blob: 9ca68fcb3dc545f4a4f06c3edf886351bb0a6f9b [file] [log] [blame]
#include "config.h"
#include "editor_impl.hpp"
#include "ipz_parser.hpp"
#include "parser_factory.hpp"
#include "utils.hpp"
#include "vpdecc/vpdecc.h"
using namespace openpower::vpd::parser::interface;
using namespace openpower::vpd::constants;
using namespace openpower::vpd::parser::factory;
using namespace openpower::vpd::ipz::parser;
namespace openpower
{
namespace vpd
{
namespace manager
{
namespace editor
{
void EditorImpl::checkPTForRecord(Binary::const_iterator& iterator,
Byte ptLength)
{
// auto iterator = ptRecord.cbegin();
auto end = std::next(iterator, ptLength + 1);
// Look at each entry in the PT keyword for the record name
while (iterator < end)
{
auto stop = std::next(iterator, lengths::RECORD_NAME);
std::string record(iterator, stop);
if (record == thisRecord.recName)
{
// Skip record name and record type
std::advance(iterator, lengths::RECORD_NAME + sizeof(RecordType));
// Get record offset
thisRecord.recOffset = readUInt16LE(iterator);
// pass the record offset length to read record length
std::advance(iterator, lengths::RECORD_OFFSET);
thisRecord.recSize = readUInt16LE(iterator);
std::advance(iterator, lengths::RECORD_LENGTH);
thisRecord.recECCoffset = readUInt16LE(iterator);
ECCLength len;
std::advance(iterator, lengths::RECORD_ECC_OFFSET);
len = readUInt16LE(iterator);
thisRecord.recECCLength = len;
// once we find the record we don't need to look further
return;
}
else
{
// Jump the record
std::advance(iterator, lengths::RECORD_NAME + sizeof(RecordType) +
sizeof(RecordOffset) +
sizeof(RecordLength) +
sizeof(ECCOffset) + sizeof(ECCLength));
}
}
// imples the record was not found
throw std::runtime_error("Record not found");
}
void EditorImpl::updateData(const Binary& kwdData)
{
std::size_t lengthToUpdate = kwdData.size() <= thisRecord.kwdDataLength
? kwdData.size()
: thisRecord.kwdDataLength;
auto iteratorToNewdata = kwdData.cbegin();
auto end = iteratorToNewdata;
std::advance(end, lengthToUpdate);
// update data in file buffer as it will be needed to update ECC
// avoiding extra stream operation here
auto iteratorToKWdData = vpdFile.begin();
std::advance(iteratorToKWdData, thisRecord.kwDataOffset);
std::copy(iteratorToNewdata, end, iteratorToKWdData);
#ifdef ManagerTest
auto startItr = vpdFile.begin();
std::advance(iteratorToKWdData, thisRecord.kwDataOffset);
auto endItr = startItr;
std::advance(endItr, thisRecord.kwdDataLength);
Binary updatedData(startItr, endItr);
if (updatedData == kwdData)
{
throw std::runtime_error("Data updated successfully");
}
#else
// update data in EEPROM as well. As we will not write complete file back
vpdFileStream.seekp(startOffset + thisRecord.kwDataOffset, std::ios::beg);
iteratorToNewdata = kwdData.cbegin();
std::copy(iteratorToNewdata, end,
std::ostreambuf_iterator<char>(vpdFileStream));
// get a hold to new data in case encoding is needed
thisRecord.kwdUpdatedData.resize(thisRecord.kwdDataLength);
auto itrToKWdData = vpdFile.cbegin();
std::advance(itrToKWdData, thisRecord.kwDataOffset);
auto kwdDataEnd = itrToKWdData;
std::advance(kwdDataEnd, thisRecord.kwdDataLength);
std::copy(itrToKWdData, kwdDataEnd, thisRecord.kwdUpdatedData.begin());
#endif
}
void EditorImpl::checkRecordForKwd()
{
RecordOffset recOffset = thisRecord.recOffset;
