}; |
| |
| for my $r ( @{$node->{rule}} ) |
| { |
| # There should be exactly one parent expression. |
| unless ( 1 == scalar @{$r->{expr}} ) |
| { |
| FAIL("Multiple parent expressions for rule: $node->{name} " . |
| "$r->{attn_type}"); |
| } |
| my $expr = $r->{expr}->[0]; |
| |
| my @node_insts = BitRange::expand($r->{node_inst}); |
| my $sz_insts = scalar @node_insts; |
| |
| # Expand the expression for each node instance. |
| for my $idx ( 0 .. ($sz_insts - 1) ) |
| { |
| my $ni = $node_insts[$idx]; |
| |
| # Check for duplicates. |
| if ( defined $rule_dups->{$r->{attn_type}}->{$ni} ) |
| { |
| FAIL("Duplicate rule: $node->{name} $r->{attn_type} $ni"); |
| } |
| else |
| { |
| $rule_dups->{$r->{attn_type}}->{$ni} = 1; |
| } |
| |
| # Add the rule for this expression. |
| push @{$insts_data->{$ni}->{rule}}, |
| { attn_type => $r->{attn_type}, |
| expr => __normalizeExpr($expr, $ni, $idx, $sz_insts) }; |
| } |
| } |
| |
| # Clean up this node's rule data. |
| delete $node->{rule}; |
| } |
| |
| #------------------------------------------------------------------------------- |
| |
| sub __normalizeBit($$$) |
| { |
| my ( $node, $sigs, $insts_data ) = @_; |
| |
| # There must be at least one bit entry. |
| unless ( defined $node->{bit} and 0 < scalar @{$node->{bit}} ) |
| { |
| FAIL( "Node $node->{name} does not contain at least one bit" ); |
| } |
| |
| my @node_insts = sort keys %{$insts_data}; |
| my $sz_insts = scalar @node_insts; |
| |
| # There should be only one child node per node instance bit position. |
| my $child_dups = {}; |
| |
| for my $b ( sort {$a->{pos} cmp $b->{pos}} @{$node->{bit}} ) |
| { |
| my @child_insts = (); |
| |
| # Ensure child_node and node_inst are set properly. |
| if ( defined $b->{child_node} ) |
| { |
| # Ensure each bit has a default node_inst attribute if needed. |
| $b->{node_inst} = "0" unless ( defined $b->{node_inst} ); |
| |
| # Get all of the instances for this child node. |
| @child_insts = BitRange::expand($b->{node_inst}); |
| |
| # Both inst list must be equal in size. |
| unless ( $sz_insts == scalar @child_insts ) |
| { |
| FAIL("node_inst attribute list size for node:$node->{name} " . |
| "bit:$b->{pos} does not match node instances " . |
| "represented by the <rule> element"); |
| } |
| } |
| elsif ( defined $b->{node_inst} ) |
| { |
| FAIL("node_inst attribute exists for node:$node->{name} " . |
| "bit:$b->{pos} with no child_node attribute"); |
| } |
| |
| # Get the signatures for each node, instance, and bit position. |
| for my $p ( BitRange::expand($b->{pos}) ) |
| { |
| for my $i ( 0 .. ($sz_insts-1) ) |
| { |
| my ( $n, $ni ) = ( $node->{name}, $node_insts[$i] ); |
| |
| # This is to cover a bug in the figtree information where there |
| # currently is no comment for some bits. |
| $b->{content} = "" unless ( defined $b->{content} ); |
| |
| for my $model_ec ( __expandModelEc($node->{model_ec}) ) |
| { |
| # Check if this signature already exists. |
| if ( defined $sigs->{$model_ec}->{$n}->{$ni}->{$p} and |
| $b->{content} ne $sigs->{$model_ec}->{$n}->{$ni}->{$p} ) |
| { |
