Patrick Williams | c124f4f | 2015-09-15 14:41:29 -0500 | [diff] [blame] | 1 | # ----------------------------------------------------------------------------- |
| 2 | # ply: yacc.py |
| 3 | # |
| 4 | # Copyright (C) 2001-2009, |
| 5 | # David M. Beazley (Dabeaz LLC) |
| 6 | # All rights reserved. |
| 7 | # |
| 8 | # Redistribution and use in source and binary forms, with or without |
| 9 | # modification, are permitted provided that the following conditions are |
| 10 | # met: |
| 11 | # |
| 12 | # * Redistributions of source code must retain the above copyright notice, |
| 13 | # this list of conditions and the following disclaimer. |
| 14 | # * Redistributions in binary form must reproduce the above copyright notice, |
| 15 | # this list of conditions and the following disclaimer in the documentation |
| 16 | # and/or other materials provided with the distribution. |
| 17 | # * Neither the name of the David Beazley or Dabeaz LLC may be used to |
| 18 | # endorse or promote products derived from this software without |
| 19 | # specific prior written permission. |
| 20 | # |
| 21 | # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 22 | # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 23 | # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 24 | # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 25 | # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 26 | # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 27 | # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 28 | # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 29 | # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 30 | # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 31 | # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 32 | # ----------------------------------------------------------------------------- |
| 33 | # |
| 34 | # This implements an LR parser that is constructed from grammar rules defined |
| 35 | # as Python functions. The grammer is specified by supplying the BNF inside |
| 36 | # Python documentation strings. The inspiration for this technique was borrowed |
| 37 | # from John Aycock's Spark parsing system. PLY might be viewed as cross between |
| 38 | # Spark and the GNU bison utility. |
| 39 | # |
| 40 | # The current implementation is only somewhat object-oriented. The |
| 41 | # LR parser itself is defined in terms of an object (which allows multiple |
| 42 | # parsers to co-exist). However, most of the variables used during table |
| 43 | # construction are defined in terms of global variables. Users shouldn't |
| 44 | # notice unless they are trying to define multiple parsers at the same |
| 45 | # time using threads (in which case they should have their head examined). |
| 46 | # |
| 47 | # This implementation supports both SLR and LALR(1) parsing. LALR(1) |
| 48 | # support was originally implemented by Elias Ioup (ezioup@alumni.uchicago.edu), |
| 49 | # using the algorithm found in Aho, Sethi, and Ullman "Compilers: Principles, |
| 50 | # Techniques, and Tools" (The Dragon Book). LALR(1) has since been replaced |
| 51 | # by the more efficient DeRemer and Pennello algorithm. |
| 52 | # |
| 53 | # :::::::: WARNING ::::::: |
| 54 | # |
| 55 | # Construction of LR parsing tables is fairly complicated and expensive. |
| 56 | # To make this module run fast, a *LOT* of work has been put into |
| 57 | # optimization---often at the expensive of readability and what might |
| 58 | # consider to be good Python "coding style." Modify the code at your |
| 59 | # own risk! |
| 60 | # ---------------------------------------------------------------------------- |
| 61 | |
| 62 | __version__ = "3.3" |
| 63 | __tabversion__ = "3.2" # Table version |
| 64 | |
| 65 | #----------------------------------------------------------------------------- |
| 66 | # === User configurable parameters === |
| 67 | # |
| 68 | # Change these to modify the default behavior of yacc (if you wish) |
| 69 | #----------------------------------------------------------------------------- |
| 70 | |
| 71 | yaccdebug = 0 # Debugging mode. If set, yacc generates a |
| 72 | # a 'parser.out' file in the current directory |
| 73 | |
| 74 | debug_file = 'parser.out' # Default name of the debugging file |
| 75 | tab_module = 'parsetab' # Default name of the table module |
| 76 | default_lr = 'LALR' # Default LR table generation method |
| 77 | |
| 78 | error_count = 3 # Number of symbols that must be shifted to leave recovery mode |
| 79 | |
| 80 | yaccdevel = 0 # Set to True if developing yacc. This turns off optimized |
| 81 | # implementations of certain functions. |
| 82 | |
| 83 | resultlimit = 40 # Size limit of results when running in debug mode. |
| 84 | |
| 85 | pickle_protocol = 0 # Protocol to use when writing pickle files |
| 86 | |
| 87 | import re, types, sys, os.path |
| 88 | |
| 89 | # Compatibility function for python 2.6/3.0 |
| 90 | if sys.version_info[0] < 3: |
| 91 | def func_code(f): |
| 92 | return f.func_code |
| 93 | else: |
| 94 | def func_code(f): |
| 95 | return f.__code__ |
| 96 | |
| 97 | # Compatibility |
| 98 | try: |
| 99 | MAXINT = sys.maxint |
| 100 | except AttributeError: |
| 101 | MAXINT = sys.maxsize |
| 102 | |
| 103 | # Python 2.x/3.0 compatibility. |
| 104 | def load_ply_lex(): |
| 105 | if sys.version_info[0] < 3: |
| 106 | import lex |
| 107 | else: |
| 108 | import ply.lex as lex |
| 109 | return lex |
| 110 | |
| 111 | # This object is a stand-in for a logging object created by the |
| 112 | # logging module. PLY will use this by default to create things |
| 113 | # such as the parser.out file. If a user wants more detailed |
| 114 | # information, they can create their own logging object and pass |
| 115 | # it into PLY. |
| 116 | |
| 117 | class PlyLogger(object): |
| 118 | def __init__(self,f): |
| 119 | self.f = f |
| 120 | def debug(self,msg,*args,**kwargs): |
| 121 | self.f.write((msg % args) + "\n") |
| 122 | info = debug |
| 123 | |
| 124 | def warning(self,msg,*args,**kwargs): |
| 125 | self.f.write("WARNING: "+ (msg % args) + "\n") |
| 126 | |
| 127 | def error(self,msg,*args,**kwargs): |
| 128 | self.f.write("ERROR: " + (msg % args) + "\n") |
| 129 | |
| 130 | critical = debug |
| 131 | |
| 132 | # Null logger is used when no output is generated. Does nothing. |
| 133 | class NullLogger(object): |
| 134 | def __getattribute__(self,name): |
| 135 | return self |
| 136 | def __call__(self,*args,**kwargs): |
| 137 | return self |
| 138 | |
| 139 | # Exception raised for yacc-related errors |
| 140 | class YaccError(Exception): pass |
| 141 | |
| 142 | # Format the result message that the parser produces when running in debug mode. |
| 143 | def format_result(r): |
| 144 | repr_str = repr(r) |
| 145 | if '\n' in repr_str: repr_str = repr(repr_str) |
| 146 | if len(repr_str) > resultlimit: |
| 147 | repr_str = repr_str[:resultlimit]+" ..." |
| 148 | result = "<%s @ 0x%x> (%s)" % (type(r).__name__,id(r),repr_str) |
| 149 | return result |
| 150 | |
| 151 | |
| 152 | # Format stack entries when the parser is running in debug mode |
| 153 | def format_stack_entry(r): |
| 154 | repr_str = repr(r) |
| 155 | if '\n' in repr_str: repr_str = repr(repr_str) |
| 156 | if len(repr_str) < 16: |
| 157 | return repr_str |
| 158 | else: |
| 159 | return "<%s @ 0x%x>" % (type(r).__name__,id(r)) |
| 160 | |
| 161 | #----------------------------------------------------------------------------- |
| 162 | # === LR Parsing Engine === |
| 163 | # |
| 164 | # The following classes are used for the LR parser itself. These are not |
| 165 | # used during table construction and are independent of the actual LR |
| 166 | # table generation algorithm |
| 167 | #----------------------------------------------------------------------------- |
| 168 | |
| 169 | # This class is used to hold non-terminal grammar symbols during parsing. |
| 170 | # It normally has the following attributes set: |
| 171 | # .type = Grammar symbol type |
| 172 | # .value = Symbol value |
| 173 | # .lineno = Starting line number |
| 174 | # .endlineno = Ending line number (optional, set automatically) |
| 175 | # .lexpos = Starting lex position |
| 176 | # .endlexpos = Ending lex position (optional, set automatically) |
| 177 | |
| 178 | class YaccSymbol: |
| 179 | def __str__(self): return self.type |
| 180 | def __repr__(self): return str(self) |
| 181 | |
| 182 | # This class is a wrapper around the objects actually passed to each |
| 183 | # grammar rule. Index lookup and assignment actually assign the |
| 184 | # .value attribute of the underlying YaccSymbol object. |
| 185 | # The lineno() method returns the line number of a given |
| 186 | # item (or 0 if not defined). The linespan() method returns |
| 187 | # a tuple of (startline,endline) representing the range of lines |
| 188 | # for a symbol. The lexspan() method returns a tuple (lexpos,endlexpos) |
| 189 | # representing the range of positional information for a symbol. |
| 190 | |
| 191 | class YaccProduction: |
| 192 | def __init__(self,s,stack=None): |
| 193 | self.slice = s |
| 194 | self.stack = stack |
| 195 | self.lexer = None |
| 196 | self.parser= None |
| 197 | def __getitem__(self,n): |
Patrick Williams | c0f7c04 | 2017-02-23 20:41:17 -0600 | [diff] [blame] | 198 | if isinstance(n,slice): |
| 199 | return [self[i] for i in range(*(n.indices(len(self.slice))))] |
Patrick Williams | c124f4f | 2015-09-15 14:41:29 -0500 | [diff] [blame] | 200 | if n >= 0: return self.slice[n].value |
| 201 | else: return self.stack[n].value |
| 202 | |
| 203 | def __setitem__(self,n,v): |
| 204 | self.slice[n].value = v |
| 205 | |
| 206 | def __getslice__(self,i,j): |
| 207 | return [s.value for s in self.slice[i:j]] |
| 208 | |
| 209 | def __len__(self): |
| 210 | return len(self.slice) |
| 211 | |
| 212 | def lineno(self,n): |
| 213 | return getattr(self.slice[n],"lineno",0) |
| 214 | |
| 215 | def set_lineno(self,n,lineno): |
| 216 | self.slice[n].lineno = lineno |
| 217 | |
| 218 | def linespan(self,n): |
| 219 | startline = getattr(self.slice[n],"lineno",0) |
| 220 | endline = getattr(self.slice[n],"endlineno",startline) |
| 221 | return startline,endline |
| 222 | |
| 223 | def lexpos(self,n): |
| 224 | return getattr(self.slice[n],"lexpos",0) |
| 225 | |
| 226 | def lexspan(self,n): |
| 227 | startpos = getattr(self.slice[n],"lexpos",0) |
| 228 | endpos = getattr(self.slice[n],"endlexpos",startpos) |
| 229 | return startpos,endpos |
| 230 | |
| 231 | def error(self): |
| 232 | raise SyntaxError |
| 233 | |
| 234 | |
| 235 | # ----------------------------------------------------------------------------- |
| 236 | # == LRParser == |
| 237 | # |
| 238 | # The LR Parsing engine. |
| 239 | # ----------------------------------------------------------------------------- |
| 240 | |
| 241 | class LRParser: |
| 242 | def __init__(self,lrtab,errorf): |
| 243 | self.productions = lrtab.lr_productions |
| 244 | self.action = lrtab.lr_action |
| 245 | self.goto = lrtab.lr_goto |
| 246 | self.errorfunc = errorf |
| 247 | |
| 248 | def errok(self): |
| 249 | self.errorok = 1 |
| 250 | |
| 251 | def restart(self): |
| 252 | del self.statestack[:] |
| 253 | del self.symstack[:] |
| 254 | sym = YaccSymbol() |
| 255 | sym.type = '$end' |
| 256 | self.symstack.append(sym) |
| 257 | self.statestack.append(0) |
| 258 | |
| 259 | def parse(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None): |
| 260 | if debug or yaccdevel: |
| 261 | if isinstance(debug,int): |
| 262 | debug = PlyLogger(sys.stderr) |
| 263 | return self.parsedebug(input,lexer,debug,tracking,tokenfunc) |
| 264 | elif tracking: |
| 265 | return self.parseopt(input,lexer,debug,tracking,tokenfunc) |
| 266 | else: |
| 267 | return self.parseopt_notrack(input,lexer,debug,tracking,tokenfunc) |
| 268 | |
| 269 | |
| 270 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 271 | # parsedebug(). |
| 272 | # |
| 273 | # This is the debugging enabled version of parse(). All changes made to the |
| 274 | # parsing engine should be made here. For the non-debugging version, |
| 275 | # copy this code to a method parseopt() and delete all of the sections |
| 276 | # enclosed in: |
| 277 | # |
| 278 | # #--! DEBUG |
| 279 | # statements |
| 280 | # #--! DEBUG |
| 281 | # |
| 282 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 283 | |
| 284 | def parsedebug(self,input=None,lexer=None,debug=None,tracking=0,tokenfunc=None): |
| 285 | lookahead = None # Current lookahead symbol |
| 286 | lookaheadstack = [ ] # Stack of lookahead symbols |
| 287 | actions = self.action # Local reference to action table (to avoid lookup on self.) |
| 288 | goto = self.goto # Local reference to goto table (to avoid lookup on self.) |
| 289 | prod = self.productions # Local reference to production list (to avoid lookup on self.) |
| 290 | pslice = YaccProduction(None) # Production object passed to grammar rules |
| 291 | errorcount = 0 # Used during error recovery |
| 292 | |
| 293 | # --! DEBUG |
| 294 | debug.info("PLY: PARSE DEBUG START") |
| 295 | # --! DEBUG |
| 296 | |
| 297 | # If no lexer was given, we will try to use the lex module |
| 298 | if not lexer: |
| 299 | lex = load_ply_lex() |
| 300 | lexer = lex.lexer |
| 301 | |
| 302 | # Set up the lexer and parser objects on pslice |
| 303 | pslice.lexer = lexer |
| 304 | pslice.parser = self |
| 305 | |
| 306 | # If input was supplied, pass to lexer |
| 307 | if input is not None: |
| 308 | lexer.input(input) |
| 309 | |
| 310 | if tokenfunc is None: |
| 311 | # Tokenize function |
| 312 | get_token = lexer.token |
| 313 | else: |
| 314 | get_token = tokenfunc |
| 315 | |
| 316 | # Set up the state and symbol stacks |
| 317 | |
| 318 | statestack = [ ] # Stack of parsing states |
| 319 | self.statestack = statestack |
| 320 | symstack = [ ] # Stack of grammar symbols |
| 321 | self.symstack = symstack |
| 322 | |
| 323 | pslice.stack = symstack # Put in the production |
| 324 | errtoken = None # Err token |
| 325 | |
| 326 | # The start state is assumed to be (0,$end) |
| 327 | |
| 328 | statestack.append(0) |
| 329 | sym = YaccSymbol() |
| 330 | sym.type = "$end" |
| 331 | symstack.append(sym) |
| 332 | state = 0 |
| 333 | while 1: |
| 334 | # Get the next symbol on the input. If a lookahead symbol |
| 335 | # is already set, we just use that. Otherwise, we'll pull |
| 336 | # the next token off of the lookaheadstack or from the lexer |
| 337 | |
| 338 | # --! DEBUG |
| 339 | debug.debug('') |
| 340 | debug.debug('State : %s', state) |
| 341 | # --! DEBUG |
| 342 | |
| 343 | if not lookahead: |
| 344 | if not lookaheadstack: |
| 345 | lookahead = get_token() # Get the next token |
| 346 | else: |
| 347 | lookahead = lookaheadstack.pop() |
| 348 | if not lookahead: |
| 349 | lookahead = YaccSymbol() |
| 350 | lookahead.type = "$end" |
| 351 | |
| 352 | # --! DEBUG |
| 353 | debug.debug('Stack : %s', |
| 354 | ("%s . %s" % (" ".join([xx.type for xx in symstack][1:]), str(lookahead))).lstrip()) |
| 355 | # --! DEBUG |
| 356 | |
| 357 | # Check the action table |
| 358 | ltype = lookahead.type |
| 359 | t = actions[state].get(ltype) |
| 360 | |
| 361 | if t is not None: |
| 362 | if t > 0: |
| 363 | # shift a symbol on the stack |
| 364 | statestack.append(t) |
| 365 | state = t |
| 366 | |
| 367 | # --! DEBUG |
| 368 | debug.debug("Action : Shift and goto state %s", t) |
| 369 | # --! DEBUG |
| 370 | |
| 371 | symstack.append(lookahead) |
| 372 | lookahead = None |
| 373 | |
| 374 | # Decrease error count on successful shift |
| 375 | if errorcount: errorcount -=1 |
| 376 | continue |
| 377 | |
| 378 | if t < 0: |
| 379 | # reduce a symbol on the stack, emit a production |
| 380 | p = prod[-t] |
| 381 | pname = p.name |
| 382 | plen = p.len |