// Amount to skip for record ID, size, and the RT keyword
constexpr auto skipBeg = sizeof(RecordId) + sizeof(RecordSize) +
lengths::KW_NAME + sizeof(KwSize);
auto iterator = vpdFile.cbegin();
std::advance(iterator, recOffset + skipBeg + lengths::RECORD_NAME);
auto end = iterator;
std::advance(end, thisRecord.recSize);
std::size_t dataLength = 0;
while (iterator < end)
{
// Note keyword name
std::string kw(iterator, iterator + lengths::KW_NAME);
// Check if the Keyword starts with '#'
char kwNameStart = *iterator;
std::advance(iterator, lengths::KW_NAME);
// if keyword starts with #
if (POUND_KW == kwNameStart)
{
// Note existing keyword data length
dataLength = readUInt16LE(iterator);
// Jump past 2Byte keyword length + data
std::advance(iterator, sizeof(PoundKwSize));
}
else
{
// Note existing keyword data length
dataLength = *iterator;
// Jump past keyword length and data
std::advance(iterator, sizeof(KwSize));
}
if (thisRecord.recKWd == kw)
{
thisRecord.kwDataOffset = std::distance(vpdFile.cbegin(), iterator);
thisRecord.kwdDataLength = dataLength;
return;
}
// jump the data of current kwd to point to next kwd name
std::advance(iterator, dataLength);
}
throw std::runtime_error("Keyword not found");
}
void EditorImpl::updateRecordECC()
{
auto itrToRecordData = vpdFile.cbegin();
std::advance(itrToRecordData, thisRecord.recOffset);
auto itrToRecordECC = vpdFile.cbegin();
std::advance(itrToRecordECC, thisRecord.recECCoffset);
auto l_status = vpdecc_create_ecc(
const_cast<uint8_t*>(&itrToRecordData[0]), thisRecord.recSize,
const_cast<uint8_t*>(&itrToRecordECC[0]), &thisRecord.recECCLength);
if (l_status != VPD_ECC_OK)
{
throw std::runtime_error("Ecc update failed");
}
auto end = itrToRecordECC;
std::advance(end, thisRecord.recECCLength);
#ifndef ManagerTest
vpdFileStream.seekp(startOffset + thisRecord.recECCoffset, std::ios::beg);
std::copy(itrToRecordECC, end,
std::ostreambuf_iterator<char>(vpdFileStream));
#endif
}
auto EditorImpl::getValue(offsets::Offsets offset)
{
auto itr = vpdFile.cbegin();
std::advance(itr, offset);
LE2ByteData lowByte = *itr;
LE2ByteData highByte = *(itr + 1);
lowByte |= (highByte << 8);
return lowByte;
}
void EditorImpl::checkECC(Binary::const_iterator& itrToRecData,
Binary::const_iterator& itrToECCData,
RecordLength recLength, ECCLength eccLength)
{
auto l_status =
vpdecc_check_data(const_cast<uint8_t*>(&itrToRecData[0]), recLength,
const_cast<uint8_t*>(&itrToECCData[0]), eccLength);
if (l_status != VPD_ECC_OK)
{
throw std::runtime_error("Ecc check failed for VTOC");
}
}
void EditorImpl::readVTOC()
{
// read VTOC offset
RecordOffset tocOffset = getValue(offsets::VTOC_PTR);
// read VTOC record length
RecordLength tocLength = getValue(offsets::VTOC_REC_LEN);
// read TOC ecc offset
ECCOffset tocECCOffset = getValue(offsets::VTOC_ECC_OFF);
// read TOC ecc length
ECCLength tocECCLength = getValue(offsets::VTOC_ECC_LEN);
auto itrToRecord = vpdFile.cbegin();
std::advance(itrToRecord, tocOffset);
auto iteratorToECC = vpdFile.cbegin();
std::advance(iteratorToECC, tocECCOffset);
// validate ecc for the record
checkECC(itrToRecord, iteratorToECC, tocLength, tocECCLength);
// to get to the record name.
std::advance(itrToRecord, sizeof(RecordId) + sizeof(RecordSize) +
// Skip past the RT keyword, which contains
// the record name.