| FAIL("Duplicate signature for $n $ni $p"); |
| } |
| |
| # Get the signatures for each node, instance, and bit |
| # position. |
| $sigs->{$model_ec}->{$n}->{$ni}->{$p} = $b->{content}; |
| } |
| |
| # Move onto the next instance unless a child node exists. |
| next unless ( defined $b->{child_node} ); |
| |
| my $pi = $child_insts[$i]; |
| |
| my $child = { pos => $p, |
| child_node => $b->{child_node}, |
| node_inst => $pi }; |
| |
| # Ensure this child node doesn't already exist. |
| if ( defined $child_dups->{$ni}->{$p} and |
| not __dirtyCompare($child, $child_dups->{$ni}->{$p}) ) |
| { |
| FAIL("Duplicate child_node for $n $ni $p"); |
| } |
| |
| # Add this child node. |
| push @{$insts_data->{$ni}->{bit}}, $child; |
| } |
| } |
| } |
| |
| # Clean up this node's bit data. |
| delete $node->{bit}; |
| } |
| |
| #------------------------------------------------------------------------------- |
| |
| sub __normalizeNode($$$) |
| { |
| my ( $node, $regs, $sigs ) = @_; |
| |
| # Ensure a valid register type. |
| unless ( grep { /^$node->{reg_type}$/ } keys %{$REGISTER_TYPE} ) |
| { |
| FAIL( "Unsupported register type: $node->{reg_type}" ); |
| } |
| |
| my $insts_data = {}; # Collect data for each instance of this node. |
| |
| # First, expand the <local_fir> data if it exists. |
| __normalizeLocalFir($node); |
| |
| # All registers will be put in a master register list for the chip. |
| __normalizeRegister($node, $regs); |
| |
| # Split the capture group information per node instance. |
| __normalizeCaptureGroup($node, $insts_data); |
| |
| # Split the rule information per node instance. The sorted instance list |
| # will be used as indexes for the node_inst attribute of the <bit> elements. |
| __normalizeRule($node, $insts_data); |
| |
| # Finally, collect the signature details and split the bit information per |
| # node instance. |
| __normalizeBit($node, $sigs, $insts_data); |
| |
| # Now that we have all of the node data, collapse the instance data into |
| # a list. |
| for ( sort keys %{$insts_data} ) |
| { |
| $insts_data->{$_}->{node_inst} = $_; |
| push @{$node->{instance}}, $insts_data->{$_}; |
| } |
| } |
| |
| #------------------------------------------------------------------------------- |
| |
| sub normalizeXML($) |
| { |
| my ( $xml ) = @_; |
| |
| my $data = {}; |
| |
| # Iterate each chip file. |
| for my $chip ( @{$xml->{chip}} ) |
| { |
| # Iterate each model/EC. |
| for my $model_ec ( __expandModelEc($chip->{model_ec}) ) |
| { |
| # Ensure there is not a duplicate definition for a model/EC. |
| if ( $data->{$model_ec}->{chip} ) |
| { |
| FAIL("Duplicate data for model/EC $model_ec in:\n" . |
| " $data->{$model_ec}->{chip}->{path}\n" . |
| " $chip->{path}"); |
| } |
| |
| # Add this chip to the data. |
| $data->{$model_ec}->{attn_tree} = $chip->{attn_tree}; |
| } |
| } |
| |
| # Extract the data for each node. |
| my ( $regs, $sigs, $node_dups ) = ( {}, {}, {} ); |
| for my $node ( sort { $a->{name} cmp $b->{name} } @{$xml->{node}} ) |
| { |
| # A node may be defined for more than one model/EC. |