| 383 | |
| 384 | # Get production function |
| 385 | sym = YaccSymbol() |
| 386 | sym.type = pname # Production name |
| 387 | sym.value = None |
| 388 | |
| 389 | # --! DEBUG |
| 390 | if plen: |
| 391 | debug.info("Action : Reduce rule [%s] with %s and goto state %d", p.str, "["+",".join([format_stack_entry(_v.value) for _v in symstack[-plen:]])+"]",-t) |
| 392 | else: |
| 393 | debug.info("Action : Reduce rule [%s] with %s and goto state %d", p.str, [],-t) |
| 394 | |
| 395 | # --! DEBUG |
| 396 | |
| 397 | if plen: |
| 398 | targ = symstack[-plen-1:] |
| 399 | targ[0] = sym |
| 400 | |
| 401 | # --! TRACKING |
| 402 | if tracking: |
| 403 | t1 = targ[1] |
| 404 | sym.lineno = t1.lineno |
| 405 | sym.lexpos = t1.lexpos |
| 406 | t1 = targ[-1] |
| 407 | sym.endlineno = getattr(t1,"endlineno",t1.lineno) |
| 408 | sym.endlexpos = getattr(t1,"endlexpos",t1.lexpos) |
| 409 | |
| 410 | # --! TRACKING |
| 411 | |
| 412 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 413 | # The code enclosed in this section is duplicated |
| 414 | # below as a performance optimization. Make sure |
| 415 | # changes get made in both locations. |
| 416 | |
| 417 | pslice.slice = targ |
| 418 | |
| 419 | try: |
| 420 | # Call the grammar rule with our special slice object |
| 421 | del symstack[-plen:] |
| 422 | del statestack[-plen:] |
| 423 | p.callable(pslice) |
| 424 | # --! DEBUG |
| 425 | debug.info("Result : %s", format_result(pslice[0])) |
| 426 | # --! DEBUG |
| 427 | symstack.append(sym) |
| 428 | state = goto[statestack[-1]][pname] |
| 429 | statestack.append(state) |
| 430 | except SyntaxError: |
| 431 | # If an error was set. Enter error recovery state |
| 432 | lookaheadstack.append(lookahead) |
| 433 | symstack.pop() |
| 434 | statestack.pop() |
| 435 | state = statestack[-1] |
| 436 | sym.type = 'error' |
| 437 | lookahead = sym |
| 438 | errorcount = error_count |
| 439 | self.errorok = 0 |
| 440 | continue |
| 441 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 442 | |
| 443 | else: |
| 444 | |
| 445 | # --! TRACKING |
| 446 | if tracking: |
| 447 | sym.lineno = lexer.lineno |
| 448 | sym.lexpos = lexer.lexpos |
| 449 | # --! TRACKING |
| 450 | |
| 451 | targ = [ sym ] |
| 452 | |
| 453 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 454 | # The code enclosed in this section is duplicated |
| 455 | # above as a performance optimization. Make sure |
| 456 | # changes get made in both locations. |
| 457 | |
| 458 | pslice.slice = targ |
| 459 | |
| 460 | try: |
| 461 | # Call the grammar rule with our special slice object |
| 462 | p.callable(pslice) |
| 463 | # --! DEBUG |
| 464 | debug.info("Result : %s", format_result(pslice[0])) |
| 465 | # --! DEBUG |
| 466 | symstack.append(sym) |
| 467 | state = goto[statestack[-1]][pname] |
| 468 | statestack.append(state) |
| 469 | except SyntaxError: |
| 470 | # If an error was set. Enter error recovery state |
| 471 | lookaheadstack.append(lookahead) |
| 472 | symstack.pop() |
| 473 | statestack.pop() |
| 474 | state = statestack[-1] |
| 475 | sym.type = 'error' |
| 476 | lookahead = sym |
| 477 | errorcount = error_count |
| 478 | self.errorok = 0 |
| 479 | continue |
| 480 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 481 | |
| 482 | if t == 0: |
| 483 | n = symstack[-1] |
| 484 | result = getattr(n,"value",None) |
| 485 | # --! DEBUG |
| 486 | debug.info("Done : Returning %s", format_result(result)) |
| 487 | debug.info("PLY: PARSE DEBUG END") |
| 488 | # --! DEBUG |
| 489 | return result |
| 490 | |
Andrew Geissler | 82c905d | 2020-04-13 13:39:40 -0500 | [diff] [blame^] | 491 | if t is None: |
Patrick Williams | c124f4f | 2015-09-15 14:41:29 -0500 | [diff] [blame] | 492 | |
| 493 | # --! DEBUG |
| 494 | debug.error('Error : %s', |
| 495 | ("%s . %s" % (" ".join([xx.type for xx in symstack][1:]), str(lookahead))).lstrip()) |
| 496 | # --! DEBUG |
| 497 | |
| 498 | # We have some kind of parsing error here. To handle |
| 499 | # this, we are going to push the current token onto |
| 500 | # the tokenstack and replace it with an 'error' token. |
| 501 | # If there are any synchronization rules, they may |
| 502 | # catch it. |
| 503 | # |
| 504 | # In addition to pushing the error token, we call call |
| 505 | # the user defined p_error() function if this is the |
| 506 | # first syntax error. This function is only called if |
| 507 | # errorcount == 0. |
| 508 | if errorcount == 0 or self.errorok: |
| 509 | errorcount = error_count |
| 510 | self.errorok = 0 |
| 511 | errtoken = lookahead |
| 512 | if errtoken.type == "$end": |
| 513 | errtoken = None # End of file! |
| 514 | if self.errorfunc: |
| 515 | global errok,token,restart |
| 516 | errok = self.errok # Set some special functions available in error recovery |
| 517 | token = get_token |
| 518 | restart = self.restart |
| 519 | if errtoken and not hasattr(errtoken,'lexer'): |
| 520 | errtoken.lexer = lexer |
| 521 | tok = self.errorfunc(errtoken) |
| 522 | del errok, token, restart # Delete special functions |
| 523 | |
| 524 | if self.errorok: |
| 525 | # User must have done some kind of panic |
| 526 | # mode recovery on their own. The |
| 527 | # returned token is the next lookahead |
| 528 | lookahead = tok |
| 529 | errtoken = None |
| 530 | continue |
| 531 | else: |
| 532 | if errtoken: |
| 533 | if hasattr(errtoken,"lineno"): lineno = lookahead.lineno |
| 534 | else: lineno = 0 |
| 535 | if lineno: |
| 536 | sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type)) |
| 537 | else: |
| 538 | sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type) |
| 539 | else: |
| 540 | sys.stderr.write("yacc: Parse error in input. EOF\n") |
| 541 | return |
| 542 | |
| 543 | else: |
| 544 | errorcount = error_count |
| 545 | |
| 546 | # case 1: the statestack only has 1 entry on it. If we're in this state, the |
| 547 | # entire parse has been rolled back and we're completely hosed. The token is |
| 548 | # discarded and we just keep going. |
| 549 | |
| 550 | if len(statestack) <= 1 and lookahead.type != "$end": |
| 551 | lookahead = None |
| 552 | errtoken = None |
| 553 | state = 0 |
| 554 | # Nuke the pushback stack |
| 555 | del lookaheadstack[:] |
| 556 | continue |
| 557 | |
| 558 | # case 2: the statestack has a couple of entries on it, but we're |
| 559 | # at the end of the file. nuke the top entry and generate an error token |
| 560 | |
| 561 | # Start nuking entries on the stack |
| 562 | if lookahead.type == "$end": |
| 563 | # Whoa. We're really hosed here. Bail out |
| 564 | return |
| 565 | |
| 566 | if lookahead.type != 'error': |
| 567 | sym = symstack[-1] |
| 568 | if sym.type == 'error': |
| 569 | # Hmmm. Error is on top of stack, we'll just nuke input |
| 570 | # symbol and continue |
| 571 | lookahead = None |
| 572 | continue |
| 573 | t = YaccSymbol() |
| 574 | t.type = 'error' |
| 575 | if hasattr(lookahead,"lineno"): |
| 576 | t.lineno = lookahead.lineno |
| 577 | t.value = lookahead |
| 578 | lookaheadstack.append(lookahead) |
| 579 | lookahead = t |
| 580 | else: |
| 581 | symstack.pop() |
| 582 | statestack.pop() |
| 583 | state = statestack[-1] # Potential bug fix |
| 584 | |
| 585 | continue |
| 586 | |
| 587 | # Call an error function here |
| 588 | raise RuntimeError("yacc: internal parser error!!!\n") |
| 589 | |
| 590 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 591 | # parseopt(). |
| 592 | # |
| 593 | # Optimized version of parse() method. DO NOT EDIT THIS CODE DIRECTLY. |
| 594 | # Edit the debug version above, then copy any modifications to the method |
| 595 | # below while removing #--! DEBUG sections. |
| 596 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 597 | |
| 598 | |
| 599 | def parseopt(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None): |
| 600 | lookahead = None # Current lookahead symbol |
| 601 | lookaheadstack = [ ] # Stack of lookahead symbols |
| 602 | actions = self.action # Local reference to action table (to avoid lookup on self.) |
| 603 | goto = self.goto # Local reference to goto table (to avoid lookup on self.) |
| 604 | prod = self.productions # Local reference to production list (to avoid lookup on self.) |
| 605 | pslice = YaccProduction(None) # Production object passed to grammar rules |
| 606 | errorcount = 0 # Used during error recovery |
| 607 | |
| 608 | # If no lexer was given, we will try to use the lex module |
| 609 | if not lexer: |
| 610 | lex = load_ply_lex() |
| 611 | lexer = lex.lexer |
| 612 | |
| 613 | # Set up the lexer and parser objects on pslice |
| 614 | pslice.lexer = lexer |
| 615 | pslice.parser = self |
| 616 | |
| 617 | # If input was supplied, pass to lexer |
| 618 | if input is not None: |
| 619 | lexer.input(input) |
| 620 | |
| 621 | if tokenfunc is None: |
| 622 | # Tokenize function |
| 623 | get_token = lexer.token |
| 624 | else: |
| 625 | get_token = tokenfunc |
| 626 | |
| 627 | # Set up the state and symbol stacks |
| 628 | |
| 629 | statestack = [ ] # Stack of parsing states |
| 630 | self.statestack = statestack |
| 631 | symstack = [ ] # Stack of grammar symbols |
| 632 | self.symstack = symstack |
| 633 | |
| 634 | pslice.stack = symstack # Put in the production |
| 635 | errtoken = None # Err token |
| 636 | |
| 637 | # The start state is assumed to be (0,$end) |
| 638 | |
| 639 | statestack.append(0) |
| 640 | sym = YaccSymbol() |
| 641 | sym.type = '$end' |
| 642 | symstack.append(sym) |
| 643 | state = 0 |
| 644 | while 1: |
| 645 | # Get the next symbol on the input. If a lookahead symbol |
| 646 | # is already set, we just use that. Otherwise, we'll pull |
| 647 | # the next token off of the lookaheadstack or from the lexer |
| 648 | |
| 649 | if not lookahead: |
| 650 | if not lookaheadstack: |
| 651 | lookahead = get_token() # Get the next token |
| 652 | else: |
| 653 | lookahead = lookaheadstack.pop() |
| 654 | if not lookahead: |
| 655 | lookahead = YaccSymbol() |
| 656 | lookahead.type = '$end' |
| 657 | |
| 658 | # Check the action table |
| 659 | ltype = lookahead.type |
| 660 | t = actions[state].get(ltype) |
| 661 | |
| 662 | if t is not None: |
| 663 | if t > 0: |
| 664 | # shift a symbol on the stack |
| 665 | statestack.append(t) |
| 666 | state = t |
| 667 | |
| 668 | symstack.append(lookahead) |
| 669 | lookahead = None |
| 670 | |
| 671 | # Decrease error count on successful shift |
| 672 | if errorcount: errorcount -=1 |
| 673 | continue |
| 674 | |
| 675 | if t < 0: |
| 676 | # reduce a symbol on the stack, emit a production |
| 677 | p = prod[-t] |
| 678 | pname = p.name |
| 679 | plen = p.len |
| 680 | |
| 681 | # Get production function |
| 682 | sym = YaccSymbol() |
| 683 | sym.type = pname # Production name |
| 684 | sym.value = None |
| 685 | |
| 686 | if plen: |
| 687 | targ = symstack[-plen-1:] |
| 688 | targ[0] = sym |
| 689 | |
| 690 | # --! TRACKING |
| 691 | if tracking: |
| 692 | t1 = targ[1] |
| 693 | sym.lineno = t1.lineno |
| 694 | sym.lexpos = t1.lexpos |
| 695 | t1 = targ[-1] |
| 696 | sym.endlineno = getattr(t1,"endlineno",t1.lineno) |
| 697 | sym.endlexpos = getattr(t1,"endlexpos",t1.lexpos) |
| 698 | |
| 699 | # --! TRACKING |
| 700 | |
| 701 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 702 | # The code enclosed in this section is duplicated |
| 703 | # below as a performance optimization. Make sure |
| 704 | # changes get made in both locations. |
| 705 | |
| 706 | pslice.slice = targ |
| 707 | |
| 708 | try: |
| 709 | # Call the grammar rule with our special slice object |
| 710 | del symstack[-plen:] |
| 711 | del statestack[-plen:] |
| 712 | p.callable(pslice) |
| 713 | symstack.append(sym) |
| 714 | state = goto[statestack[-1]][pname] |
| 715 | statestack.append(state) |
| 716 | except SyntaxError: |
| 717 | # If an error was set. Enter error recovery state |
| 718 | lookaheadstack.append(lookahead) |
| 719 | symstack.pop() |
| 720 | statestack.pop() |
| 721 | state = statestack[-1] |
| 722 | sym.type = 'error' |
| 723 | lookahead = sym |
| 724 | errorcount = error_count |
| 725 | self.errorok = 0 |
| 726 | continue |
| 727 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 728 | |
| 729 | else: |
| 730 | |
| 731 | # --! TRACKING |
| 732 | if tracking: |
| 733 | sym.lineno = lexer.lineno |
| 734 | sym.lexpos = lexer.lexpos |
| 735 | # --! TRACKING |
| 736 | |
| 737 | targ = [ sym ] |
| 738 | |
| 739 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 740 | # The code enclosed in this section is duplicated |
| 741 | # above as a performance optimization. Make sure |
| 742 | # changes get made in both locations. |
| 743 | |
| 744 | pslice.slice = targ |
| 745 | |
| 746 | try: |
| 747 | # Call the grammar rule with our special slice object |
| 748 | p.callable(pslice) |
| 749 | symstack.append(sym) |
| 750 | state = goto[statestack[-1]][pname] |
| 751 | statestack.append(state) |
| 752 | except SyntaxError: |
| 753 | # If an error was set. Enter error recovery state |
| 754 | lookaheadstack.append(lookahead) |
| 755 | symstack.pop() |
| 756 | statestack.pop() |
| 757 | state = statestack[-1] |
| 758 | sym.type = 'error' |
| 759 | lookahead = sym |
| 760 | errorcount = error_count |
| 761 | self.errorok = 0 |
| 762 | continue |
| 763 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 764 | |
| 765 | if t == 0: |
| 766 | n = symstack[-1] |
| 767 | return getattr(n,"value",None) |
| 768 | |
Andrew Geissler | 82c905d | 2020-04-13 13:39:40 -0500 | [diff] [blame^] | 769 | if t is None: |
Patrick Williams | c124f4f | 2015-09-15 14:41:29 -0500 | [diff] [blame] | 770 | |
| 771 | # We have some kind of parsing error here. To handle |
| 772 | # this, we are going to push the current token onto |
| 773 | # the tokenstack and replace it with an 'error' token. |
| 774 | # If there are any synchronization rules, they may |
| 775 | # catch it. |
| 776 | # |
| 777 | # In addition to pushing the error token, we call call |
| 778 | # the user defined p_error() function if this is the |
| 779 | # first syntax error. This function is only called if |
| 780 | # errorcount == 0. |
| 781 | if errorcount == 0 or self.errorok: |
| 782 | errorcount = error_count |
| 783 | self.errorok = 0 |
| 784 | errtoken = lookahead |
| 785 | if errtoken.type == '$end': |
| 786 | errtoken = None # End of file! |
| 787 | if self.errorfunc: |
| 788 | global errok,token,restart |
| 789 | errok = self.errok # Set some special functions available in error recovery |
| 790 | token = get_token |
| 791 | restart = self.restart |
| 792 | if errtoken and not hasattr(errtoken,'lexer'): |
| 793 | errtoken.lexer = lexer |
| 794 | tok = self.errorfunc(errtoken) |
| 795 | del errok, token, restart # Delete special functions |
| 796 | |
| 797 | if self.errorok: |
| 798 | # User must have done some kind of panic |
| 799 | # mode recovery on their own. The |
| 800 | # returned token is the next lookahead |
| 801 | lookahead = tok |
| 802 | errtoken = None |
| 803 | continue |
| 804 | else: |
| 805 | if errtoken: |
| 806 | if hasattr(errtoken,"lineno"): lineno = lookahead.lineno |
| 807 | else: lineno = 0 |
| 808 | if lineno: |
| 809 | sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type)) |
| 810 | else: |
| 811 | sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type) |
| 812 | else: |
| 813 | sys.stderr.write("yacc: Parse error in input. EOF\n") |
| 814 | return |
| 815 | |
| 816 | else: |
| 817 | errorcount = error_count |
| 818 | |
| 819 | # case 1: the statestack only has 1 entry on it. If we're in this state, the |
| 820 | # entire parse has been rolled back and we're completely hosed. The token is |
| 821 | # discarded and we just keep going. |
| 822 | |
| 823 | if len(statestack) <= 1 and lookahead.type != '$end': |
| 824 | lookahead = None |
| 825 | errtoken = None |
| 826 | state = 0 |