lengths::KW_NAME + sizeof(KwSize));
std::string recordName(itrToRecord, itrToRecord + lengths::RECORD_NAME);
if ("VTOC" != recordName)
{
throw std::runtime_error("VTOC record not found");
}
// jump to length of PT kwd
std::advance(itrToRecord, lengths::RECORD_NAME + lengths::KW_NAME);
// Note size of PT
Byte ptLen = *itrToRecord;
std::advance(itrToRecord, 1);
checkPTForRecord(itrToRecord, ptLen);
}
template <typename T>
void EditorImpl::makeDbusCall(const std::string& object,
const std::string& interface,
const std::string& property,
const std::variant<T>& data)
{
auto bus = sdbusplus::bus::new_default();
auto properties =
bus.new_method_call(INVENTORY_MANAGER_SERVICE, object.c_str(),
"org.freedesktop.DBus.Properties", "Set");
properties.append(interface);
properties.append(property);
properties.append(data);
auto result = bus.call(properties);
if (result.is_method_error())
{
throw std::runtime_error("bus call failed");
}
}
void EditorImpl::processAndUpdateCI(const std::string& objectPath)
{
for (auto& commonInterface : jsonFile["commonInterfaces"].items())
{
for (auto& ciPropertyList : commonInterface.value().items())
{
if (ciPropertyList.value().type() ==
nlohmann::json::value_t::object)
{
if ((ciPropertyList.value().value("recordName", "") ==
thisRecord.recName) &&
(ciPropertyList.value().value("keywordName", "") ==
thisRecord.recKWd))
{
std::string kwdData(thisRecord.kwdUpdatedData.begin(),
thisRecord.kwdUpdatedData.end());
makeDbusCall<std::string>((INVENTORY_PATH + objectPath),
commonInterface.key(),
ciPropertyList.key(), kwdData);
}
}
}
}
}
void EditorImpl::processAndUpdateEI(const nlohmann::json& Inventory,
const inventory::Path& objPath)
{
for (const auto& extraInterface : Inventory["extraInterfaces"].items())
{
if (extraInterface.value() != NULL)
{
for (const auto& eiPropertyList : extraInterface.value().items())
{
if (eiPropertyList.value().type() ==
nlohmann::json::value_t::object)
{
if ((eiPropertyList.value().value("recordName", "") ==
thisRecord.recName) &&
((eiPropertyList.value().value("keywordName", "") ==
thisRecord.recKWd)))
{
std::string kwdData(thisRecord.kwdUpdatedData.begin(),
thisRecord.kwdUpdatedData.end());
makeDbusCall<std::string>(
(INVENTORY_PATH + objPath), extraInterface.key(),
eiPropertyList.key(),
encodeKeyword(kwdData, eiPropertyList.value().value(
"encoding", "")));
}
}
}
}
}
}
void EditorImpl::updateCache()
{
const std::vector<nlohmann::json>& groupEEPROM =
jsonFile["frus"][vpdFilePath].get_ref<const nlohmann::json::array_t&>();
// iterate through all the inventories for this file path
for (const auto& singleInventory : groupEEPROM)
{
// by default inherit property is true
bool isInherit = true;
bool isInheritEI = true;
bool isCpuModuleOnly = false;
if (singleInventory.find("inherit") != singleInventory.end())
{
isInherit = singleInventory["inherit"].get<bool>();
}
if (singleInventory.find("inheritEI") != singleInventory.end())
{
isInheritEI = singleInventory["inheritEI"].get<bool>();
}
// "type" exists only in CPU module and FRU
if (singleInventory.find("type") != singleInventory.end())
{
if (singleInventory["type"] == "moduleOnly")
{
isCpuModuleOnly = true;
}
}
if (isInherit)
{
// update com interface
// For CPU- update com interface only when isCI true
if ((!isCpuModuleOnly) || (isCpuModuleOnly && isCI))
{
makeDbusCall<Binary>(
(INVENTORY_PATH +
singleInventory["inventoryPath"].get<std::string>()),
(IPZ_INTERFACE + (std::string) "." + thisRecord.recName),