| for my $model_ec ( __expandModelEc($node->{model_ec}) ) |
| { |
| # A node can only be defined once per model/EC. |
| if ( defined $node_dups->{$model_ec}->{$node->{name}} ) |
| { |
| FAIL( "Duplicate node defined for $model_ec -> $node->{name} "); |
| } |
| else |
| { |
| $node_dups->{$model_ec}->{$node->{name}} = 1; |
| } |
| |
| # Initialize the master list of registers and signatures of this |
| # model/EC, if necessary. |
| |
| $regs->{$model_ec} = {} unless ( defined $regs->{$model_ec} ); |
| $sigs->{$model_ec} = {} unless ( defined $sigs->{$model_ec} ); |
| } |
| |
| # The same node content will be used for each model/EC characterized by |
| # this node. There is some normalization that needs to happen because of |
| # shorthand elements, like <local_fir>, and some error checking. This |
| # only needs to be done once per node, not per model/EC. |
| __normalizeNode( $node, $regs, $sigs ); |
| |
| # Push the node data for each model/EC. |
| for my $model_ec ( __expandModelEc($node->{model_ec}) ) |
| { |
| push @{$data->{$model_ec}->{node}}, $node; |
| } |
| } |
| |
| # Sort and collapse the master register list. |
| for my $m ( keys %{$regs} ) |
| { |
| for my $n ( sort keys %{$regs->{$m}} ) |
| { |
| push @{$data->{$m}->{register}}, $regs->{$m}->{$n}; |
| } |
| } |
| |
| # Collapse the signature lists. |
| for my $m ( keys %{$sigs} ) |
| { |
| for my $n ( sort keys %{$sigs->{$m}} ) |
| { |
| for my $i ( sort {$a <=> $b} keys %{$sigs->{$m}->{$n}} ) |
| { |
| for my $b ( sort {$a <=> $b} keys %{$sigs->{$m}->{$n}->{$i}} ) |
| { |
| push @{$data->{$m}->{signature}}, |
| { name => $n, inst => $i, bit => $b, |
| desc => $sigs->{$m}->{$n}->{$i}->{$b} }; |
| } |
| } |
| } |
| } |
| |
| return $data; |
| } |
| |
| #------------------------------------------------------------------------------- |
| # Output functions |
| #------------------------------------------------------------------------------- |
| |
| # The $num passed into this function can be a numeric of string. All values are |
| # converted to a hex string and then into the binary format. This helps avoid |
| # portability issues with endianess. Requirements: |
| # - Hex strings must start with '0x'. |
| # - For portability, 64-bit numbers must be passed as a hex string. |
| sub __bin($$$) |
| { |
| my ( $fh, $bytes, $num ) = @_; |
| |
| # $bytes must be a positive integer. |
| die "Invalid bytes: $bytes" unless ( 0 < $bytes ); |
| |
| my $str = ''; # Default invalid string |
| |
| my $char = $bytes * 2; # Number of characters in the string. |
| |
| # Check if $num is a hex string. |
| if ( $num =~ /^0[x|X](.*)/ ) |
| { |
| $str = $1; # strip the '0x' |
| } |
| # Check if $num is string or numeric decimal integer (32-bit max). |
| elsif ( $num =~ /^[0-9]+$/ and $bytes <= 4 ) |
| { |
| $str = sprintf("%0${char}x", $num); # Convert to hex string |
| } |
| |
| # Check for a hex number with the valid size. |
| unless ( $str =~ /^[0-9a-fA-F]{$char}$/ ) |
| { |
| die "Invalid number: $num (size: $bytes)"; |
| } |
| |
| # Print the binary string. |
| print $fh pack( "H$char", $str ); |
| } |
| |