| 827 | # Nuke the pushback stack |
| 828 | del lookaheadstack[:] |
| 829 | continue |
| 830 | |
| 831 | # case 2: the statestack has a couple of entries on it, but we're |
| 832 | # at the end of the file. nuke the top entry and generate an error token |
| 833 | |
| 834 | # Start nuking entries on the stack |
| 835 | if lookahead.type == '$end': |
| 836 | # Whoa. We're really hosed here. Bail out |
| 837 | return |
| 838 | |
| 839 | if lookahead.type != 'error': |
| 840 | sym = symstack[-1] |
| 841 | if sym.type == 'error': |
| 842 | # Hmmm. Error is on top of stack, we'll just nuke input |
| 843 | # symbol and continue |
| 844 | lookahead = None |
| 845 | continue |
| 846 | t = YaccSymbol() |
| 847 | t.type = 'error' |
| 848 | if hasattr(lookahead,"lineno"): |
| 849 | t.lineno = lookahead.lineno |
| 850 | t.value = lookahead |
| 851 | lookaheadstack.append(lookahead) |
| 852 | lookahead = t |
| 853 | else: |
| 854 | symstack.pop() |
| 855 | statestack.pop() |
| 856 | state = statestack[-1] # Potential bug fix |
| 857 | |
| 858 | continue |
| 859 | |
| 860 | # Call an error function here |
| 861 | raise RuntimeError("yacc: internal parser error!!!\n") |
| 862 | |
| 863 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 864 | # parseopt_notrack(). |
| 865 | # |
| 866 | # Optimized version of parseopt() with line number tracking removed. |
| 867 | # DO NOT EDIT THIS CODE DIRECTLY. Copy the optimized version and remove |
| 868 | # code in the #--! TRACKING sections |
| 869 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 870 | |
| 871 | def parseopt_notrack(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None): |
| 872 | lookahead = None # Current lookahead symbol |
| 873 | lookaheadstack = [ ] # Stack of lookahead symbols |
| 874 | actions = self.action # Local reference to action table (to avoid lookup on self.) |
| 875 | goto = self.goto # Local reference to goto table (to avoid lookup on self.) |
| 876 | prod = self.productions # Local reference to production list (to avoid lookup on self.) |
| 877 | pslice = YaccProduction(None) # Production object passed to grammar rules |
| 878 | errorcount = 0 # Used during error recovery |
| 879 | |
| 880 | # If no lexer was given, we will try to use the lex module |
| 881 | if not lexer: |
| 882 | lex = load_ply_lex() |
| 883 | lexer = lex.lexer |
| 884 | |
| 885 | # Set up the lexer and parser objects on pslice |
| 886 | pslice.lexer = lexer |
| 887 | pslice.parser = self |
| 888 | |
| 889 | # If input was supplied, pass to lexer |
| 890 | if input is not None: |
| 891 | lexer.input(input) |
| 892 | |
| 893 | if tokenfunc is None: |
| 894 | # Tokenize function |
| 895 | get_token = lexer.token |
| 896 | else: |
| 897 | get_token = tokenfunc |
| 898 | |
| 899 | # Set up the state and symbol stacks |
| 900 | |
| 901 | statestack = [ ] # Stack of parsing states |
| 902 | self.statestack = statestack |
| 903 | symstack = [ ] # Stack of grammar symbols |
| 904 | self.symstack = symstack |
| 905 | |
| 906 | pslice.stack = symstack # Put in the production |
| 907 | errtoken = None # Err token |
| 908 | |
| 909 | # The start state is assumed to be (0,$end) |
| 910 | |
| 911 | statestack.append(0) |
| 912 | sym = YaccSymbol() |
| 913 | sym.type = '$end' |
| 914 | symstack.append(sym) |
| 915 | state = 0 |
| 916 | while 1: |
| 917 | # Get the next symbol on the input. If a lookahead symbol |
| 918 | # is already set, we just use that. Otherwise, we'll pull |
| 919 | # the next token off of the lookaheadstack or from the lexer |
| 920 | |
| 921 | if not lookahead: |
| 922 | if not lookaheadstack: |
| 923 | lookahead = get_token() # Get the next token |
| 924 | else: |
| 925 | lookahead = lookaheadstack.pop() |
| 926 | if not lookahead: |
| 927 | lookahead = YaccSymbol() |
| 928 | lookahead.type = '$end' |
| 929 | |
| 930 | # Check the action table |
| 931 | ltype = lookahead.type |
| 932 | t = actions[state].get(ltype) |
| 933 | |
| 934 | if t is not None: |
| 935 | if t > 0: |
| 936 | # shift a symbol on the stack |
| 937 | statestack.append(t) |
| 938 | state = t |
| 939 | |
| 940 | symstack.append(lookahead) |
| 941 | lookahead = None |
| 942 | |
| 943 | # Decrease error count on successful shift |
| 944 | if errorcount: errorcount -=1 |
| 945 | continue |
| 946 | |
| 947 | if t < 0: |
| 948 | # reduce a symbol on the stack, emit a production |
| 949 | p = prod[-t] |
| 950 | pname = p.name |
| 951 | plen = p.len |
| 952 | |
| 953 | # Get production function |
| 954 | sym = YaccSymbol() |
| 955 | sym.type = pname # Production name |
| 956 | sym.value = None |
| 957 | |
| 958 | if plen: |
| 959 | targ = symstack[-plen-1:] |
| 960 | targ[0] = sym |
| 961 | |
| 962 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 963 | # The code enclosed in this section is duplicated |
| 964 | # below as a performance optimization. Make sure |
| 965 | # changes get made in both locations. |
| 966 | |
| 967 | pslice.slice = targ |
| 968 | |
| 969 | try: |
| 970 | # Call the grammar rule with our special slice object |
| 971 | del symstack[-plen:] |
| 972 | del statestack[-plen:] |
| 973 | p.callable(pslice) |
| 974 | symstack.append(sym) |
| 975 | state = goto[statestack[-1]][pname] |
| 976 | statestack.append(state) |
| 977 | except SyntaxError: |
| 978 | # If an error was set. Enter error recovery state |
| 979 | lookaheadstack.append(lookahead) |
| 980 | symstack.pop() |
| 981 | statestack.pop() |
| 982 | state = statestack[-1] |
| 983 | sym.type = 'error' |
| 984 | lookahead = sym |
| 985 | errorcount = error_count |
| 986 | self.errorok = 0 |
| 987 | continue |
| 988 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 989 | |
| 990 | else: |
| 991 | |
| 992 | targ = [ sym ] |
| 993 | |
| 994 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 995 | # The code enclosed in this section is duplicated |
| 996 | # above as a performance optimization. Make sure |
| 997 | # changes get made in both locations. |
| 998 | |
| 999 | pslice.slice = targ |
| 1000 | |
| 1001 | try: |
| 1002 | # Call the grammar rule with our special slice object |
| 1003 | p.callable(pslice) |
| 1004 | symstack.append(sym) |
| 1005 | state = goto[statestack[-1]][pname] |
| 1006 | statestack.append(state) |
| 1007 | except SyntaxError: |
| 1008 | # If an error was set. Enter error recovery state |
| 1009 | lookaheadstack.append(lookahead) |
| 1010 | symstack.pop() |
| 1011 | statestack.pop() |
| 1012 | state = statestack[-1] |
| 1013 | sym.type = 'error' |
| 1014 | lookahead = sym |
| 1015 | errorcount = error_count |
| 1016 | self.errorok = 0 |
| 1017 | continue |
| 1018 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 1019 | |
| 1020 | if t == 0: |
| 1021 | n = symstack[-1] |
| 1022 | return getattr(n,"value",None) |
| 1023 | |
Andrew Geissler | 82c905d | 2020-04-13 13:39:40 -0500 | [diff] [blame^] | 1024 | if t is None: |
Patrick Williams | c124f4f | 2015-09-15 14:41:29 -0500 | [diff] [blame] | 1025 | |
| 1026 | # We have some kind of parsing error here. To handle |
| 1027 | # this, we are going to push the current token onto |
| 1028 | # the tokenstack and replace it with an 'error' token. |
| 1029 | # If there are any synchronization rules, they may |
| 1030 | # catch it. |
| 1031 | # |
| 1032 | # In addition to pushing the error token, we call call |
| 1033 | # the user defined p_error() function if this is the |
| 1034 | # first syntax error. This function is only called if |
| 1035 | # errorcount == 0. |
| 1036 | if errorcount == 0 or self.errorok: |
| 1037 | errorcount = error_count |
| 1038 | self.errorok = 0 |
| 1039 | errtoken = lookahead |
| 1040 | if errtoken.type == '$end': |
| 1041 | errtoken = None # End of file! |
| 1042 | if self.errorfunc: |
| 1043 | global errok,token,restart |
| 1044 | errok = self.errok # Set some special functions available in error recovery |
| 1045 | token = get_token |
| 1046 | restart = self.restart |
| 1047 | if errtoken and not hasattr(errtoken,'lexer'): |
| 1048 | errtoken.lexer = lexer |
| 1049 | tok = self.errorfunc(errtoken) |
| 1050 | del errok, token, restart # Delete special functions |
| 1051 | |
| 1052 | if self.errorok: |
| 1053 | # User must have done some kind of panic |
| 1054 | # mode recovery on their own. The |
| 1055 | # returned token is the next lookahead |
| 1056 | lookahead = tok |
| 1057 | errtoken = None |
| 1058 | continue |
| 1059 | else: |
| 1060 | if errtoken: |
| 1061 | if hasattr(errtoken,"lineno"): lineno = lookahead.lineno |
| 1062 | else: lineno = 0 |
| 1063 | if lineno: |
| 1064 | sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type)) |
| 1065 | else: |
| 1066 | sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type) |
| 1067 | else: |
| 1068 | sys.stderr.write("yacc: Parse error in input. EOF\n") |
| 1069 | return |
| 1070 | |
| 1071 | else: |
| 1072 | errorcount = error_count |
| 1073 | |
| 1074 | # case 1: the statestack only has 1 entry on it. If we're in this state, the |
| 1075 | # entire parse has been rolled back and we're completely hosed. The token is |
| 1076 | # discarded and we just keep going. |
| 1077 | |
| 1078 | if len(statestack) <= 1 and lookahead.type != '$end': |
| 1079 | lookahead = None |
| 1080 | errtoken = None |
| 1081 | state = 0 |
| 1082 | # Nuke the pushback stack |
| 1083 | del lookaheadstack[:] |
| 1084 | continue |
| 1085 | |
| 1086 | # case 2: the statestack has a couple of entries on it, but we're |
| 1087 | # at the end of the file. nuke the top entry and generate an error token |
| 1088 | |
| 1089 | # Start nuking entries on the stack |
| 1090 | if lookahead.type == '$end': |
| 1091 | # Whoa. We're really hosed here. Bail out |
| 1092 | return |
| 1093 | |
| 1094 | if lookahead.type != 'error': |
| 1095 | sym = symstack[-1] |
| 1096 | if sym.type == 'error': |
| 1097 | # Hmmm. Error is on top of stack, we'll just nuke input |
| 1098 | # symbol and continue |
| 1099 | lookahead = None |
| 1100 | continue |
| 1101 | t = YaccSymbol() |
| 1102 | t.type = 'error' |
| 1103 | if hasattr(lookahead,"lineno"): |
| 1104 | t.lineno = lookahead.lineno |
| 1105 | t.value = lookahead |
| 1106 | lookaheadstack.append(lookahead) |
| 1107 | lookahead = t |
| 1108 | else: |
| 1109 | symstack.pop() |
| 1110 | statestack.pop() |
| 1111 | state = statestack[-1] # Potential bug fix |
| 1112 | |
| 1113 | continue |
| 1114 | |
| 1115 | # Call an error function here |
| 1116 | raise RuntimeError("yacc: internal parser error!!!\n") |
| 1117 | |
| 1118 | # ----------------------------------------------------------------------------- |
| 1119 | # === Grammar Representation === |
| 1120 | # |
| 1121 | # The following functions, classes, and variables are used to represent and |
| 1122 | # manipulate the rules that make up a grammar. |
| 1123 | # ----------------------------------------------------------------------------- |
| 1124 | |
| 1125 | import re |
| 1126 | |
| 1127 | # regex matching identifiers |
| 1128 | _is_identifier = re.compile(r'^[a-zA-Z0-9_-]+$') |
| 1129 | |
| 1130 | # ----------------------------------------------------------------------------- |
| 1131 | # class Production: |
| 1132 | # |
| 1133 | # This class stores the raw information about a single production or grammar rule. |
| 1134 | # A grammar rule refers to a specification such as this: |
| 1135 | # |
| 1136 | # expr : expr PLUS term |
| 1137 | # |
| 1138 | # Here are the basic attributes defined on all productions |
| 1139 | # |
| 1140 | # name - Name of the production. For example 'expr' |
| 1141 | # prod - A list of symbols on the right side ['expr','PLUS','term'] |
| 1142 | # prec - Production precedence level |
| 1143 | # number - Production number. |
| 1144 | # func - Function that executes on reduce |
| 1145 | # file - File where production function is defined |
| 1146 | # lineno - Line number where production function is defined |
| 1147 | # |
| 1148 | # The following attributes are defined or optional. |
| 1149 | # |
| 1150 | # len - Length of the production (number of symbols on right hand side) |
| 1151 | # usyms - Set of unique symbols found in the production |
| 1152 | # ----------------------------------------------------------------------------- |
| 1153 | |
| 1154 | class Production(object): |
| 1155 | reduced = 0 |
| 1156 | def __init__(self,number,name,prod,precedence=('right',0),func=None,file='',line=0): |
| 1157 | self.name = name |
| 1158 | self.prod = tuple(prod) |
| 1159 | self.number = number |
| 1160 | self.func = func |
| 1161 | self.callable = None |
| 1162 | self.file = file |
| 1163 | self.line = line |
| 1164 | self.prec = precedence |
| 1165 | |
| 1166 | # Internal settings used during table construction |
| 1167 | |
| 1168 | self.len = len(self.prod) # Length of the production |
| 1169 | |
| 1170 | # Create a list of unique production symbols used in the production |
| 1171 | self.usyms = [ ] |
| 1172 | for s in self.prod: |
| 1173 | if s not in self.usyms: |
| 1174 | self.usyms.append(s) |
| 1175 | |
| 1176 | # List of all LR items for the production |
| 1177 | self.lr_items = [] |
| 1178 | self.lr_next = None |
| 1179 | |
| 1180 | # Create a string representation |
| 1181 | if self.prod: |
| 1182 | self.str = "%s -> %s" % (self.name," ".join(self.prod)) |
| 1183 | else: |
| 1184 | self.str = "%s -> <empty>" % self.name |
| 1185 | |
| 1186 | def __str__(self): |
| 1187 | return self.str |
| 1188 | |
| 1189 | def __repr__(self): |
| 1190 | return "Production("+str(self)+")" |
| 1191 | |
| 1192 | def __len__(self): |
| 1193 | return len(self.prod) |
| 1194 | |
| 1195 | def __nonzero__(self): |
| 1196 | return 1 |
| 1197 | |
| 1198 | def __getitem__(self,index): |
| 1199 | return self.prod[index] |
| 1200 | |
| 1201 | # Return the nth lr_item from the production (or None if at the end) |
| 1202 | def lr_item(self,n): |
| 1203 | if n > len(self.prod): return None |
| 1204 | p = LRItem(self,n) |
| 1205 | |
| 1206 | # Precompute the list of productions immediately following. Hack. Remove later |
| 1207 | try: |
| 1208 | p.lr_after = Prodnames[p.prod[n+1]] |
| 1209 | except (IndexError,KeyError): |
| 1210 | p.lr_after = [] |
| 1211 | try: |
| 1212 | p.lr_before = p.prod[n-1] |
| 1213 | except IndexError: |
| 1214 | p.lr_before = None |
| 1215 | |
| 1216 | return p |
| 1217 | |
| 1218 | # Bind the production function name to a callable |
| 1219 | def bind(self,pdict): |
| 1220 | if self.func: |
| 1221 | self.callable = pdict[self.func] |
| 1222 | |
| 1223 | # This class serves as a minimal standin for Production objects when |
| 1224 | # reading table data from files. It only contains information |
| 1225 | # actually used by the LR parsing engine, plus some additional |
| 1226 | # debugging information. |
| 1227 | class MiniProduction(object): |
| 1228 | def __init__(self,str,name,len,func,file,line): |
| 1229 | self.name = name |
| 1230 | self.len = len |
| 1231 | self.func = func |
| 1232 | self.callable = None |
| 1233 | self.file = file |
| 1234 | self.line = line |
| 1235 | self.str = str |
| 1236 | def __str__(self): |
| 1237 | return self.str |
| 1238 | def __repr__(self): |
| 1239 | return "MiniProduction(%s)" % self.str |
| 1240 | |
| 1241 | # Bind the production function name to a callable |
| 1242 | def bind(self,pdict): |
| 1243 | if self.func: |
| 1244 | self.callable = pdict[self.func] |
| 1245 | |
| 1246 | |
| 1247 | # ----------------------------------------------------------------------------- |
| 1248 | # class LRItem |
| 1249 | # |
| 1250 | # This class represents a specific stage of parsing a production rule. For |
| 1251 | # example: |
| 1252 | # |
| 1253 | # expr : expr . PLUS term |
| 1254 | # |
| 1255 | # In the above, the "." represents the current location of the parse. Here |
| 1256 | # basic attributes: |