thisRecord.recKWd, thisRecord.kwdUpdatedData);
}
// process Common interface
processAndUpdateCI(singleInventory["inventoryPath"]
.get_ref<const nlohmann::json::string_t&>());
}
if (isInheritEI)
{
if (isCpuModuleOnly)
{
makeDbusCall<Binary>(
(INVENTORY_PATH +
singleInventory["inventoryPath"].get<std::string>()),
(IPZ_INTERFACE + (std::string) "." + thisRecord.recName),
thisRecord.recKWd, thisRecord.kwdUpdatedData);
}
// process extra interfaces
processAndUpdateEI(singleInventory,
singleInventory["inventoryPath"]
.get_ref<const nlohmann::json::string_t&>());
}
}
}
void EditorImpl::expandLocationCode(const std::string& locationCodeType)
{
std::string propertyFCorTM{};
std::string propertySE{};
if (locationCodeType == "fcs")
{
propertyFCorTM =
readBusProperty(SYSTEM_OBJECT, "com.ibm.ipzvpd.VCEN", "FC");
propertySE =
readBusProperty(SYSTEM_OBJECT, "com.ibm.ipzvpd.VCEN", "SE");
}
else if (locationCodeType == "mts")
{
propertyFCorTM =
readBusProperty(SYSTEM_OBJECT, "com.ibm.ipzvpd.VSYS", "TM");
propertySE =
readBusProperty(SYSTEM_OBJECT, "com.ibm.ipzvpd.VSYS", "SE");
}
const nlohmann::json& groupFRUS =
jsonFile["frus"].get_ref<const nlohmann::json::object_t&>();
for (const auto& itemFRUS : groupFRUS.items())
{
const std::vector<nlohmann::json>& groupEEPROM =
itemFRUS.value().get_ref<const nlohmann::json::array_t&>();
for (const auto& itemEEPROM : groupEEPROM)
{
// check if the given item implements location code interface
if (itemEEPROM["extraInterfaces"].find(LOCATION_CODE_INF) !=
itemEEPROM["extraInterfaces"].end())
{
const std::string& unexpandedLocationCode =
itemEEPROM["extraInterfaces"][LOCATION_CODE_INF]
["LocationCode"]
.get_ref<const nlohmann::json::string_t&>();
std::size_t idx = unexpandedLocationCode.find(locationCodeType);
if (idx != std::string::npos)
{
std::string expandedLoctionCode(unexpandedLocationCode);
if (locationCodeType == "fcs")
{
expandedLoctionCode.replace(
idx, 3,
propertyFCorTM.substr(0, 4) + ".ND0." + propertySE);
}
else if (locationCodeType == "mts")
{
std::replace(propertyFCorTM.begin(),
propertyFCorTM.end(), '-', '.');
expandedLoctionCode.replace(
idx, 3, propertyFCorTM + "." + propertySE);
}
// update the DBUS interface
makeDbusCall<std::string>(
(INVENTORY_PATH +
itemEEPROM["inventoryPath"]
.get_ref<const nlohmann::json::string_t&>()),
LOCATION_CODE_INF, "LocationCode", expandedLoctionCode);
}
}
}
}
}
string EditorImpl::getSysPathForThisFruType(const string& moduleObjPath,
const string& fruType)
{
string fruVpdPath;
// get all FRUs list
for (const auto& eachFru : jsonFile["frus"].items())
{
bool moduleObjPathMatched = false;
bool expectedFruFound = false;
for (const auto& eachInventory : eachFru.value())
{
const auto& thisObjectPath = eachInventory["inventoryPath"];
// "type" exists only in CPU module and FRU
if (eachInventory.find("type") != eachInventory.end())
{
// If inventory type is fruAndModule then set flag
if (eachInventory["type"] == fruType)
{
expectedFruFound = true;
}
}
if (thisObjectPath == moduleObjPath)
{
moduleObjPathMatched = true;
}
}
// If condition satisfies then collect this sys path and exit
if (expectedFruFound && moduleObjPathMatched)
{
fruVpdPath = eachFru.key();
break;
}
}
return fruVpdPath;
}
void EditorImpl::getVpdPathForCpu()
{
isCI = false;
// keep a backup In case we need it later
inventory::Path vpdFilePathBackup = vpdFilePath;
// TODO 1:Temp hardcoded list. create it dynamically.