| #------------------------------------------------------------------------------- |
| |
| sub __hash($$) |
| { |
| my $bytes = shift; |
| my @str = unpack("C*", shift); # returns an array of ascii values |
| |
| # Currently only supporting 1, 2, 3, and 4 byte hashes. |
| unless ( 1 <= $bytes and $bytes <= 4 ) |
| { |
| FAIL("Unsupported hash size: $bytes"); |
| } |
| |
| # Add padding to the end of the character array so that the size is |
| # divisible by $bytes. |
| push @str, 0 until ( 0 == scalar(@str) % $bytes ); |
| |
| # This hash is a simple "n*s[0] + (n-1)*s[1] + ... + s[n-1]" algorithm, |
| # where s[i] is a $bytes size chunk of the input string. |
| |
| my ( $sumA, $sumB ) = ( 0, 0 ); |
| while ( my @chunk = splice @str, 0, $bytes ) |
| { |
| # Combine the chunk array into a single value. |
| my $val = 0; for ( @chunk ) { $val <<= 8; $val |= $_; } |
| |
| # Apply the simple hash. |
| $sumA += $val; |
| $sumB += $sumA; |
| } |
| |
| # Mask off everything except the target number of bytes. |
| $sumB &= 0xffffffff >> ((4 - $bytes) * 8); |
| |
| return $sumB; |
| } |
| |
| #------------------------------------------------------------------------------- |
| |
| sub __printRegisters($$) |
| { |
| my ( $fh, $data ) = @_; |
| |
| my $num_regs = scalar @{$data}; |
| FAIL("No registers defined") unless ( 0 < $num_regs ); |
| |
| # Register list metadata |
| __bin($fh, 1, $_) for ( unpack("C*", "REGS") ); |
| __bin($fh, 3, $num_regs); |
| |
| my $reg_ids = {}; # for hash duplicate checking |
| |
| for my $r ( @{$data} ) |
| { |
| # Get the hash of the register name and check for duplicates. |
| my $id = __hash(3, $r->{name}); |
| if ( defined $reg_ids->{$id} ) |
| { |
| FAIL("Duplicate register ID hash " . sprintf('0x%08x', $id) . |
| " for $r->{name} and $reg_ids->{$id}"); |
| } |
| else |
| { |
| $reg_ids->{$id} = $r->{name}; |
| } |
| |
| # Get the attribute flags. |
| my $flags = 0x00; |
| $flags |= 0x80 if ( $r->{access} =~ /R/ ); |
| $flags |= 0x40 if ( $r->{access} =~ /W/ ); |
| |
| # Get the number of address instances. |
| my $num_inst = scalar @{$r->{instance}}; |
| unless ( 0 < $num_inst ) |
| { |
| FAIL("No register instances defined for $r->{name}"); |
| } |
| |
| # Register metadata |
| __bin($fh, 3, $id ); |
| __bin($fh, 1, $REGISTER_TYPE->{$r->{reg_type}}->{id}); |
| __bin($fh, 1, $flags ); |
| __bin($fh, 1, $num_inst); |
| |
| for my $i ( @{$r->{instance}} ) |
| { |
| my $s = $REGISTER_TYPE->{$r->{reg_type}}->{addr_size}; |
| |
| # Register Instance metadata |
| __bin($fh, 1, $i->{reg_inst}); |
| __bin($fh, $s, $i->{addr} ); |
| } |
| } |
| } |
| |
| #------------------------------------------------------------------------------- |
| |
| sub __printExpr($$$); |
| |
| sub __printExpr($$$) |
| { |
| my ( $fh, $size, $expr ) = @_; |
| |
| my ( $t, $e, $v1, $v2 ) = ( $expr->{type}, $expr->{expr}, |
| $expr->{value1}, $expr->{value2} ); |
| |
| if ( "reg" eq $t ) |
| { |
| __bin($fh, 1, 0x01); # expression type for "reg" |
| __bin($fh, 3, __hash(3,$v1)); # register id |
| __bin($fh, 1, $v2); # register instance |
| } |