| 1257 | # |
| 1258 | # name - Name of the production. For example 'expr' |
| 1259 | # prod - A list of symbols on the right side ['expr','.', 'PLUS','term'] |
| 1260 | # number - Production number. |
| 1261 | # |
| 1262 | # lr_next Next LR item. Example, if we are ' expr -> expr . PLUS term' |
| 1263 | # then lr_next refers to 'expr -> expr PLUS . term' |
| 1264 | # lr_index - LR item index (location of the ".") in the prod list. |
| 1265 | # lookaheads - LALR lookahead symbols for this item |
| 1266 | # len - Length of the production (number of symbols on right hand side) |
| 1267 | # lr_after - List of all productions that immediately follow |
| 1268 | # lr_before - Grammar symbol immediately before |
| 1269 | # ----------------------------------------------------------------------------- |
| 1270 | |
| 1271 | class LRItem(object): |
| 1272 | def __init__(self,p,n): |
| 1273 | self.name = p.name |
| 1274 | self.prod = list(p.prod) |
| 1275 | self.number = p.number |
| 1276 | self.lr_index = n |
| 1277 | self.lookaheads = { } |
| 1278 | self.prod.insert(n,".") |
| 1279 | self.prod = tuple(self.prod) |
| 1280 | self.len = len(self.prod) |
| 1281 | self.usyms = p.usyms |
| 1282 | |
| 1283 | def __str__(self): |
| 1284 | if self.prod: |
| 1285 | s = "%s -> %s" % (self.name," ".join(self.prod)) |
| 1286 | else: |
| 1287 | s = "%s -> <empty>" % self.name |
| 1288 | return s |
| 1289 | |
| 1290 | def __repr__(self): |
| 1291 | return "LRItem("+str(self)+")" |
| 1292 | |
| 1293 | # ----------------------------------------------------------------------------- |
| 1294 | # rightmost_terminal() |
| 1295 | # |
| 1296 | # Return the rightmost terminal from a list of symbols. Used in add_production() |
| 1297 | # ----------------------------------------------------------------------------- |
| 1298 | def rightmost_terminal(symbols, terminals): |
| 1299 | i = len(symbols) - 1 |
| 1300 | while i >= 0: |
| 1301 | if symbols[i] in terminals: |
| 1302 | return symbols[i] |
| 1303 | i -= 1 |
| 1304 | return None |
| 1305 | |
| 1306 | # ----------------------------------------------------------------------------- |
| 1307 | # === GRAMMAR CLASS === |
| 1308 | # |
| 1309 | # The following class represents the contents of the specified grammar along |
| 1310 | # with various computed properties such as first sets, follow sets, LR items, etc. |
| 1311 | # This data is used for critical parts of the table generation process later. |
| 1312 | # ----------------------------------------------------------------------------- |
| 1313 | |
| 1314 | class GrammarError(YaccError): pass |
| 1315 | |
| 1316 | class Grammar(object): |
| 1317 | def __init__(self,terminals): |
| 1318 | self.Productions = [None] # A list of all of the productions. The first |
| 1319 | # entry is always reserved for the purpose of |
| 1320 | # building an augmented grammar |
| 1321 | |
| 1322 | self.Prodnames = { } # A dictionary mapping the names of nonterminals to a list of all |
| 1323 | # productions of that nonterminal. |
| 1324 | |
| 1325 | self.Prodmap = { } # A dictionary that is only used to detect duplicate |
| 1326 | # productions. |
| 1327 | |
| 1328 | self.Terminals = { } # A dictionary mapping the names of terminal symbols to a |
| 1329 | # list of the rules where they are used. |
| 1330 | |
| 1331 | for term in terminals: |
| 1332 | self.Terminals[term] = [] |
| 1333 | |
| 1334 | self.Terminals['error'] = [] |
| 1335 | |
| 1336 | self.Nonterminals = { } # A dictionary mapping names of nonterminals to a list |
| 1337 | # of rule numbers where they are used. |
| 1338 | |
| 1339 | self.First = { } # A dictionary of precomputed FIRST(x) symbols |
| 1340 | |
| 1341 | self.Follow = { } # A dictionary of precomputed FOLLOW(x) symbols |
| 1342 | |
| 1343 | self.Precedence = { } # Precedence rules for each terminal. Contains tuples of the |
| 1344 | # form ('right',level) or ('nonassoc', level) or ('left',level) |
| 1345 | |
| 1346 | self.UsedPrecedence = { } # Precedence rules that were actually used by the grammer. |
| 1347 | # This is only used to provide error checking and to generate |
| 1348 | # a warning about unused precedence rules. |
| 1349 | |
| 1350 | self.Start = None # Starting symbol for the grammar |
| 1351 | |
| 1352 | |
| 1353 | def __len__(self): |
| 1354 | return len(self.Productions) |
| 1355 | |
| 1356 | def __getitem__(self,index): |
| 1357 | return self.Productions[index] |
| 1358 | |
| 1359 | # ----------------------------------------------------------------------------- |
| 1360 | # set_precedence() |
| 1361 | # |
| 1362 | # Sets the precedence for a given terminal. assoc is the associativity such as |
| 1363 | # 'left','right', or 'nonassoc'. level is a numeric level. |
| 1364 | # |
| 1365 | # ----------------------------------------------------------------------------- |
| 1366 | |
| 1367 | def set_precedence(self,term,assoc,level): |
| 1368 | assert self.Productions == [None],"Must call set_precedence() before add_production()" |
| 1369 | if term in self.Precedence: |
| 1370 | raise GrammarError("Precedence already specified for terminal '%s'" % term) |
| 1371 | if assoc not in ['left','right','nonassoc']: |
| 1372 | raise GrammarError("Associativity must be one of 'left','right', or 'nonassoc'") |
| 1373 | self.Precedence[term] = (assoc,level) |
| 1374 | |
| 1375 | # ----------------------------------------------------------------------------- |
| 1376 | # add_production() |
| 1377 | # |
| 1378 | # Given an action function, this function assembles a production rule and |
| 1379 | # computes its precedence level. |
| 1380 | # |
| 1381 | # The production rule is supplied as a list of symbols. For example, |
| 1382 | # a rule such as 'expr : expr PLUS term' has a production name of 'expr' and |
| 1383 | # symbols ['expr','PLUS','term']. |
| 1384 | # |
| 1385 | # Precedence is determined by the precedence of the right-most non-terminal |
| 1386 | # or the precedence of a terminal specified by %prec. |
| 1387 | # |
| 1388 | # A variety of error checks are performed to make sure production symbols |
| 1389 | # are valid and that %prec is used correctly. |
| 1390 | # ----------------------------------------------------------------------------- |
| 1391 | |
| 1392 | def add_production(self,prodname,syms,func=None,file='',line=0): |
| 1393 | |
| 1394 | if prodname in self.Terminals: |
| 1395 | raise GrammarError("%s:%d: Illegal rule name '%s'. Already defined as a token" % (file,line,prodname)) |
| 1396 | if prodname == 'error': |
| 1397 | raise GrammarError("%s:%d: Illegal rule name '%s'. error is a reserved word" % (file,line,prodname)) |
| 1398 | if not _is_identifier.match(prodname): |
| 1399 | raise GrammarError("%s:%d: Illegal rule name '%s'" % (file,line,prodname)) |
| 1400 | |
| 1401 | # Look for literal tokens |
| 1402 | for n,s in enumerate(syms): |
| 1403 | if s[0] in "'\"": |
| 1404 | try: |
| 1405 | c = eval(s) |
| 1406 | if (len(c) > 1): |
| 1407 | raise GrammarError("%s:%d: Literal token %s in rule '%s' may only be a single character" % (file,line,s, prodname)) |
| 1408 | if not c in self.Terminals: |
| 1409 | self.Terminals[c] = [] |
| 1410 | syms[n] = c |
| 1411 | continue |
| 1412 | except SyntaxError: |
| 1413 | pass |
| 1414 | if not _is_identifier.match(s) and s != '%prec': |
| 1415 | raise GrammarError("%s:%d: Illegal name '%s' in rule '%s'" % (file,line,s, prodname)) |
| 1416 | |
| 1417 | # Determine the precedence level |
| 1418 | if '%prec' in syms: |
| 1419 | if syms[-1] == '%prec': |
| 1420 | raise GrammarError("%s:%d: Syntax error. Nothing follows %%prec" % (file,line)) |
| 1421 | if syms[-2] != '%prec': |
| 1422 | raise GrammarError("%s:%d: Syntax error. %%prec can only appear at the end of a grammar rule" % (file,line)) |
| 1423 | precname = syms[-1] |
| 1424 | prodprec = self.Precedence.get(precname,None) |
| 1425 | if not prodprec: |
| 1426 | raise GrammarError("%s:%d: Nothing known about the precedence of '%s'" % (file,line,precname)) |
| 1427 | else: |
| 1428 | self.UsedPrecedence[precname] = 1 |
| 1429 | del syms[-2:] # Drop %prec from the rule |
| 1430 | else: |
| 1431 | # If no %prec, precedence is determined by the rightmost terminal symbol |
| 1432 | precname = rightmost_terminal(syms,self.Terminals) |
| 1433 | prodprec = self.Precedence.get(precname,('right',0)) |
| 1434 | |
| 1435 | # See if the rule is already in the rulemap |
| 1436 | map = "%s -> %s" % (prodname,syms) |
| 1437 | if map in self.Prodmap: |
| 1438 | m = self.Prodmap[map] |
| 1439 | raise GrammarError("%s:%d: Duplicate rule %s. " % (file,line, m) + |
| 1440 | "Previous definition at %s:%d" % (m.file, m.line)) |
| 1441 | |
| 1442 | # From this point on, everything is valid. Create a new Production instance |
| 1443 | pnumber = len(self.Productions) |
| 1444 | if not prodname in self.Nonterminals: |
| 1445 | self.Nonterminals[prodname] = [ ] |
| 1446 | |
| 1447 | # Add the production number to Terminals and Nonterminals |
| 1448 | for t in syms: |
| 1449 | if t in self.Terminals: |
| 1450 | self.Terminals[t].append(pnumber) |
| 1451 | else: |
| 1452 | if not t in self.Nonterminals: |
| 1453 | self.Nonterminals[t] = [ ] |
| 1454 | self.Nonterminals[t].append(pnumber) |
| 1455 | |
| 1456 | # Create a production and add it to the list of productions |
| 1457 | p = Production(pnumber,prodname,syms,prodprec,func,file,line) |
| 1458 | self.Productions.append(p) |
| 1459 | self.Prodmap[map] = p |
| 1460 | |
| 1461 | # Add to the global productions list |
| 1462 | try: |
| 1463 | self.Prodnames[prodname].append(p) |
| 1464 | except KeyError: |
| 1465 | self.Prodnames[prodname] = [ p ] |
| 1466 | return 0 |
| 1467 | |
| 1468 | # ----------------------------------------------------------------------------- |
| 1469 | # set_start() |
| 1470 | # |
| 1471 | # Sets the starting symbol and creates the augmented grammar. Production |
| 1472 | # rule 0 is S' -> start where start is the start symbol. |
| 1473 | # ----------------------------------------------------------------------------- |
| 1474 | |
| 1475 | def set_start(self,start=None): |
| 1476 | if not start: |
| 1477 | start = self.Productions[1].name |
| 1478 | if start not in self.Nonterminals: |
| 1479 | raise GrammarError("start symbol %s undefined" % start) |
| 1480 | self.Productions[0] = Production(0,"S'",[start]) |
| 1481 | self.Nonterminals[start].append(0) |
| 1482 | self.Start = start |
| 1483 | |
| 1484 | # ----------------------------------------------------------------------------- |
| 1485 | # find_unreachable() |
| 1486 | # |
| 1487 | # Find all of the nonterminal symbols that can't be reached from the starting |
| 1488 | # symbol. Returns a list of nonterminals that can't be reached. |
| 1489 | # ----------------------------------------------------------------------------- |
| 1490 | |
| 1491 | def find_unreachable(self): |
| 1492 | |
| 1493 | # Mark all symbols that are reachable from a symbol s |
| 1494 | def mark_reachable_from(s): |
| 1495 | if reachable[s]: |
| 1496 | # We've already reached symbol s. |
| 1497 | return |
| 1498 | reachable[s] = 1 |
| 1499 | for p in self.Prodnames.get(s,[]): |
| 1500 | for r in p.prod: |
| 1501 | mark_reachable_from(r) |
| 1502 | |
| 1503 | reachable = { } |
| 1504 | for s in list(self.Terminals) + list(self.Nonterminals): |
| 1505 | reachable[s] = 0 |
| 1506 | |
| 1507 | mark_reachable_from( self.Productions[0].prod[0] ) |
| 1508 | |
| 1509 | return [s for s in list(self.Nonterminals) |
| 1510 | if not reachable[s]] |
| 1511 | |
| 1512 | # ----------------------------------------------------------------------------- |
| 1513 | # infinite_cycles() |
| 1514 | # |
| 1515 | # This function looks at the various parsing rules and tries to detect |
| 1516 | # infinite recursion cycles (grammar rules where there is no possible way |
| 1517 | # to derive a string of only terminals). |
| 1518 | # ----------------------------------------------------------------------------- |
| 1519 | |
| 1520 | def infinite_cycles(self): |
| 1521 | terminates = {} |
| 1522 | |
| 1523 | # Terminals: |
| 1524 | for t in self.Terminals: |
| 1525 | terminates[t] = 1 |
| 1526 | |
| 1527 | terminates['$end'] = 1 |
| 1528 | |
| 1529 | # Nonterminals: |
| 1530 | |
| 1531 | # Initialize to false: |
| 1532 | for n in self.Nonterminals: |
| 1533 | terminates[n] = 0 |
| 1534 | |
| 1535 | # Then propagate termination until no change: |
| 1536 | while 1: |
| 1537 | some_change = 0 |
| 1538 | for (n,pl) in self.Prodnames.items(): |
| 1539 | # Nonterminal n terminates iff any of its productions terminates. |
| 1540 | for p in pl: |
| 1541 | # Production p terminates iff all of its rhs symbols terminate. |
| 1542 | for s in p.prod: |
| 1543 | if not terminates[s]: |
| 1544 | # The symbol s does not terminate, |
| 1545 | # so production p does not terminate. |
| 1546 | p_terminates = 0 |
| 1547 | break |
| 1548 | else: |
| 1549 | # didn't break from the loop, |
| 1550 | # so every symbol s terminates |
| 1551 | # so production p terminates. |
| 1552 | p_terminates = 1 |
| 1553 | |
| 1554 | if p_terminates: |
| 1555 | # symbol n terminates! |
| 1556 | if not terminates[n]: |
| 1557 | terminates[n] = 1 |
| 1558 | some_change = 1 |
| 1559 | # Don't need to consider any more productions for this n. |
| 1560 | break |
| 1561 | |
| 1562 | if not some_change: |
| 1563 | break |
| 1564 | |
| 1565 | infinite = [] |
| 1566 | for (s,term) in terminates.items(): |
| 1567 | if not term: |
| 1568 | if not s in self.Prodnames and not s in self.Terminals and s != 'error': |
| 1569 | # s is used-but-not-defined, and we've already warned of that, |
| 1570 | # so it would be overkill to say that it's also non-terminating. |
| 1571 | pass |
| 1572 | else: |
| 1573 | infinite.append(s) |
| 1574 | |
| 1575 | return infinite |
| 1576 | |
| 1577 | |
| 1578 | # ----------------------------------------------------------------------------- |
| 1579 | # undefined_symbols() |
| 1580 | # |
| 1581 | # Find all symbols that were used the grammar, but not defined as tokens or |
| 1582 | # grammar rules. Returns a list of tuples (sym, prod) where sym in the symbol |
| 1583 | # and prod is the production where the symbol was used. |
| 1584 | # ----------------------------------------------------------------------------- |
| 1585 | def undefined_symbols(self): |
| 1586 | result = [] |
| 1587 | for p in self.Productions: |
| 1588 | if not p: continue |
| 1589 | |
| 1590 | for s in p.prod: |
| 1591 | if not s in self.Prodnames and not s in self.Terminals and s != 'error': |
| 1592 | result.append((s,p)) |
| 1593 | return result |
| 1594 | |
| 1595 | # ----------------------------------------------------------------------------- |
| 1596 | # unused_terminals() |
| 1597 | # |
| 1598 | # Find all terminals that were defined, but not used by the grammar. Returns |
| 1599 | # a list of all symbols. |
| 1600 | # ----------------------------------------------------------------------------- |
| 1601 | def unused_terminals(self): |
| 1602 | unused_tok = [] |
| 1603 | for s,v in self.Terminals.items(): |
| 1604 | if s != 'error' and not v: |
| 1605 | unused_tok.append(s) |
| 1606 | |
| 1607 | return unused_tok |
| 1608 | |
| 1609 | # ------------------------------------------------------------------------------ |
| 1610 | # unused_rules() |
| 1611 | # |
| 1612 | # Find all grammar rules that were defined, but not used (maybe not reachable) |
| 1613 | # Returns a list of productions. |
| 1614 | # ------------------------------------------------------------------------------ |
| 1615 | |
| 1616 | def unused_rules(self): |
| 1617 | unused_prod = [] |
| 1618 | for s,v in self.Nonterminals.items(): |
| 1619 | if not v: |
| 1620 | p = self.Prodnames[s][0] |