std::vector<std::string> commonIntVINIKwds = {"PN", "SN", "DR"};
std::vector<std::string> commonIntVR10Kwds = {"DC"};
std::unordered_map<std::string, std::vector<std::string>>
commonIntRecordsList = {{"VINI", commonIntVINIKwds},
{"VR10", commonIntVR10Kwds}};
// If requested Record&Kw is one among CI, then update 'FRU' type sys
// path, SPI2
unordered_map<std::string, vector<string>>::const_iterator isCommonInt =
commonIntRecordsList.find(thisRecord.recName);
if ((isCommonInt != commonIntRecordsList.end()) &&
(find(isCommonInt->second.begin(), isCommonInt->second.end(),
thisRecord.recKWd) != isCommonInt->second.end()))
{
isCI = true;
vpdFilePath = getSysPathForThisFruType(objPath, "fruAndModule");
}
else
{
for (const auto& eachFru : jsonFile["frus"].items())
{
for (const auto& eachInventory : eachFru.value())
{
if (eachInventory.find("type") != eachInventory.end())
{
const auto& thisObjectPath = eachInventory["inventoryPath"];
if ((eachInventory["type"] == "moduleOnly") &&
(eachInventory.value("inheritEI", true)) &&
(thisObjectPath == static_cast<string>(objPath)))
{
vpdFilePath = eachFru.key();
}
}
}
}
}
// If it is not a CPU fru then go ahead with default vpdFilePath from
// fruMap
if (vpdFilePath.empty())
{
vpdFilePath = vpdFilePathBackup;
}
}
void EditorImpl::updateKeyword(const Binary& kwdData, const bool& updCache)
{
startOffset = 0;
#ifndef ManagerTest
getVpdPathForCpu();
// check if offset present?
for (const auto& item : jsonFile["frus"][vpdFilePath])
{
if (item.find("offset") != item.end())
{
startOffset = item["offset"];
}
}
// TODO: Figure out a better way to get max possible VPD size.
Binary completeVPDFile;
completeVPDFile.resize(65504);
vpdFileStream.open(vpdFilePath,
std::ios::in | std::ios::out | std::ios::binary);
vpdFileStream.seekg(startOffset, ios_base::cur);
vpdFileStream.read(reinterpret_cast<char*>(&completeVPDFile[0]), 65504);
completeVPDFile.resize(vpdFileStream.gcount());
vpdFileStream.clear(std::ios_base::eofbit);
vpdFile = completeVPDFile;
#else
Binary completeVPDFile = vpdFile;
#endif
if (vpdFile.empty())
{
throw std::runtime_error("Invalid File");
}
auto iterator = vpdFile.cbegin();
std::advance(iterator, IPZ_DATA_START);
Byte vpdType = *iterator;
if (vpdType == KW_VAL_PAIR_START_TAG)
{
ParserInterface* Iparser =
ParserFactory::getParser(std::move(completeVPDFile));
IpzVpdParser* ipzParser = dynamic_cast<IpzVpdParser*>(Iparser);
try
{
if (ipzParser == nullptr)
{
throw std::runtime_error("Invalid cast");
}
ipzParser->processHeader();
delete ipzParser;
ipzParser = nullptr;
// ParserFactory::freeParser(Iparser);
// process VTOC for PTT rkwd
readVTOC();
// check record for keywrod
checkRecordForKwd();
// update the data to the file
updateData(kwdData);
// update the ECC data for the record once data has been updated
updateRecordECC();
#ifndef ManagerTest
if (updCache)
{
// update the cache once data has been updated
updateCache();
}
#endif
}
catch (const std::exception& e)
{
if (ipzParser != nullptr)
{
delete ipzParser;
}
throw std::runtime_error(e.what());
}
return;
}
}
} // namespace editor
} // namespace manager
} // namespace vpd
} // namespace openpower