| elsif ( "int" eq $t ) |
| { |
| __bin($fh, 1, 0x02); # expression type for "int" |
| __bin($fh, $size, $v1); # integer value |
| } |
| elsif ( "and" eq $t ) |
| { |
| __bin($fh, 1, 0x10); # expression type for "and" |
| __bin($fh, 1, scalar @{$e}); # number of sub-expressions |
| __printExpr($fh, $size, $_) for ( @{$e} ); # add each sub-expression |
| } |
| elsif ( "or" eq $t ) |
| { |
| __bin($fh, 1, 0x11); # expression type for "or" |
| __bin($fh, 1, scalar @{$e}); # number of sub-expressions |
| __printExpr($fh, $size, $_) for ( @{$e} ); # add each sub-expression |
| } |
| elsif ( "not" eq $t ) |
| { |
| __bin($fh, 1, 0x12); # expression type for "not" |
| __printExpr($fh, $size, $e->[0]); # add only sub-expression |
| } |
| elsif ( "lshift" eq $t ) |
| { |
| __bin($fh, 1, 0x13); # expression type for "lshift" |
| __bin($fh, 1, $v1); # shift amount |
| __printExpr($fh, $size, $e->[0]); # add only sub-expression |
| } |
| elsif ( "rshift" eq $t ) |
| { |
| __bin($fh, 1, 0x14); # expression type for "rshift" |
| __bin($fh, 1, $v1); # shift amount |
| __printExpr($fh, $size, $e->[0]); # add only sub-expression |
| } |
| } |
| |
| #------------------------------------------------------------------------------- |
| |
| sub __printNodes($$) |
| { |
| my ( $fh, $data ) = @_; |
| |
| my $num_nodes = scalar @{$data}; |
| FAIL("No nodes defined") unless ( 0 < $num_nodes ); |
| |
| # Isolation Node list metadata |
| __bin($fh, 1, $_) for ( unpack("C*", "NODE") ); |
| __bin($fh, 2, $num_nodes); |
| |
| my $node_ids = {}; # for hash duplicate checking |
| |
| for my $n ( @{$data} ) |
| { |
| # Get the hash of the node name and check for duplicates. |
| my $id = __hash(2, $n->{name}); |
| if ( defined $node_ids->{$id} ) |
| { |
| FAIL("Duplicate node ID hash " . sprintf('0x%08x', $id) . |
| " for $n->{name} and $node_ids->{$id}"); |
| } |
| else |
| { |
| $node_ids->{$id} = $n->{name}; |
| } |
| |
| my $num_insts = scalar @{$n->{instance}}; |
| unless ( 0 < $num_insts ) |
| { |
| FAIL("No nodes instances defined for $n->{name}"); |
| } |
| |
| my $reg_type = $REGISTER_TYPE->{$n->{reg_type}}->{id}; |
| my $reg_size = $REGISTER_TYPE->{$n->{reg_type}}->{reg_size}; |
| |
| # Register metadata |
| __bin($fh, 2, $id); |
| __bin($fh, 1, $reg_type); |
| __bin($fh, 1, $num_insts); |
| |
| for my $i ( @{$n->{instance}} ) |
| { |
| # Capture groups are optional. |
| my $num_cap_regs = (defined $i->{capture_group}) |
| ? scalar @{$i->{capture_group}} : 0; |
| |
| # At least one rule is required. |
| my $num_rules = scalar @{$i->{rule}}; |
| unless ( 0 < $num_rules ) |
| { |
| FAIL("No rule for $n->{name} $i->{node_inst}"); |
| } |
| |
| # Child nodes may not exist for this node. |
| my $num_bit = (defined $i->{bit}) ? scalar @{$i->{bit}} : 0; |
| |
| # Register instance metadata |
| __bin($fh, 1, $i->{node_inst}); |
| __bin($fh, 1, $num_cap_regs ); |
| __bin($fh, 1, $num_rules ); |
| __bin($fh, 1, $num_bit ); |
| |
| if ( 0 < $num_cap_regs ) |
| { |
| for my $cg ( @{$i->{capture_group}} ) |
| { |
| # Register capture register metadata |