| 1621 | unused_prod.append(p) |
| 1622 | return unused_prod |
| 1623 | |
| 1624 | # ----------------------------------------------------------------------------- |
| 1625 | # unused_precedence() |
| 1626 | # |
| 1627 | # Returns a list of tuples (term,precedence) corresponding to precedence |
| 1628 | # rules that were never used by the grammar. term is the name of the terminal |
| 1629 | # on which precedence was applied and precedence is a string such as 'left' or |
| 1630 | # 'right' corresponding to the type of precedence. |
| 1631 | # ----------------------------------------------------------------------------- |
| 1632 | |
| 1633 | def unused_precedence(self): |
| 1634 | unused = [] |
| 1635 | for termname in self.Precedence: |
| 1636 | if not (termname in self.Terminals or termname in self.UsedPrecedence): |
| 1637 | unused.append((termname,self.Precedence[termname][0])) |
| 1638 | |
| 1639 | return unused |
| 1640 | |
| 1641 | # ------------------------------------------------------------------------- |
| 1642 | # _first() |
| 1643 | # |
| 1644 | # Compute the value of FIRST1(beta) where beta is a tuple of symbols. |
| 1645 | # |
| 1646 | # During execution of compute_first1, the result may be incomplete. |
| 1647 | # Afterward (e.g., when called from compute_follow()), it will be complete. |
| 1648 | # ------------------------------------------------------------------------- |
| 1649 | def _first(self,beta): |
| 1650 | |
| 1651 | # We are computing First(x1,x2,x3,...,xn) |
| 1652 | result = [ ] |
| 1653 | for x in beta: |
| 1654 | x_produces_empty = 0 |
| 1655 | |
| 1656 | # Add all the non-<empty> symbols of First[x] to the result. |
| 1657 | for f in self.First[x]: |
| 1658 | if f == '<empty>': |
| 1659 | x_produces_empty = 1 |
| 1660 | else: |
| 1661 | if f not in result: result.append(f) |
| 1662 | |
| 1663 | if x_produces_empty: |
| 1664 | # We have to consider the next x in beta, |
| 1665 | # i.e. stay in the loop. |
| 1666 | pass |
| 1667 | else: |
| 1668 | # We don't have to consider any further symbols in beta. |
| 1669 | break |
| 1670 | else: |
| 1671 | # There was no 'break' from the loop, |
| 1672 | # so x_produces_empty was true for all x in beta, |
| 1673 | # so beta produces empty as well. |
| 1674 | result.append('<empty>') |
| 1675 | |
| 1676 | return result |
| 1677 | |
| 1678 | # ------------------------------------------------------------------------- |
| 1679 | # compute_first() |
| 1680 | # |
| 1681 | # Compute the value of FIRST1(X) for all symbols |
| 1682 | # ------------------------------------------------------------------------- |
| 1683 | def compute_first(self): |
| 1684 | if self.First: |
| 1685 | return self.First |
| 1686 | |
| 1687 | # Terminals: |
| 1688 | for t in self.Terminals: |
| 1689 | self.First[t] = [t] |
| 1690 | |
| 1691 | self.First['$end'] = ['$end'] |
| 1692 | |
| 1693 | # Nonterminals: |
| 1694 | |
| 1695 | # Initialize to the empty set: |
| 1696 | for n in self.Nonterminals: |
| 1697 | self.First[n] = [] |
| 1698 | |
| 1699 | # Then propagate symbols until no change: |
| 1700 | while 1: |
| 1701 | some_change = 0 |
| 1702 | for n in self.Nonterminals: |
| 1703 | for p in self.Prodnames[n]: |
| 1704 | for f in self._first(p.prod): |
| 1705 | if f not in self.First[n]: |
| 1706 | self.First[n].append( f ) |
| 1707 | some_change = 1 |
| 1708 | if not some_change: |
| 1709 | break |
| 1710 | |
| 1711 | return self.First |
| 1712 | |
| 1713 | # --------------------------------------------------------------------- |
| 1714 | # compute_follow() |
| 1715 | # |
| 1716 | # Computes all of the follow sets for every non-terminal symbol. The |
| 1717 | # follow set is the set of all symbols that might follow a given |
| 1718 | # non-terminal. See the Dragon book, 2nd Ed. p. 189. |
| 1719 | # --------------------------------------------------------------------- |
| 1720 | def compute_follow(self,start=None): |
| 1721 | # If already computed, return the result |
| 1722 | if self.Follow: |
| 1723 | return self.Follow |
| 1724 | |
| 1725 | # If first sets not computed yet, do that first. |
| 1726 | if not self.First: |
| 1727 | self.compute_first() |
| 1728 | |
| 1729 | # Add '$end' to the follow list of the start symbol |
| 1730 | for k in self.Nonterminals: |
| 1731 | self.Follow[k] = [ ] |
| 1732 | |
| 1733 | if not start: |
| 1734 | start = self.Productions[1].name |
| 1735 | |
| 1736 | self.Follow[start] = [ '$end' ] |
| 1737 | |
| 1738 | while 1: |
| 1739 | didadd = 0 |
| 1740 | for p in self.Productions[1:]: |
| 1741 | # Here is the production set |
| 1742 | for i in range(len(p.prod)): |
| 1743 | B = p.prod[i] |
| 1744 | if B in self.Nonterminals: |
| 1745 | # Okay. We got a non-terminal in a production |
| 1746 | fst = self._first(p.prod[i+1:]) |
| 1747 | hasempty = 0 |
| 1748 | for f in fst: |
| 1749 | if f != '<empty>' and f not in self.Follow[B]: |
| 1750 | self.Follow[B].append(f) |
| 1751 | didadd = 1 |
| 1752 | if f == '<empty>': |
| 1753 | hasempty = 1 |
| 1754 | if hasempty or i == (len(p.prod)-1): |
| 1755 | # Add elements of follow(a) to follow(b) |
| 1756 | for f in self.Follow[p.name]: |
| 1757 | if f not in self.Follow[B]: |
| 1758 | self.Follow[B].append(f) |
| 1759 | didadd = 1 |
| 1760 | if not didadd: break |
| 1761 | return self.Follow |
| 1762 | |
| 1763 | |
| 1764 | # ----------------------------------------------------------------------------- |
| 1765 | # build_lritems() |
| 1766 | # |
| 1767 | # This function walks the list of productions and builds a complete set of the |
| 1768 | # LR items. The LR items are stored in two ways: First, they are uniquely |
| 1769 | # numbered and placed in the list _lritems. Second, a linked list of LR items |
| 1770 | # is built for each production. For example: |
| 1771 | # |
| 1772 | # E -> E PLUS E |
| 1773 | # |
| 1774 | # Creates the list |
| 1775 | # |
| 1776 | # [E -> . E PLUS E, E -> E . PLUS E, E -> E PLUS . E, E -> E PLUS E . ] |
| 1777 | # ----------------------------------------------------------------------------- |
| 1778 | |
| 1779 | def build_lritems(self): |
| 1780 | for p in self.Productions: |
| 1781 | lastlri = p |
| 1782 | i = 0 |
| 1783 | lr_items = [] |
| 1784 | while 1: |
| 1785 | if i > len(p): |
| 1786 | lri = None |
| 1787 | else: |
| 1788 | lri = LRItem(p,i) |
| 1789 | # Precompute the list of productions immediately following |
| 1790 | try: |
| 1791 | lri.lr_after = self.Prodnames[lri.prod[i+1]] |
| 1792 | except (IndexError,KeyError): |
| 1793 | lri.lr_after = [] |
| 1794 | try: |
| 1795 | lri.lr_before = lri.prod[i-1] |
| 1796 | except IndexError: |
| 1797 | lri.lr_before = None |
| 1798 | |
| 1799 | lastlri.lr_next = lri |
| 1800 | if not lri: break |
| 1801 | lr_items.append(lri) |
| 1802 | lastlri = lri |
| 1803 | i += 1 |
| 1804 | p.lr_items = lr_items |
| 1805 | |
| 1806 | # ----------------------------------------------------------------------------- |
| 1807 | # == Class LRTable == |
| 1808 | # |
| 1809 | # This basic class represents a basic table of LR parsing information. |
| 1810 | # Methods for generating the tables are not defined here. They are defined |
| 1811 | # in the derived class LRGeneratedTable. |
| 1812 | # ----------------------------------------------------------------------------- |
| 1813 | |
| 1814 | class VersionError(YaccError): pass |
| 1815 | |
| 1816 | class LRTable(object): |
| 1817 | def __init__(self): |
| 1818 | self.lr_action = None |
| 1819 | self.lr_goto = None |
| 1820 | self.lr_productions = None |
| 1821 | self.lr_method = None |
| 1822 | |
| 1823 | def read_table(self,module): |
| 1824 | if isinstance(module,types.ModuleType): |
| 1825 | parsetab = module |
| 1826 | else: |
| 1827 | if sys.version_info[0] < 3: |
| 1828 | exec("import %s as parsetab" % module) |
| 1829 | else: |
| 1830 | env = { } |
| 1831 | exec("import %s as parsetab" % module, env, env) |
| 1832 | parsetab = env['parsetab'] |
| 1833 | |
| 1834 | if parsetab._tabversion != __tabversion__: |
| 1835 | raise VersionError("yacc table file version is out of date") |
| 1836 | |
| 1837 | self.lr_action = parsetab._lr_action |
| 1838 | self.lr_goto = parsetab._lr_goto |
| 1839 | |
| 1840 | self.lr_productions = [] |
| 1841 | for p in parsetab._lr_productions: |
| 1842 | self.lr_productions.append(MiniProduction(*p)) |
| 1843 | |
| 1844 | self.lr_method = parsetab._lr_method |
| 1845 | return parsetab._lr_signature |
| 1846 | |
| 1847 | def read_pickle(self,filename): |
| 1848 | try: |
| 1849 | import cPickle as pickle |
| 1850 | except ImportError: |
| 1851 | import pickle |
| 1852 | |
| 1853 | in_f = open(filename,"rb") |
| 1854 | |
| 1855 | tabversion = pickle.load(in_f) |
| 1856 | if tabversion != __tabversion__: |
| 1857 | raise VersionError("yacc table file version is out of date") |
| 1858 | self.lr_method = pickle.load(in_f) |
| 1859 | signature = pickle.load(in_f) |
| 1860 | self.lr_action = pickle.load(in_f) |
| 1861 | self.lr_goto = pickle.load(in_f) |
| 1862 | productions = pickle.load(in_f) |
| 1863 | |
| 1864 | self.lr_productions = [] |
| 1865 | for p in productions: |
| 1866 | self.lr_productions.append(MiniProduction(*p)) |
| 1867 | |
| 1868 | in_f.close() |
| 1869 | return signature |
| 1870 | |
| 1871 | # Bind all production function names to callable objects in pdict |
| 1872 | def bind_callables(self,pdict): |
| 1873 | for p in self.lr_productions: |
| 1874 | p.bind(pdict) |
| 1875 | |
| 1876 | # ----------------------------------------------------------------------------- |
| 1877 | # === LR Generator === |
| 1878 | # |
| 1879 | # The following classes and functions are used to generate LR parsing tables on |
| 1880 | # a grammar. |
| 1881 | # ----------------------------------------------------------------------------- |
| 1882 | |
| 1883 | # ----------------------------------------------------------------------------- |
| 1884 | # digraph() |
| 1885 | # traverse() |
| 1886 | # |
| 1887 | # The following two functions are used to compute set valued functions |
| 1888 | # of the form: |
| 1889 | # |
| 1890 | # F(x) = F'(x) U U{F(y) | x R y} |
| 1891 | # |
| 1892 | # This is used to compute the values of Read() sets as well as FOLLOW sets |
| 1893 | # in LALR(1) generation. |
| 1894 | # |
| 1895 | # Inputs: X - An input set |
| 1896 | # R - A relation |
| 1897 | # FP - Set-valued function |
| 1898 | # ------------------------------------------------------------------------------ |
| 1899 | |
| 1900 | def digraph(X,R,FP): |
| 1901 | N = { } |
| 1902 | for x in X: |
| 1903 | N[x] = 0 |
| 1904 | stack = [] |
| 1905 | F = { } |
| 1906 | for x in X: |
| 1907 | if N[x] == 0: traverse(x,N,stack,F,X,R,FP) |
| 1908 | return F |
| 1909 | |
| 1910 | def traverse(x,N,stack,F,X,R,FP): |
| 1911 | stack.append(x) |
| 1912 | d = len(stack) |
| 1913 | N[x] = d |
| 1914 | F[x] = FP(x) # F(X) <- F'(x) |
| 1915 | |
| 1916 | rel = R(x) # Get y's related to x |
| 1917 | for y in rel: |
| 1918 | if N[y] == 0: |
| 1919 | traverse(y,N,stack,F,X,R,FP) |
| 1920 | N[x] = min(N[x],N[y]) |
| 1921 | for a in F.get(y,[]): |
| 1922 | if a not in F[x]: F[x].append(a) |
| 1923 | if N[x] == d: |
| 1924 | N[stack[-1]] = MAXINT |
| 1925 | F[stack[-1]] = F[x] |
| 1926 | element = stack.pop() |
| 1927 | while element != x: |
| 1928 | N[stack[-1]] = MAXINT |
| 1929 | F[stack[-1]] = F[x] |
| 1930 | element = stack.pop() |
| 1931 | |
| 1932 | class LALRError(YaccError): pass |
| 1933 | |
| 1934 | # ----------------------------------------------------------------------------- |
| 1935 | # == LRGeneratedTable == |
| 1936 | # |
| 1937 | # This class implements the LR table generation algorithm. There are no |
| 1938 | # public methods except for write() |
| 1939 | # ----------------------------------------------------------------------------- |
| 1940 | |
| 1941 | class LRGeneratedTable(LRTable): |
| 1942 | def __init__(self,grammar,method='LALR',log=None): |
| 1943 | if method not in ['SLR','LALR']: |
| 1944 | raise LALRError("Unsupported method %s" % method) |
| 1945 | |
| 1946 | self.grammar = grammar |
| 1947 | self.lr_method = method |
| 1948 | |
| 1949 | # Set up the logger |
| 1950 | if not log: |
| 1951 | log = NullLogger() |
| 1952 | self.log = log |
| 1953 | |
| 1954 | # Internal attributes |
| 1955 | self.lr_action = {} # Action table |
| 1956 | self.lr_goto = {} # Goto table |
| 1957 | self.lr_productions = grammar.Productions # Copy of grammar Production array |
| 1958 | self.lr_goto_cache = {} # Cache of computed gotos |
| 1959 | self.lr0_cidhash = {} # Cache of closures |
| 1960 | |
| 1961 | self._add_count = 0 # Internal counter used to detect cycles |
| 1962 | |
| 1963 | # Diagonistic information filled in by the table generator |
| 1964 | self.sr_conflict = 0 |
| 1965 | self.rr_conflict = 0 |
| 1966 | self.conflicts = [] # List of conflicts |
| 1967 | |
| 1968 | self.sr_conflicts = [] |
| 1969 | self.rr_conflicts = [] |
| 1970 | |
| 1971 | # Build the tables |
| 1972 | self.grammar.build_lritems() |
| 1973 | self.grammar.compute_first() |
| 1974 | self.grammar.compute_follow() |
| 1975 | self.lr_parse_table() |
| 1976 | |
| 1977 | # Compute the LR(0) closure operation on I, where I is a set of LR(0) items. |
| 1978 | |
| 1979 | def lr0_closure(self,I): |
| 1980 | self._add_count += 1 |
| 1981 | |
| 1982 | # Add everything in I to J |
| 1983 | J = I[:] |
| 1984 | didadd = 1 |
| 1985 | while didadd: |
| 1986 | didadd = 0 |
| 1987 | for j in J: |
| 1988 | for x in j.lr_after: |
| 1989 | if getattr(x,"lr0_added",0) == self._add_count: continue |
| 1990 | # Add B --> .G to J |
| 1991 | J.append(x.lr_next) |
| 1992 | x.lr0_added = self._add_count |
| 1993 | didadd = 1 |
| 1994 | |
| 1995 | return J |
| 1996 | |
| 1997 | # Compute the LR(0) goto function goto(I,X) where I is a set |
| 1998 | # of LR(0) items and X is a grammar symbol. This function is written |
| 1999 | # in a way that guarantees uniqueness of the generated goto sets |
| 2000 | # (i.e. the same goto set will never be returned as two different Python |
| 2001 | # objects). With uniqueness, we can later do fast set comparisons using |
| 2002 | # id(obj) instead of element-wise comparison. |
| 2003 | |
| 2004 | def lr0_goto(self,I,x): |
| 2005 | # First we look for a previously cached entry |
| 2006 | g = self.lr_goto_cache.get((id(I),x),None) |
| 2007 | if g: return g |
| 2008 | |
| 2009 | # Now we generate the goto set in a way that guarantees uniqueness |
| 2010 | # of the result |
| 2011 | |
| 2012 | s = self.lr_goto_cache.get(x,None) |
| 2013 | if not s: |
| 2014 | s = { } |
| 2015 | self.lr_goto_cache[x] = s |
| 2016 | |
| 2017 | gs = [ ] |
| 2018 | for p in I: |
| 2019 | n = p.lr_next |
| 2020 | if n and n.lr_before == x: |
| 2021 | s1 = s.get(id(n),None) |
| 2022 | if not s1: |
| 2023 | s1 = { } |
| 2024 | s[id(n)] = s1 |
| 2025 | gs.append(n) |
| 2026 | s = s1 |
| 2027 | g = s.get('$end',None) |
| 2028 | if not g: |
| 2029 | if gs: |
| 2030 | g = self.lr0_closure(gs) |
| 2031 | s['$end'] = g |
| 2032 | else: |
| 2033 | s['$end'] = gs |
| 2034 | self.lr_goto_cache[(id(I),x)] = g |
| 2035 | return g |
| 2036 | |
| 2037 | # Compute the LR(0) sets of item function |
| 2038 | def lr0_items(self): |
| 2039 | |
| 2040 | C = [ self.lr0_closure([self.grammar.Productions[0].lr_next]) ] |
| 2041 | i = 0 |
| 2042 | for I in C: |
| 2043 | self.lr0_cidhash[id(I)] = i |
| 2044 | i += 1 |
| 2045 | |
| 2046 | # Loop over the items in C and each grammar symbols |
| 2047 | i = 0 |
| 2048 | while i < len(C): |
| 2049 | I = C[i] |
| 2050 | i += 1 |
| 2051 | |
| 2052 | # Collect all of the symbols that could possibly be in the goto(I,X) sets |
| 2053 | asyms = { } |
| 2054 | for ii in I: |
| 2055 | for s in ii.usyms: |
| 2056 | asyms[s] = None |
| 2057 | |
| 2058 | for x in asyms: |