| __bin($fh, 3, __hash(3, $cg->{reg_name})); |
| __bin($fh, 1, $cg->{reg_inst} ); |
| } |
| } |
| |
| for my $r ( @{$i->{rule}} ) |
| { |
| # Register rule metadata |
| __bin($fh, 1, $ATTN_TYPE->{$r->{attn_type}}); |
| __printExpr($fh, $reg_size, $r->{expr}); |
| } |
| |
| if ( 0 < $num_bit ) |
| { |
| for my $b ( @{$i->{bit}} ) |
| { |
| # Register child node metadata |
| __bin($fh, 1, $b->{pos} ); |
| __bin($fh, 2, __hash(2, $b->{child_node})); |
| __bin($fh, 1, $b->{node_inst} ); |
| } |
| } |
| } |
| } |
| } |
| |
| #------------------------------------------------------------------------------- |
| |
| sub __printAttnTree($$) |
| { |
| my ( $fh, $data ) = @_; |
| |
| my $num_root_nodes = scalar @{$data}; |
| FAIL("No root nodes defined") unless ( 0 < $num_root_nodes ); |
| |
| # Root Node list metadata |
| __bin($fh, 1, $_) for ( unpack("C*", "ROOT") ); |
| __bin($fh, 1, $num_root_nodes); |
| |
| for my $r ( @{$data} ) |
| { |
| # Root Node metadata |
| __bin($fh, 1, $ATTN_TYPE->{$r->{attn_type}}); |
| __bin($fh, 2, __hash(2, $r->{root_node}) ); |
| __bin($fh, 1, $r->{node_inst} ); |
| } |
| } |
| |
| #------------------------------------------------------------------------------- |
| |
| sub __printSignatures($$) |
| { |
| my ( $fh, $data ) = @_; |
| |
| my $num_sigs = scalar @{$data}; |
| FAIL("No signatures defined") unless ( 0 < $num_sigs ); |
| |
| for my $s ( @{$data} ) |
| { |
| my $sig = __hash(2,$s->{name}) << 16 | $s->{inst} << 8 | $s->{bit}; |
| # TODO: This is temporary until we have defined the signature files. |
| print $fh sprintf('0x%08x',$sig) . |
| " $s->{name} $s->{inst} $s->{bit} $s->{desc}\n"; |
| } |
| } |
| |
| #------------------------------------------------------------------------------- |
| |
| sub buildBinary($$) |
| { |
| my ( $dir, $data ) = @_; |
| |
| while ( my ($model_ec, $chip) = each %{$data} ) |
| { |
| unless ( defined $chip->{register} ) |
| { |
| FAIL("Chip $model_ec does not contain registers"); |
| } |
| unless ( defined $chip->{node} ) |
| { |
| FAIL("Chip $model_ec does not contain nodes"); |
| } |
| unless ( defined $chip->{attn_tree} ) |
| { |
| FAIL("Chip $model_ec does not contain attn_tree information"); |
| } |
| |
| my $bin_file = "$dir/chip_data_" . lc $model_ec . ".cdb"; |
| open my $bin_fh, '>', $bin_file or die "Cannot open $bin_file: $!"; |
| binmode $bin_fh; # writes a binary file |
| |
| # Chip Data File metadata |
| __bin($bin_fh, 1, $_) for ( unpack("C*", "CHIPDATA") ); |
| __bin($bin_fh, 4, $SUPPORTED_MODEL_EC->{$model_ec}); |
| __bin($bin_fh, 1, $FILE_VERSION->{VER_01} ); |
| |
| __printRegisters( $bin_fh, $chip->{register} ); |
| __printNodes( $bin_fh, $chip->{node} ); |
| __printAttnTree( $bin_fh, $chip->{attn_tree} ); |
| |
| close $bin_fh; |
| |
| unless ( defined $chip->{signature} ) |
| { |
| FAIL("Chip $model_ec does not contain signatures"); |
| } |
| |
| my $sig_file = "$dir/chip_signatures_" . lc $model_ec . ".txt"; |
| open my $sig_fh, '>', $sig_file or die "Cannot open $sig_file: $!"; |
| |
| __printSignatures( $sig_fh, $chip->{signature} ); |
| |
| close $sig_fh; |
| } |
| } |
| |