| 2059 | g = self.lr0_goto(I,x) |
| 2060 | if not g: continue |
| 2061 | if id(g) in self.lr0_cidhash: continue |
| 2062 | self.lr0_cidhash[id(g)] = len(C) |
| 2063 | C.append(g) |
| 2064 | |
| 2065 | return C |
| 2066 | |
| 2067 | # ----------------------------------------------------------------------------- |
| 2068 | # ==== LALR(1) Parsing ==== |
| 2069 | # |
| 2070 | # LALR(1) parsing is almost exactly the same as SLR except that instead of |
| 2071 | # relying upon Follow() sets when performing reductions, a more selective |
| 2072 | # lookahead set that incorporates the state of the LR(0) machine is utilized. |
| 2073 | # Thus, we mainly just have to focus on calculating the lookahead sets. |
| 2074 | # |
| 2075 | # The method used here is due to DeRemer and Pennelo (1982). |
| 2076 | # |
| 2077 | # DeRemer, F. L., and T. J. Pennelo: "Efficient Computation of LALR(1) |
| 2078 | # Lookahead Sets", ACM Transactions on Programming Languages and Systems, |
| 2079 | # Vol. 4, No. 4, Oct. 1982, pp. 615-649 |
| 2080 | # |
| 2081 | # Further details can also be found in: |
| 2082 | # |
| 2083 | # J. Tremblay and P. Sorenson, "The Theory and Practice of Compiler Writing", |
| 2084 | # McGraw-Hill Book Company, (1985). |
| 2085 | # |
| 2086 | # ----------------------------------------------------------------------------- |
| 2087 | |
| 2088 | # ----------------------------------------------------------------------------- |
| 2089 | # compute_nullable_nonterminals() |
| 2090 | # |
| 2091 | # Creates a dictionary containing all of the non-terminals that might produce |
| 2092 | # an empty production. |
| 2093 | # ----------------------------------------------------------------------------- |
| 2094 | |
| 2095 | def compute_nullable_nonterminals(self): |
| 2096 | nullable = {} |
| 2097 | num_nullable = 0 |
| 2098 | while 1: |
| 2099 | for p in self.grammar.Productions[1:]: |
| 2100 | if p.len == 0: |
| 2101 | nullable[p.name] = 1 |
| 2102 | continue |
| 2103 | for t in p.prod: |
| 2104 | if not t in nullable: break |
| 2105 | else: |
| 2106 | nullable[p.name] = 1 |
| 2107 | if len(nullable) == num_nullable: break |
| 2108 | num_nullable = len(nullable) |
| 2109 | return nullable |
| 2110 | |
| 2111 | # ----------------------------------------------------------------------------- |
| 2112 | # find_nonterminal_trans(C) |
| 2113 | # |
| 2114 | # Given a set of LR(0) items, this functions finds all of the non-terminal |
| 2115 | # transitions. These are transitions in which a dot appears immediately before |
| 2116 | # a non-terminal. Returns a list of tuples of the form (state,N) where state |
| 2117 | # is the state number and N is the nonterminal symbol. |
| 2118 | # |
| 2119 | # The input C is the set of LR(0) items. |
| 2120 | # ----------------------------------------------------------------------------- |
| 2121 | |
| 2122 | def find_nonterminal_transitions(self,C): |
| 2123 | trans = [] |
| 2124 | for state in range(len(C)): |
| 2125 | for p in C[state]: |
| 2126 | if p.lr_index < p.len - 1: |
| 2127 | t = (state,p.prod[p.lr_index+1]) |
| 2128 | if t[1] in self.grammar.Nonterminals: |
| 2129 | if t not in trans: trans.append(t) |
| 2130 | state = state + 1 |
| 2131 | return trans |
| 2132 | |
| 2133 | # ----------------------------------------------------------------------------- |
| 2134 | # dr_relation() |
| 2135 | # |
| 2136 | # Computes the DR(p,A) relationships for non-terminal transitions. The input |
| 2137 | # is a tuple (state,N) where state is a number and N is a nonterminal symbol. |
| 2138 | # |
| 2139 | # Returns a list of terminals. |
| 2140 | # ----------------------------------------------------------------------------- |
| 2141 | |
| 2142 | def dr_relation(self,C,trans,nullable): |
| 2143 | dr_set = { } |
| 2144 | state,N = trans |
| 2145 | terms = [] |
| 2146 | |
| 2147 | g = self.lr0_goto(C[state],N) |
| 2148 | for p in g: |
| 2149 | if p.lr_index < p.len - 1: |
| 2150 | a = p.prod[p.lr_index+1] |
| 2151 | if a in self.grammar.Terminals: |
| 2152 | if a not in terms: terms.append(a) |
| 2153 | |
| 2154 | # This extra bit is to handle the start state |
| 2155 | if state == 0 and N == self.grammar.Productions[0].prod[0]: |
| 2156 | terms.append('$end') |
| 2157 | |
| 2158 | return terms |
| 2159 | |
| 2160 | # ----------------------------------------------------------------------------- |
| 2161 | # reads_relation() |
| 2162 | # |
| 2163 | # Computes the READS() relation (p,A) READS (t,C). |
| 2164 | # ----------------------------------------------------------------------------- |
| 2165 | |
| 2166 | def reads_relation(self,C, trans, empty): |
| 2167 | # Look for empty transitions |
| 2168 | rel = [] |
| 2169 | state, N = trans |
| 2170 | |
| 2171 | g = self.lr0_goto(C[state],N) |
| 2172 | j = self.lr0_cidhash.get(id(g),-1) |
| 2173 | for p in g: |
| 2174 | if p.lr_index < p.len - 1: |
| 2175 | a = p.prod[p.lr_index + 1] |
| 2176 | if a in empty: |
| 2177 | rel.append((j,a)) |
| 2178 | |
| 2179 | return rel |
| 2180 | |
| 2181 | # ----------------------------------------------------------------------------- |
| 2182 | # compute_lookback_includes() |
| 2183 | # |
| 2184 | # Determines the lookback and includes relations |
| 2185 | # |
| 2186 | # LOOKBACK: |
| 2187 | # |
| 2188 | # This relation is determined by running the LR(0) state machine forward. |
| 2189 | # For example, starting with a production "N : . A B C", we run it forward |
| 2190 | # to obtain "N : A B C ." We then build a relationship between this final |
| 2191 | # state and the starting state. These relationships are stored in a dictionary |
| 2192 | # lookdict. |
| 2193 | # |
| 2194 | # INCLUDES: |
| 2195 | # |
| 2196 | # Computes the INCLUDE() relation (p,A) INCLUDES (p',B). |
| 2197 | # |
| 2198 | # This relation is used to determine non-terminal transitions that occur |
| 2199 | # inside of other non-terminal transition states. (p,A) INCLUDES (p', B) |
| 2200 | # if the following holds: |
| 2201 | # |
| 2202 | # B -> LAT, where T -> epsilon and p' -L-> p |
| 2203 | # |
| 2204 | # L is essentially a prefix (which may be empty), T is a suffix that must be |
| 2205 | # able to derive an empty string. State p' must lead to state p with the string L. |
| 2206 | # |
| 2207 | # ----------------------------------------------------------------------------- |
| 2208 | |
| 2209 | def compute_lookback_includes(self,C,trans,nullable): |
| 2210 | |
| 2211 | lookdict = {} # Dictionary of lookback relations |
| 2212 | includedict = {} # Dictionary of include relations |
| 2213 | |
| 2214 | # Make a dictionary of non-terminal transitions |
| 2215 | dtrans = {} |
| 2216 | for t in trans: |
| 2217 | dtrans[t] = 1 |
| 2218 | |
| 2219 | # Loop over all transitions and compute lookbacks and includes |
| 2220 | for state,N in trans: |
| 2221 | lookb = [] |
| 2222 | includes = [] |
| 2223 | for p in C[state]: |
| 2224 | if p.name != N: continue |
| 2225 | |
| 2226 | # Okay, we have a name match. We now follow the production all the way |
| 2227 | # through the state machine until we get the . on the right hand side |
| 2228 | |
| 2229 | lr_index = p.lr_index |
| 2230 | j = state |
| 2231 | while lr_index < p.len - 1: |
| 2232 | lr_index = lr_index + 1 |
| 2233 | t = p.prod[lr_index] |
| 2234 | |
| 2235 | # Check to see if this symbol and state are a non-terminal transition |
| 2236 | if (j,t) in dtrans: |
| 2237 | # Yes. Okay, there is some chance that this is an includes relation |
| 2238 | # the only way to know for certain is whether the rest of the |
| 2239 | # production derives empty |
| 2240 | |
| 2241 | li = lr_index + 1 |
| 2242 | while li < p.len: |
| 2243 | if p.prod[li] in self.grammar.Terminals: break # No forget it |
| 2244 | if not p.prod[li] in nullable: break |
| 2245 | li = li + 1 |
| 2246 | else: |
| 2247 | # Appears to be a relation between (j,t) and (state,N) |
| 2248 | includes.append((j,t)) |
| 2249 | |
| 2250 | g = self.lr0_goto(C[j],t) # Go to next set |
| 2251 | j = self.lr0_cidhash.get(id(g),-1) # Go to next state |
| 2252 | |
| 2253 | # When we get here, j is the final state, now we have to locate the production |
| 2254 | for r in C[j]: |
| 2255 | if r.name != p.name: continue |
| 2256 | if r.len != p.len: continue |
| 2257 | i = 0 |
| 2258 | # This look is comparing a production ". A B C" with "A B C ." |
| 2259 | while i < r.lr_index: |
| 2260 | if r.prod[i] != p.prod[i+1]: break |
| 2261 | i = i + 1 |
| 2262 | else: |
| 2263 | lookb.append((j,r)) |
| 2264 | for i in includes: |
| 2265 | if not i in includedict: includedict[i] = [] |
| 2266 | includedict[i].append((state,N)) |
| 2267 | lookdict[(state,N)] = lookb |
| 2268 | |
| 2269 | return lookdict,includedict |
| 2270 | |
| 2271 | # ----------------------------------------------------------------------------- |
| 2272 | # compute_read_sets() |
| 2273 | # |
| 2274 | # Given a set of LR(0) items, this function computes the read sets. |
| 2275 | # |
| 2276 | # Inputs: C = Set of LR(0) items |
| 2277 | # ntrans = Set of nonterminal transitions |
| 2278 | # nullable = Set of empty transitions |
| 2279 | # |
| 2280 | # Returns a set containing the read sets |
| 2281 | # ----------------------------------------------------------------------------- |
| 2282 | |
| 2283 | def compute_read_sets(self,C, ntrans, nullable): |
| 2284 | FP = lambda x: self.dr_relation(C,x,nullable) |
| 2285 | R = lambda x: self.reads_relation(C,x,nullable) |
| 2286 | F = digraph(ntrans,R,FP) |
| 2287 | return F |
| 2288 | |
| 2289 | # ----------------------------------------------------------------------------- |
| 2290 | # compute_follow_sets() |
| 2291 | # |
| 2292 | # Given a set of LR(0) items, a set of non-terminal transitions, a readset, |
| 2293 | # and an include set, this function computes the follow sets |
| 2294 | # |
| 2295 | # Follow(p,A) = Read(p,A) U U {Follow(p',B) | (p,A) INCLUDES (p',B)} |
| 2296 | # |
| 2297 | # Inputs: |
| 2298 | # ntrans = Set of nonterminal transitions |
| 2299 | # readsets = Readset (previously computed) |
| 2300 | # inclsets = Include sets (previously computed) |
| 2301 | # |
| 2302 | # Returns a set containing the follow sets |
| 2303 | # ----------------------------------------------------------------------------- |
| 2304 | |
| 2305 | def compute_follow_sets(self,ntrans,readsets,inclsets): |
| 2306 | FP = lambda x: readsets[x] |
| 2307 | R = lambda x: inclsets.get(x,[]) |
| 2308 | F = digraph(ntrans,R,FP) |
| 2309 | return F |
| 2310 | |
| 2311 | # ----------------------------------------------------------------------------- |
| 2312 | # add_lookaheads() |
| 2313 | # |
| 2314 | # Attaches the lookahead symbols to grammar rules. |
| 2315 | # |
| 2316 | # Inputs: lookbacks - Set of lookback relations |
| 2317 | # followset - Computed follow set |
| 2318 | # |
| 2319 | # This function directly attaches the lookaheads to productions contained |
| 2320 | # in the lookbacks set |
| 2321 | # ----------------------------------------------------------------------------- |
| 2322 | |
| 2323 | def add_lookaheads(self,lookbacks,followset): |
| 2324 | for trans,lb in lookbacks.items(): |
| 2325 | # Loop over productions in lookback |
| 2326 | for state,p in lb: |
| 2327 | if not state in p.lookaheads: |
| 2328 | p.lookaheads[state] = [] |
| 2329 | f = followset.get(trans,[]) |
| 2330 | for a in f: |
| 2331 | if a not in p.lookaheads[state]: p.lookaheads[state].append(a) |
| 2332 | |
| 2333 | # ----------------------------------------------------------------------------- |
| 2334 | # add_lalr_lookaheads() |
| 2335 | # |
| 2336 | # This function does all of the work of adding lookahead information for use |
| 2337 | # with LALR parsing |
| 2338 | # ----------------------------------------------------------------------------- |
| 2339 | |
| 2340 | def add_lalr_lookaheads(self,C): |
| 2341 | # Determine all of the nullable nonterminals |
| 2342 | nullable = self.compute_nullable_nonterminals() |
| 2343 | |
| 2344 | # Find all non-terminal transitions |
| 2345 | trans = self.find_nonterminal_transitions(C) |
| 2346 | |
| 2347 | # Compute read sets |
| 2348 | readsets = self.compute_read_sets(C,trans,nullable) |
| 2349 | |
| 2350 | # Compute lookback/includes relations |
| 2351 | lookd, included = self.compute_lookback_includes(C,trans,nullable) |
| 2352 | |
| 2353 | # Compute LALR FOLLOW sets |
| 2354 | followsets = self.compute_follow_sets(trans,readsets,included) |
| 2355 | |
| 2356 | # Add all of the lookaheads |
| 2357 | self.add_lookaheads(lookd,followsets) |
| 2358 | |
| 2359 | # ----------------------------------------------------------------------------- |
| 2360 | # lr_parse_table() |
| 2361 | # |
| 2362 | # This function constructs the parse tables for SLR or LALR |
| 2363 | # ----------------------------------------------------------------------------- |
| 2364 | def lr_parse_table(self): |
| 2365 | Productions = self.grammar.Productions |
| 2366 | Precedence = self.grammar.Precedence |
| 2367 | goto = self.lr_goto # Goto array |
| 2368 | action = self.lr_action # Action array |
| 2369 | log = self.log # Logger for output |
| 2370 | |
| 2371 | actionp = { } # Action production array (temporary) |
| 2372 | |
| 2373 | log.info("Parsing method: %s", self.lr_method) |
| 2374 | |
| 2375 | # Step 1: Construct C = { I0, I1, ... IN}, collection of LR(0) items |
| 2376 | # This determines the number of states |
| 2377 | |
| 2378 | C = self.lr0_items() |
| 2379 | |
| 2380 | if self.lr_method == 'LALR': |
| 2381 | self.add_lalr_lookaheads(C) |
| 2382 | |
| 2383 | # Build the parser table, state by state |
| 2384 | st = 0 |
| 2385 | for I in C: |
| 2386 | # Loop over each production in I |
| 2387 | actlist = [ ] # List of actions |
| 2388 | st_action = { } |
| 2389 | st_actionp = { } |
| 2390 | st_goto = { } |
| 2391 | log.info("") |
| 2392 | log.info("state %d", st) |
| 2393 | log.info("") |
| 2394 | for p in I: |
| 2395 | log.info(" (%d) %s", p.number, str(p)) |
| 2396 | log.info("") |
| 2397 | |
| 2398 | for p in I: |
| 2399 | if p.len == p.lr_index + 1: |
| 2400 | if p.name == "S'": |
| 2401 | # Start symbol. Accept! |
| 2402 | st_action["$end"] = 0 |
| 2403 | st_actionp["$end"] = p |
| 2404 | else: |
| 2405 | # We are at the end of a production. Reduce! |
| 2406 | if self.lr_method == 'LALR': |
| 2407 | laheads = p.lookaheads[st] |
| 2408 | else: |
| 2409 | laheads = self.grammar.Follow[p.name] |
| 2410 | for a in laheads: |
| 2411 | actlist.append((a,p,"reduce using rule %d (%s)" % (p.number,p))) |
| 2412 | r = st_action.get(a,None) |
| 2413 | if r is not None: |
| 2414 | # Whoa. Have a shift/reduce or reduce/reduce conflict |
| 2415 | if r > 0: |
| 2416 | # Need to decide on shift or reduce here |
| 2417 | # By default we favor shifting. Need to add |
| 2418 | # some precedence rules here. |
| 2419 | sprec,slevel = Productions[st_actionp[a].number].prec |
| 2420 | rprec,rlevel = Precedence.get(a,('right',0)) |
| 2421 | if (slevel < rlevel) or ((slevel == rlevel) and (rprec == 'left')): |
| 2422 | # We really need to reduce here. |
| 2423 | st_action[a] = -p.number |
| 2424 | st_actionp[a] = p |
| 2425 | if not slevel and not rlevel: |
| 2426 | log.info(" ! shift/reduce conflict for %s resolved as reduce",a) |
| 2427 | self.sr_conflicts.append((st,a,'reduce')) |
| 2428 | Productions[p.number].reduced += 1 |
| 2429 | elif (slevel == rlevel) and (rprec == 'nonassoc'): |
| 2430 | st_action[a] = None |
| 2431 | else: |
| 2432 | # Hmmm. Guess we'll keep the shift |
| 2433 | if not rlevel: |
| 2434 | log.info(" ! shift/reduce conflict for %s resolved as shift",a) |
| 2435 | self.sr_conflicts.append((st,a,'shift')) |
| 2436 | elif r < 0: |
| 2437 | # Reduce/reduce conflict. In this case, we favor the rule |
| 2438 | # that was defined first in the grammar file |
| 2439 | oldp = Productions[-r] |
| 2440 | pp = Productions[p.number] |
| 2441 | if oldp.line > pp.line: |
| 2442 | st_action[a] = -p.number |
| 2443 | st_actionp[a] = p |
| 2444 | chosenp,rejectp = pp,oldp |
| 2445 | Productions[p.number].reduced += 1 |
| 2446 | Productions[oldp.number].reduced -= 1 |
| 2447 | else: |
| 2448 | chosenp,rejectp = oldp,pp |
| 2449 | self.rr_conflicts.append((st,chosenp,rejectp)) |
| 2450 | log.info(" ! reduce/reduce conflict for %s resolved using rule %d (%s)", a,st_actionp[a].number, st_actionp[a]) |
| 2451 | else: |
| 2452 | raise LALRError("Unknown conflict in state %d" % st) |
| 2453 | else: |
| 2454 | st_action[a] = -p.number |
| 2455 | st_actionp[a] = p |
| 2456 | Productions[p.number].reduced += 1 |
| 2457 | else: |
| 2458 | i = p.lr_index |
| 2459 | a = p.prod[i+1] # Get symbol right after the "." |
| 2460 | if a in self.grammar.Terminals: |
| 2461 | g = self.lr0_goto(I,a) |
| 2462 | j = self.lr0_cidhash.get(id(g),-1) |
| 2463 | if j >= 0: |
| 2464 | # We are in a shift state |
| 2465 | actlist.append((a,p,"shift and go to state %d" % j)) |
| 2466 | r = st_action.get(a,None) |
| 2467 | if r is not None: |
| 2468 | # Whoa have a shift/reduce or shift/shift conflict |
| 2469 | if r > 0: |
| 2470 | if r != j: |
| 2471 | raise LALRError("Shift/shift conflict in state %d" % st) |
| 2472 | elif r < 0: |
| 2473 | # Do a precedence check. |
| 2474 | # - if precedence of reduce rule is higher, we reduce. |
| 2475 | # - if precedence of reduce is same and left assoc, we reduce. |
| 2476 | # - otherwise we shift |
| 2477 | rprec,rlevel = Productions[st_actionp[a].number].prec |
| 2478 | sprec,slevel = Precedence.get(a,('right',0)) |
| 2479 | if (slevel > rlevel) or ((slevel == rlevel) and (rprec == 'right')): |
| 2480 | # We decide to shift here... highest precedence to shift |
| 2481 | Productions[st_actionp[a].number].reduced -= 1 |
| 2482 | st_action[a] = j |
| 2483 | st_actionp[a] = p |
| 2484 | if not rlevel: |
| 2485 | log.info(" ! shift/reduce conflict for %s resolved as shift",a) |
| 2486 | self.sr_conflicts.append((st,a,'shift')) |
| 2487 | elif (slevel == rlevel) and (rprec == 'nonassoc'): |
| 2488 | st_action[a] = None |
| 2489 | else: |
| 2490 | # Hmmm. Guess we'll keep the reduce |
| 2491 | if not slevel and not rlevel: |
| 2492 | log.info(" ! shift/reduce conflict for %s resolved as reduce",a) |
| 2493 | self.sr_conflicts.append((st,a,'reduce')) |
| 2494 | |
| 2495 | else: |
| 2496 | raise LALRError("Unknown conflict in state %d" % st) |
| 2497 | else: |
| 2498 | st_action[a] = j |
| 2499 | st_actionp[a] = p |
| 2500 | |
| 2501 | # Print the actions associated with each terminal |
| 2502 | _actprint = { } |
| 2503 | for a,p,m in actlist: |
| 2504 | if a in st_action: |
| 2505 | if p is st_actionp[a]: |
| 2506 | log.info(" %-15s %s",a,m) |
| 2507 | _actprint[(a,m)] = 1 |
| 2508 | log.info("") |
| 2509 | # Print the actions that were not used. (debugging) |
| 2510 | not_used = 0 |
| 2511 | for a,p,m in actlist: |
| 2512 | if a in st_action: |
| 2513 | if p is not st_actionp[a]: |
| 2514 | if not (a,m) in _actprint: |
| 2515 | log.debug(" ! %-15s [ %s ]",a,m) |
| 2516 | not_used = 1 |
| 2517 | _actprint[(a,m)] = 1 |
| 2518 | if not_used: |
| 2519 | log.debug("") |
| 2520 | |
| 2521 | # Construct the goto table for this state |
| 2522 | |
| 2523 | nkeys = { } |
| 2524 | for ii in I: |
| 2525 | for s in ii.usyms: |
| 2526 | if s in self.grammar.Nonterminals: |
| 2527 | nkeys[s] = None |
| 2528 | for n in nkeys: |
| 2529 | g = self.lr0_goto(I,n) |
| 2530 | j = self.lr0_cidhash.get(id(g),-1) |
| 2531 | if j >= 0: |
| 2532 | st_goto[n] = j |
| 2533 | log.info(" %-30s shift and go to state %d",n,j) |
| 2534 | |
| 2535 | action[st] = st_action |
| 2536 | actionp[st] = st_actionp |
| 2537 | goto[st] = st_goto |
| 2538 | st += 1 |
| 2539 | |
| 2540 | |
| 2541 | # ----------------------------------------------------------------------------- |
| 2542 | # write() |
| 2543 | # |
| 2544 | # This function writes the LR parsing tables to a file |
| 2545 | # ----------------------------------------------------------------------------- |
| 2546 | |
| 2547 | def write_table(self,modulename,outputdir='',signature=""): |
| 2548 | basemodulename = modulename.split(".")[-1] |
| 2549 | filename = os.path.join(outputdir,basemodulename) + ".py" |
| 2550 | try: |
| 2551 | f = open(filename,"w") |
| 2552 | |
| 2553 | f.write(""" |
| 2554 | # %s |
| 2555 | # This file is automatically generated. Do not edit. |
| 2556 | _tabversion = %r |
| 2557 | |
| 2558 | _lr_method = %r |
| 2559 | |
| 2560 | _lr_signature = %r |
| 2561 | """ % (filename, __tabversion__, self.lr_method, signature)) |
| 2562 | |
| 2563 | # Change smaller to 0 to go back to original tables |
| 2564 | smaller = 1 |
| 2565 | |
| 2566 | # Factor out names to try and make smaller |
| 2567 | if smaller: |
| 2568 | items = { } |
| 2569 | |
| 2570 | for s,nd in self.lr_action.items(): |
| 2571 | for name,v in nd.items(): |
| 2572 | i = items.get(name) |
| 2573 | if not i: |
| 2574 | i = ([],[]) |
| 2575 | items[name] = i |
| 2576 | i[0].append(s) |
| 2577 | i[1].append(v) |
| 2578 | |
| 2579 | f.write("\n_lr_action_items = {") |
| 2580 | for k,v in items.items(): |
| 2581 | f.write("%r:([" % k) |
| 2582 | for i in v[0]: |
| 2583 | f.write("%r," % i) |
| 2584 | f.write("],[") |
| 2585 | for i in v[1]: |
| 2586 | f.write("%r," % i) |
| 2587 | |
| 2588 | f.write("]),") |
| 2589 | f.write("}\n") |
| 2590 | |
| 2591 | f.write(""" |
| 2592 | _lr_action = { } |
| 2593 | for _k, _v in _lr_action_items.items(): |
| 2594 | for _x,_y in zip(_v[0],_v[1]): |
| 2595 | if not _x in _lr_action: _lr_action[_x] = { } |
| 2596 | _lr_action[_x][_k] = _y |
| 2597 | del _lr_action_items |
| 2598 | """) |
| 2599 | |
| 2600 | else: |
| 2601 | f.write("\n_lr_action = { "); |
| 2602 | for k,v in self.lr_action.items(): |
| 2603 | f.write("(%r,%r):%r," % (k[0],k[1],v)) |
| 2604 | f.write("}\n"); |
| 2605 | |
| 2606 | if smaller: |
| 2607 | # Factor out names to try and make smaller |
| 2608 | items = { } |
| 2609 | |
| 2610 | for s,nd in self.lr_goto.items(): |
| 2611 | for name,v in nd.items(): |
| 2612 | i = items.get(name) |
| 2613 | if not i: |
| 2614 | i = ([],[]) |
| 2615 | items[name] = i |
| 2616 | i[0].append(s) |
| 2617 | i[1].append(v) |
| 2618 | |
| 2619 | f.write("\n_lr_goto_items = {") |
| 2620 | for k,v in items.items(): |
| 2621 | f.write("%r:([" % k) |
| 2622 | for i in v[0]: |
| 2623 | f.write("%r," % i) |
| 2624 | f.write("],[") |
| 2625 | for i in v[1]: |
| 2626 | f.write("%r," % i) |
| 2627 | |
| 2628 | f.write("]),") |
| 2629 | f.write("}\n") |
| 2630 | |
| 2631 | f.write(""" |
| 2632 | _lr_goto = { } |
| 2633 | for _k, _v in _lr_goto_items.items(): |
| 2634 | for _x,_y in zip(_v[0],_v[1]): |
| 2635 | if not _x in _lr_goto: _lr_goto[_x] = { } |
| 2636 | _lr_goto[_x][_k] = _y |
| 2637 | del _lr_goto_items |
| 2638 | """) |
| 2639 | else: |
| 2640 | f.write("\n_lr_goto = { "); |
| 2641 | for k,v in self.lr_goto.items(): |
| 2642 | f.write("(%r,%r):%r," % (k[0],k[1],v)) |
| 2643 | f.write("}\n"); |
| 2644 | |
| 2645 | # Write production table |
| 2646 | f.write("_lr_productions = [\n") |
| 2647 | for p in self.lr_productions: |
| 2648 | if p.func: |
| 2649 | f.write(" (%r,%r,%d,%r,%r,%d),\n" % (p.str,p.name, p.len, p.func,p.file,p.line)) |
| 2650 | else: |
| 2651 | f.write(" (%r,%r,%d,None,None,None),\n" % (str(p),p.name, p.len)) |
| 2652 | f.write("]\n") |
| 2653 | f.close() |
| 2654 | |
| 2655 | except IOError: |
| 2656 | e = sys.exc_info()[1] |
| 2657 | sys.stderr.write("Unable to create '%s'\n" % filename) |
| 2658 | sys.stderr.write(str(e)+"\n") |
| 2659 | return |
| 2660 | |
| 2661 | |
| 2662 | # ----------------------------------------------------------------------------- |
| 2663 | # pickle_table() |
| 2664 | # |
| 2665 | # This function pickles the LR parsing tables to a supplied file object |
| 2666 | # ----------------------------------------------------------------------------- |
| 2667 | |
| 2668 | def pickle_table(self,filename,signature=""): |
| 2669 | try: |
| 2670 | import cPickle as pickle |
| 2671 | except ImportError: |
| 2672 | import pickle |
| 2673 | outf = open(filename,"wb") |
| 2674 | pickle.dump(__tabversion__,outf,pickle_protocol) |
| 2675 | pickle.dump(self.lr_method,outf,pickle_protocol) |
| 2676 | pickle.dump(signature,outf,pickle_protocol) |
| 2677 | pickle.dump(self.lr_action,outf,pickle_protocol) |
| 2678 | pickle.dump(self.lr_goto,outf,pickle_protocol) |
| 2679 | |
| 2680 | outp = [] |
| 2681 | for p in self.lr_productions: |
| 2682 | if p.func: |
| 2683 | outp.append((p.str,p.name, p.len, p.func,p.file,p.line)) |
| 2684 | else: |
| 2685 | outp.append((str(p),p.name,p.len,None,None,None)) |
| 2686 | pickle.dump(outp,outf,pickle_protocol) |
| 2687 | outf.close() |
| 2688 | |
| 2689 | # ----------------------------------------------------------------------------- |
| 2690 | # === INTROSPECTION === |
| 2691 | # |
| 2692 | # The following functions and classes are used to implement the PLY |
| 2693 | # introspection features followed by the yacc() function itself. |
| 2694 | # ----------------------------------------------------------------------------- |
| 2695 | |
| 2696 | # ----------------------------------------------------------------------------- |
| 2697 | # get_caller_module_dict() |
| 2698 | # |
| 2699 | # This function returns a dictionary containing all of the symbols defined within |
| 2700 | # a caller further down the call stack. This is used to get the environment |
| 2701 | # associated with the yacc() call if none was provided. |
| 2702 | # ----------------------------------------------------------------------------- |
| 2703 | |
| 2704 | def get_caller_module_dict(levels): |
| 2705 | try: |
| 2706 | raise RuntimeError |
| 2707 | except RuntimeError: |
| 2708 | e,b,t = sys.exc_info() |
| 2709 | f = t.tb_frame |
| 2710 | while levels > 0: |
| 2711 | f = f.f_back |
| 2712 | levels -= 1 |
| 2713 | ldict = f.f_globals.copy() |
| 2714 | if f.f_globals != f.f_locals: |
| 2715 | ldict.update(f.f_locals) |
| 2716 | |
| 2717 | return ldict |
| 2718 | |
| 2719 | # ----------------------------------------------------------------------------- |
| 2720 | # parse_grammar() |
| 2721 | # |
| 2722 | # This takes a raw grammar rule string and parses it into production data |
| 2723 | # ----------------------------------------------------------------------------- |
| 2724 | def parse_grammar(doc,file,line): |
| 2725 | grammar = [] |
| 2726 | # Split the doc string into lines |
| 2727 | pstrings = doc.splitlines() |
| 2728 | lastp = None |
| 2729 | dline = line |
| 2730 | for ps in pstrings: |
| 2731 | dline += 1 |
| 2732 | p = ps.split() |
| 2733 | if not p: continue |
| 2734 | try: |
| 2735 | if p[0] == '|': |
| 2736 | # This is a continuation of a previous rule |
| 2737 | if not lastp: |
| 2738 | raise SyntaxError("%s:%d: Misplaced '|'" % (file,dline)) |
| 2739 | prodname = lastp |
| 2740 | syms = p[1:] |
| 2741 | else: |
| 2742 | prodname = p[0] |
| 2743 | lastp = prodname |
| 2744 | syms = p[2:] |
| 2745 | assign = p[1] |
| 2746 | if assign != ':' and assign != '::=': |
| 2747 | raise SyntaxError("%s:%d: Syntax error. Expected ':'" % (file,dline)) |
| 2748 | |
| 2749 | grammar.append((file,dline,prodname,syms)) |
| 2750 | except SyntaxError: |
| 2751 | raise |
| 2752 | except Exception: |
| 2753 | raise SyntaxError("%s:%d: Syntax error in rule '%s'" % (file,dline,ps.strip())) |
| 2754 | |
| 2755 | return grammar |
| 2756 | |
| 2757 | # ----------------------------------------------------------------------------- |
| 2758 | # ParserReflect() |
| 2759 | # |
| 2760 | # This class represents information extracted for building a parser including |
| 2761 | # start symbol, error function, tokens, precedence list, action functions, |
| 2762 | # etc. |
| 2763 | # ----------------------------------------------------------------------------- |
| 2764 | class ParserReflect(object): |
| 2765 | def __init__(self,pdict,log=None): |
| 2766 | self.pdict = pdict |
| 2767 | self.start = None |
| 2768 | self.error_func = None |
| 2769 | self.tokens = None |
| 2770 | self.files = {} |
| 2771 | self.grammar = [] |
| 2772 | self.error = 0 |
| 2773 | |
| 2774 | if log is None: |
| 2775 | self.log = PlyLogger(sys.stderr) |
| 2776 | else: |
| 2777 | self.log = log |
| 2778 | |
| 2779 | # Get all of the basic information |
| 2780 | def get_all(self): |
| 2781 | self.get_start() |
| 2782 | self.get_error_func() |
| 2783 | self.get_tokens() |
| 2784 | self.get_precedence() |
| 2785 | self.get_pfunctions() |
| 2786 | |
| 2787 | # Validate all of the information |
| 2788 | def validate_all(self): |
| 2789 | self.validate_start() |
| 2790 | self.validate_error_func() |
| 2791 | self.validate_tokens() |
| 2792 | self.validate_precedence() |
| 2793 | self.validate_pfunctions() |
| 2794 | self.validate_files() |
| 2795 | return self.error |
| 2796 | |
| 2797 | # Compute a signature over the grammar |
| 2798 | def signature(self): |
| 2799 | try: |
| 2800 | from hashlib import md5 |
| 2801 | except ImportError: |
| 2802 | from md5 import md5 |
| 2803 | try: |
| 2804 | sig = md5() |
| 2805 | if self.start: |
| 2806 | sig.update(self.start.encode('latin-1')) |
| 2807 | if self.prec: |
| 2808 | sig.update("".join(["".join(p) for p in self.prec]).encode('latin-1')) |
| 2809 | if self.tokens: |
| 2810 | sig.update(" ".join(self.tokens).encode('latin-1')) |
| 2811 | for f in self.pfuncs: |
| 2812 | if f[3]: |
| 2813 | sig.update(f[3].encode('latin-1')) |
| 2814 | except (TypeError,ValueError): |
| 2815 | pass |
| 2816 | return sig.digest() |
| 2817 | |
| 2818 | # ----------------------------------------------------------------------------- |
| 2819 | # validate_file() |
| 2820 | # |
| 2821 | # This method checks to see if there are duplicated p_rulename() functions |
| 2822 | # in the parser module file. Without this function, it is really easy for |
| 2823 | # users to make mistakes by cutting and pasting code fragments (and it's a real |
| 2824 | # bugger to try and figure out why the resulting parser doesn't work). Therefore, |
| 2825 | # we just do a little regular expression pattern matching of def statements |
| 2826 | # to try and detect duplicates. |
| 2827 | # ----------------------------------------------------------------------------- |
| 2828 | |
| 2829 | def validate_files(self): |
| 2830 | # Match def p_funcname( |
| 2831 | fre = re.compile(r'\s*def\s+(p_[a-zA-Z_0-9]*)\(') |
| 2832 | |
| 2833 | for filename in self.files.keys(): |
| 2834 | base,ext = os.path.splitext(filename) |
| 2835 | if ext != '.py': return 1 # No idea. Assume it's okay. |
| 2836 | |
| 2837 | try: |
| 2838 | f = open(filename) |
| 2839 | lines = f.readlines() |
| 2840 | f.close() |
| 2841 | except IOError: |
| 2842 | continue |
| 2843 | |
| 2844 | counthash = { } |
| 2845 | for linen,l in enumerate(lines): |
| 2846 | linen += 1 |
| 2847 | m = fre.match(l) |
| 2848 | if m: |
| 2849 | name = m.group(1) |
| 2850 | prev = counthash.get(name) |
| 2851 | if not prev: |
| 2852 | counthash[name] = linen |
| 2853 | else: |
| 2854 | self.log.warning("%s:%d: Function %s redefined. Previously defined on line %d", filename,linen,name,prev) |
| 2855 | |
| 2856 | # Get the start symbol |
| 2857 | def get_start(self): |
| 2858 | self.start = self.pdict.get('start') |
| 2859 | |
| 2860 | # Validate the start symbol |
| 2861 | def validate_start(self): |
| 2862 | if self.start is not None: |
| 2863 | if not isinstance(self.start,str): |
| 2864 | self.log.error("'start' must be a string") |
| 2865 | |
| 2866 | # Look for error handler |
| 2867 | def get_error_func(self): |
| 2868 | self.error_func = self.pdict.get('p_error') |
| 2869 | |
| 2870 | # Validate the error function |
| 2871 | def validate_error_func(self): |
| 2872 | if self.error_func: |
| 2873 | if isinstance(self.error_func,types.FunctionType): |
| 2874 | ismethod = 0 |
| 2875 | elif isinstance(self.error_func, types.MethodType): |
| 2876 | ismethod = 1 |
| 2877 | else: |
| 2878 | self.log.error("'p_error' defined, but is not a function or method") |
| 2879 | self.error = 1 |
| 2880 | return |
| 2881 | |
| 2882 | eline = func_code(self.error_func).co_firstlineno |
| 2883 | efile = func_code(self.error_func).co_filename |
| 2884 | self.files[efile] = 1 |
| 2885 | |
| 2886 | if (func_code(self.error_func).co_argcount != 1+ismethod): |
| 2887 | self.log.error("%s:%d: p_error() requires 1 argument",efile,eline) |
| 2888 | self.error = 1 |
| 2889 | |
| 2890 | # Get the tokens map |
| 2891 | def get_tokens(self): |
| 2892 | tokens = self.pdict.get("tokens",None) |
| 2893 | if not tokens: |
| 2894 | self.log.error("No token list is defined") |
| 2895 | self.error = 1 |
| 2896 | return |
| 2897 | |
| 2898 | if not isinstance(tokens,(list, tuple)): |
| 2899 | self.log.error("tokens must be a list or tuple") |
| 2900 | self.error = 1 |
| 2901 | return |
| 2902 | |
| 2903 | if not tokens: |
| 2904 | self.log.error("tokens is empty") |
| 2905 | self.error = 1 |
| 2906 | return |
| 2907 | |
| 2908 | self.tokens = tokens |
| 2909 | |
| 2910 | # Validate the tokens |
| 2911 | def validate_tokens(self): |
| 2912 | # Validate the tokens. |
| 2913 | if 'error' in self.tokens: |
| 2914 | self.log.error("Illegal token name 'error'. Is a reserved word") |
| 2915 | self.error = 1 |
| 2916 | return |
| 2917 | |
| 2918 | terminals = {} |
| 2919 | for n in self.tokens: |
| 2920 | if n in terminals: |
| 2921 | self.log.warning("Token '%s' multiply defined", n) |
| 2922 | terminals[n] = 1 |
| 2923 | |
| 2924 | # Get the precedence map (if any) |
| 2925 | def get_precedence(self): |
| 2926 | self.prec = self.pdict.get("precedence",None) |
| 2927 | |
| 2928 | # Validate and parse the precedence map |
| 2929 | def validate_precedence(self): |
| 2930 | preclist = [] |
| 2931 | if self.prec: |
| 2932 | if not isinstance(self.prec,(list,tuple)): |
| 2933 | self.log.error("precedence must be a list or tuple") |
| 2934 | self.error = 1 |
| 2935 | return |
| 2936 | for level,p in enumerate(self.prec): |
| 2937 | if not isinstance(p,(list,tuple)): |
| 2938 | self.log.error("Bad precedence table") |
| 2939 | self.error = 1 |
| 2940 | return |
| 2941 | |
| 2942 | if len(p) < 2: |
| 2943 | self.log.error("Malformed precedence entry %s. Must be (assoc, term, ..., term)",p) |
| 2944 | self.error = 1 |
| 2945 | return |
| 2946 | assoc = p[0] |
| 2947 | if not isinstance(assoc,str): |
| 2948 | self.log.error("precedence associativity must be a string") |
| 2949 | self.error = 1 |
| 2950 | return |
| 2951 | for term in p[1:]: |
| 2952 | if not isinstance(term,str): |
| 2953 | self.log.error("precedence items must be strings") |
| 2954 | self.error = 1 |
| 2955 | return |
| 2956 | preclist.append((term,assoc,level+1)) |
| 2957 | self.preclist = preclist |
| 2958 | |
| 2959 | # Get all p_functions from the grammar |
| 2960 | def get_pfunctions(self): |
| 2961 | p_functions = [] |
| 2962 | for name, item in self.pdict.items(): |
| 2963 | if name[:2] != 'p_': continue |
| 2964 | if name == 'p_error': continue |
| 2965 | if isinstance(item,(types.FunctionType,types.MethodType)): |
| 2966 | line = func_code(item).co_firstlineno |
| 2967 | file = func_code(item).co_filename |
| 2968 | p_functions.append((line,file,name,item.__doc__)) |
| 2969 | |
| 2970 | # Sort all of the actions by line number |
| 2971 | p_functions.sort() |
| 2972 | self.pfuncs = p_functions |
| 2973 | |
| 2974 | |
| 2975 | # Validate all of the p_functions |
| 2976 | def validate_pfunctions(self): |
| 2977 | grammar = [] |
| 2978 | # Check for non-empty symbols |
| 2979 | if len(self.pfuncs) == 0: |
| 2980 | self.log.error("no rules of the form p_rulename are defined") |
| 2981 | self.error = 1 |
| 2982 | return |
| 2983 | |
| 2984 | for line, file, name, doc in self.pfuncs: |
| 2985 | func = self.pdict[name] |
| 2986 | if isinstance(func, types.MethodType): |
| 2987 | reqargs = 2 |
| 2988 | else: |
| 2989 | reqargs = 1 |
| 2990 | if func_code(func).co_argcount > reqargs: |
| 2991 | self.log.error("%s:%d: Rule '%s' has too many arguments",file,line,func.__name__) |
| 2992 | self.error = 1 |
| 2993 | elif func_code(func).co_argcount < reqargs: |
| 2994 | self.log.error("%s:%d: Rule '%s' requires an argument",file,line,func.__name__) |
| 2995 | self.error = 1 |
| 2996 | elif not func.__doc__: |
| 2997 | self.log.warning("%s:%d: No documentation string specified in function '%s' (ignored)",file,line,func.__name__) |
| 2998 | else: |
| 2999 | try: |
| 3000 | parsed_g = parse_grammar(doc,file,line) |
| 3001 | for g in parsed_g: |
| 3002 | grammar.append((name, g)) |
| 3003 | except SyntaxError: |
| 3004 | e = sys.exc_info()[1] |
| 3005 | self.log.error(str(e)) |
| 3006 | self.error = 1 |
| 3007 | |
| 3008 | # Looks like a valid grammar rule |
| 3009 | # Mark the file in which defined. |
| 3010 | self.files[file] = 1 |
| 3011 | |
| 3012 | # Secondary validation step that looks for p_ definitions that are not functions |
| 3013 | # or functions that look like they might be grammar rules. |
| 3014 | |
| 3015 | for n,v in self.pdict.items(): |
| 3016 | if n[0:2] == 'p_' and isinstance(v, (types.FunctionType, types.MethodType)): continue |
| 3017 | if n[0:2] == 't_': continue |
| 3018 | if n[0:2] == 'p_' and n != 'p_error': |
| 3019 | self.log.warning("'%s' not defined as a function", n) |
| 3020 | if ((isinstance(v,types.FunctionType) and func_code(v).co_argcount == 1) or |
| 3021 | (isinstance(v,types.MethodType) and func_code(v).co_argcount == 2)): |
| 3022 | try: |
| 3023 | doc = v.__doc__.split(" ") |
| 3024 | if doc[1] == ':': |
| 3025 | self.log.warning("%s:%d: Possible grammar rule '%s' defined without p_ prefix", |
| 3026 | func_code(v).co_filename, func_code(v).co_firstlineno,n) |
| 3027 | except Exception: |
| 3028 | pass |
| 3029 | |
| 3030 | self.grammar = grammar |
| 3031 | |
| 3032 | # ----------------------------------------------------------------------------- |
| 3033 | # yacc(module) |
| 3034 | # |
| 3035 | # Build a parser |
| 3036 | # ----------------------------------------------------------------------------- |
| 3037 | |
| 3038 | def yacc(method='LALR', debug=yaccdebug, module=None, tabmodule=tab_module, start=None, |
| 3039 | check_recursion=1, optimize=0, write_tables=1, debugfile=debug_file,outputdir='', |
| 3040 | debuglog=None, errorlog = None, picklefile=None): |
| 3041 | |
| 3042 | global parse # Reference to the parsing method of the last built parser |
| 3043 | |
| 3044 | # If pickling is enabled, table files are not created |
| 3045 | |
| 3046 | if picklefile: |
| 3047 | write_tables = 0 |
| 3048 | |
| 3049 | if errorlog is None: |
| 3050 | errorlog = PlyLogger(sys.stderr) |
| 3051 | |
| 3052 | # Get the module dictionary used for the parser |
| 3053 | if module: |
| 3054 | _items = [(k,getattr(module,k)) for k in dir(module)] |
| 3055 | pdict = dict(_items) |
| 3056 | else: |
| 3057 | pdict = get_caller_module_dict(2) |
| 3058 | |
| 3059 | # Collect parser information from the dictionary |
| 3060 | pinfo = ParserReflect(pdict,log=errorlog) |
| 3061 | pinfo.get_all() |
| 3062 | |
| 3063 | if pinfo.error: |
| 3064 | raise YaccError("Unable to build parser") |
| 3065 | |
| 3066 | # Check signature against table files (if any) |
| 3067 | signature = pinfo.signature() |
| 3068 | |
| 3069 | # Read the tables |
| 3070 | try: |
| 3071 | lr = LRTable() |
| 3072 | if picklefile: |
| 3073 | read_signature = lr.read_pickle(picklefile) |
| 3074 | else: |
| 3075 | read_signature = lr.read_table(tabmodule) |
| 3076 | if optimize or (read_signature == signature): |
| 3077 | try: |
| 3078 | lr.bind_callables(pinfo.pdict) |
| 3079 | parser = LRParser(lr,pinfo.error_func) |
| 3080 | parse = parser.parse |
| 3081 | return parser |
| 3082 | except Exception: |
| 3083 | e = sys.exc_info()[1] |
| 3084 | errorlog.warning("There was a problem loading the table file: %s", repr(e)) |
| 3085 | except VersionError: |
| 3086 | e = sys.exc_info() |
| 3087 | errorlog.warning(str(e)) |
| 3088 | except Exception: |
| 3089 | pass |
| 3090 | |
| 3091 | if debuglog is None: |
| 3092 | if debug: |
| 3093 | debuglog = PlyLogger(open(debugfile,"w")) |
| 3094 | else: |
| 3095 | debuglog = NullLogger() |
| 3096 | |
| 3097 | debuglog.info("Created by PLY version %s (http://www.dabeaz.com/ply)", __version__) |
| 3098 | |
| 3099 | |
| 3100 | errors = 0 |
| 3101 | |
| 3102 | # Validate the parser information |
| 3103 | if pinfo.validate_all(): |
| 3104 | raise YaccError("Unable to build parser") |
| 3105 | |
| 3106 | if not pinfo.error_func: |
| 3107 | errorlog.warning("no p_error() function is defined") |
| 3108 | |
| 3109 | # Create a grammar object |
| 3110 | grammar = Grammar(pinfo.tokens) |
| 3111 | |
| 3112 | # Set precedence level for terminals |
| 3113 | for term, assoc, level in pinfo.preclist: |
| 3114 | try: |
| 3115 | grammar.set_precedence(term,assoc,level) |
| 3116 | except GrammarError: |
| 3117 | e = sys.exc_info()[1] |
| 3118 | errorlog.warning("%s",str(e)) |
| 3119 | |
| 3120 | # Add productions to the grammar |
| 3121 | for funcname, gram in pinfo.grammar: |
| 3122 | file, line, prodname, syms = gram |
| 3123 | try: |
| 3124 | grammar.add_production(prodname,syms,funcname,file,line) |
| 3125 | except GrammarError: |
| 3126 | e = sys.exc_info()[1] |
| 3127 | errorlog.error("%s",str(e)) |
| 3128 | errors = 1 |
| 3129 | |
| 3130 | # Set the grammar start symbols |
| 3131 | try: |
| 3132 | if start is None: |
| 3133 | grammar.set_start(pinfo.start) |
| 3134 | else: |
| 3135 | grammar.set_start(start) |
| 3136 | except GrammarError: |
| 3137 | e = sys.exc_info()[1] |
| 3138 | errorlog.error(str(e)) |
| 3139 | errors = 1 |
| 3140 | |
| 3141 | if errors: |
| 3142 | raise YaccError("Unable to build parser") |
| 3143 | |
| 3144 | # Verify the grammar structure |
| 3145 | undefined_symbols = grammar.undefined_symbols() |
| 3146 | for sym, prod in undefined_symbols: |
| 3147 | errorlog.error("%s:%d: Symbol '%s' used, but not defined as a token or a rule",prod.file,prod.line,sym) |
| 3148 | errors = 1 |
| 3149 | |
| 3150 | unused_terminals = grammar.unused_terminals() |
| 3151 | if unused_terminals: |
| 3152 | debuglog.info("") |
| 3153 | debuglog.info("Unused terminals:") |
| 3154 | debuglog.info("") |
| 3155 | for term in unused_terminals: |
| 3156 | errorlog.warning("Token '%s' defined, but not used", term) |
| 3157 | debuglog.info(" %s", term) |
| 3158 | |
| 3159 | # Print out all productions to the debug log |
| 3160 | if debug: |
| 3161 | debuglog.info("") |
| 3162 | debuglog.info("Grammar") |
| 3163 | debuglog.info("") |
| 3164 | for n,p in enumerate(grammar.Productions): |
| 3165 | debuglog.info("Rule %-5d %s", n, p) |
| 3166 | |
| 3167 | # Find unused non-terminals |
| 3168 | unused_rules = grammar.unused_rules() |
| 3169 | for prod in unused_rules: |
| 3170 | errorlog.warning("%s:%d: Rule '%s' defined, but not used", prod.file, prod.line, prod.name) |
| 3171 | |
| 3172 | if len(unused_terminals) == 1: |
| 3173 | errorlog.warning("There is 1 unused token") |
| 3174 | if len(unused_terminals) > 1: |
| 3175 | errorlog.warning("There are %d unused tokens", len(unused_terminals)) |
| 3176 | |
| 3177 | if len(unused_rules) == 1: |
| 3178 | errorlog.warning("There is 1 unused rule") |
| 3179 | if len(unused_rules) > 1: |
| 3180 | errorlog.warning("There are %d unused rules", len(unused_rules)) |
| 3181 | |
| 3182 | if debug: |
| 3183 | debuglog.info("") |
| 3184 | debuglog.info("Terminals, with rules where they appear") |
| 3185 | debuglog.info("") |
| 3186 | terms = list(grammar.Terminals) |
| 3187 | terms.sort() |
| 3188 | for term in terms: |
| 3189 | debuglog.info("%-20s : %s", term, " ".join([str(s) for s in grammar.Terminals[term]])) |
| 3190 | |
| 3191 | debuglog.info("") |
| 3192 | debuglog.info("Nonterminals, with rules where they appear") |
| 3193 | debuglog.info("") |
| 3194 | nonterms = list(grammar.Nonterminals) |
| 3195 | nonterms.sort() |
| 3196 | for nonterm in nonterms: |
| 3197 | debuglog.info("%-20s : %s", nonterm, " ".join([str(s) for s in grammar.Nonterminals[nonterm]])) |
| 3198 | debuglog.info("") |
| 3199 | |
| 3200 | if check_recursion: |
| 3201 | unreachable = grammar.find_unreachable() |
| 3202 | for u in unreachable: |
| 3203 | errorlog.warning("Symbol '%s' is unreachable",u) |
| 3204 | |
| 3205 | infinite = grammar.infinite_cycles() |
| 3206 | for inf in infinite: |
| 3207 | errorlog.error("Infinite recursion detected for symbol '%s'", inf) |
| 3208 | errors = 1 |
| 3209 | |
| 3210 | unused_prec = grammar.unused_precedence() |
| 3211 | for term, assoc in unused_prec: |
| 3212 | errorlog.error("Precedence rule '%s' defined for unknown symbol '%s'", assoc, term) |
| 3213 | errors = 1 |
| 3214 | |
| 3215 | if errors: |
| 3216 | raise YaccError("Unable to build parser") |
| 3217 | |
| 3218 | # Run the LRGeneratedTable on the grammar |
| 3219 | if debug: |
| 3220 | errorlog.debug("Generating %s tables", method) |
| 3221 | |
| 3222 | lr = LRGeneratedTable(grammar,method,debuglog) |
| 3223 | |
| 3224 | if debug: |
| 3225 | num_sr = len(lr.sr_conflicts) |
| 3226 | |
| 3227 | # Report shift/reduce and reduce/reduce conflicts |
| 3228 | if num_sr == 1: |
| 3229 | errorlog.warning("1 shift/reduce conflict") |
| 3230 | elif num_sr > 1: |
| 3231 | errorlog.warning("%d shift/reduce conflicts", num_sr) |
| 3232 | |
| 3233 | num_rr = len(lr.rr_conflicts) |
| 3234 | if num_rr == 1: |
| 3235 | errorlog.warning("1 reduce/reduce conflict") |
| 3236 | elif num_rr > 1: |
| 3237 | errorlog.warning("%d reduce/reduce conflicts", num_rr) |
| 3238 | |
| 3239 | # Write out conflicts to the output file |
| 3240 | if debug and (lr.sr_conflicts or lr.rr_conflicts): |
| 3241 | debuglog.warning("") |
| 3242 | debuglog.warning("Conflicts:") |
| 3243 | debuglog.warning("") |
| 3244 | |
| 3245 | for state, tok, resolution in lr.sr_conflicts: |
| 3246 | debuglog.warning("shift/reduce conflict for %s in state %d resolved as %s", tok, state, resolution) |
| 3247 | |
| 3248 | already_reported = {} |
| 3249 | for state, rule, rejected in lr.rr_conflicts: |
| 3250 | if (state,id(rule),id(rejected)) in already_reported: |
| 3251 | continue |
| 3252 | debuglog.warning("reduce/reduce conflict in state %d resolved using rule (%s)", state, rule) |
| 3253 | debuglog.warning("rejected rule (%s) in state %d", rejected,state) |
| 3254 | errorlog.warning("reduce/reduce conflict in state %d resolved using rule (%s)", state, rule) |
| 3255 | errorlog.warning("rejected rule (%s) in state %d", rejected, state) |
| 3256 | already_reported[state,id(rule),id(rejected)] = 1 |
| 3257 | |
| 3258 | warned_never = [] |
| 3259 | for state, rule, rejected in lr.rr_conflicts: |
| 3260 | if not rejected.reduced and (rejected not in warned_never): |
| 3261 | debuglog.warning("Rule (%s) is never reduced", rejected) |
| 3262 | errorlog.warning("Rule (%s) is never reduced", rejected) |
| 3263 | warned_never.append(rejected) |
| 3264 | |
| 3265 | # Write the table file if requested |
| 3266 | if write_tables: |
| 3267 | lr.write_table(tabmodule,outputdir,signature) |
| 3268 | |
| 3269 | # Write a pickled version of the tables |
| 3270 | if picklefile: |
| 3271 | lr.pickle_table(picklefile,signature) |
| 3272 | |
| 3273 | # Build the parser |
| 3274 | lr.bind_callables(pinfo.pdict) |
| 3275 | parser = LRParser(lr,pinfo.error_func) |
| 3276 | |
| 3277 | parse = parser.parse |
| 3278 | return parser |