blob: f5a7238e48490f51f4dc3b24d8c31f872c484d1b [file] [log] [blame]
/**
* Copyright © 2017 IBM Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tach_sensor.hpp"
#include "fan.hpp"
#include "sdbusplus.hpp"
#include "utility.hpp"
#include <fmt/format.h>
#include <phosphor-logging/elog.hpp>
#include <phosphor-logging/log.hpp>
#include <filesystem>
#include <functional>
#include <optional>
#include <utility>
namespace phosphor
{
namespace fan
{
namespace monitor
{
constexpr auto FAN_TARGET_PROPERTY = "Target";
constexpr auto FAN_VALUE_PROPERTY = "Value";
constexpr auto MAX_PREV_TACHS = 8;
constexpr auto MAX_PREV_TARGETS = 8;
namespace fs = std::filesystem;
using InternalFailure =
sdbusplus::xyz::openbmc_project::Common::Error::InternalFailure;
/**
* @brief Helper function to read a property
*
* @param[in] interface - the interface the property is on
* @param[in] propertName - the name of the property
* @param[in] path - the dbus path
* @param[in] bus - the dbus object
* @param[out] value - filled in with the property value
*/
template <typename T>
static void
readProperty(const std::string& interface, const std::string& propertyName,
const std::string& path, sdbusplus::bus_t& bus, T& value)
{
try
{
value =
util::SDBusPlus::getProperty<T>(bus, path, interface, propertyName);
}
catch (const std::exception& e)
{
phosphor::logging::log<phosphor::logging::level::ERR>(e.what());
}
}
TachSensor::TachSensor([[maybe_unused]] Mode mode, sdbusplus::bus_t& bus,
Fan& fan, const std::string& id, bool hasTarget,
size_t funcDelay, const std::string& interface,
const std::string& path, double factor, int64_t offset,
size_t method, size_t threshold, bool ignoreAboveMax,
size_t timeout, const std::optional<size_t>& errorDelay,
size_t countInterval, const sdeventplus::Event& event) :
_bus(bus),
_fan(fan), _name(FAN_SENSOR_PATH + id),
_invName(fs::path(fan.getName()) / id), _hasTarget(hasTarget),
_funcDelay(funcDelay), _interface(interface), _path(path), _factor(factor),
_offset(offset), _method(method), _threshold(threshold),
_ignoreAboveMax(ignoreAboveMax), _timeout(timeout),
_timerMode(TimerMode::func),
_timer(event, std::bind(&Fan::updateState, &fan, std::ref(*this))),
_errorDelay(errorDelay), _countInterval(countInterval)
{
_prevTachs.resize(MAX_PREV_TACHS);
if (_hasTarget)
{
_prevTargets.resize(MAX_PREV_TARGETS);
}
updateInventory(_functional);
// Load in current Target and Input values when entering monitor mode
#ifndef MONITOR_USE_JSON
if (mode != Mode::init)
{
#endif
try
{
updateTachAndTarget();
}
catch (const std::exception& e)
{
// Until the parent Fan's monitor-ready timer expires, the
// object can be functional with a missing D-bus sensor.
}
auto match = getMatchString(std::nullopt, util::FAN_SENSOR_VALUE_INTF);
tachSignal = std::make_unique<sdbusplus::bus::match_t>(
_bus, match.c_str(),
[this](auto& msg) { this->handleTachChange(msg); });
if (_hasTarget)
{
if (_path.empty())
{
match = getMatchString(std::nullopt, _interface);
}
else
{
match = getMatchString(_path, _interface);
}
targetSignal = std::make_unique<sdbusplus::bus::match_t>(
_bus, match.c_str(),
[this](auto& msg) { this->handleTargetChange(msg); });
}
if (_errorDelay)
{
_errorTimer = std::make_unique<
sdeventplus::utility::Timer<sdeventplus::ClockId::Monotonic>>(
event, std::bind(&Fan::sensorErrorTimerExpired, &fan,
std::ref(*this)));
}
if (_method == MethodMode::count)
{
_countTimer = std::make_unique<
sdeventplus::utility::Timer<sdeventplus::ClockId::Monotonic>>(
event,
std::bind(&Fan::countTimerExpired, &fan, std::ref(*this)));
}
#ifndef MONITOR_USE_JSON
}
#endif
}
void TachSensor::updateTachAndTarget()
{
_tachInput = util::SDBusPlus::getProperty<decltype(_tachInput)>(
_bus, _name, util::FAN_SENSOR_VALUE_INTF, FAN_VALUE_PROPERTY);
if (_hasTarget)
{
if (_path.empty())
{
// Target path is optional
readProperty(_interface, FAN_TARGET_PROPERTY, _name, _bus,
_tachTarget);
}
else
{
readProperty(_interface, FAN_TARGET_PROPERTY, _path, _bus,
_tachTarget);
}
// record previous target value
if (_prevTargets.front() != _tachTarget)
{
_prevTargets.push_front(_tachTarget);
_prevTargets.pop_back();
}
}
// record previous tach value
_prevTachs.push_front(_tachInput);
_prevTachs.pop_back();
}
std::string TachSensor::getMatchString(const std::optional<std::string> path,
const std::string& interface)
{
if (path)
{
return sdbusplus::bus::match::rules::propertiesChanged(path.value(),
interface);
}
return sdbusplus::bus::match::rules::propertiesChanged(_name, interface);
}
uint64_t TachSensor::getTarget() const
{
if (!_hasTarget)
{
return _fan.findTargetSpeed();
}
return _tachTarget;
}
std::pair<uint64_t, std::optional<uint64_t>>
TachSensor::getRange(const size_t deviation) const
{
// Determine min/max range applying the deviation
uint64_t min = getTarget() * (100 - deviation) / 100;
std::optional<uint64_t> max = getTarget() * (100 + deviation) / 100;
// Adjust the min/max range by applying the factor & offset
min = min * _factor + _offset;
max = max.value() * _factor + _offset;
if (_ignoreAboveMax)
{
max = std::nullopt;
}
return std::make_pair(min, max);
}
void TachSensor::processState()
{
// This function runs from inside trust::Manager::checkTrust(), which,
// for sensors using the count method, runs right before process()
// is called anyway inside Fan::countTimerExpired() so don't call
// it now if using that method.
if (_method == MethodMode::timebased)
{
_fan.process(*this);
}
}
void TachSensor::resetMethod()
{
switch (_method)
{
case MethodMode::timebased:
if (timerRunning())
{
stopTimer();
}
break;
case MethodMode::count:
if (_functional)
{
_counter = 0;
}
else
{
_counter = _threshold;
}
break;
}
}
void TachSensor::setFunctional(bool functional, bool skipErrorTimer)
{
_functional = functional;
updateInventory(_functional);
if (!_errorTimer)
{
return;
}
if (!_functional)
{
if (_fan.present() && !skipErrorTimer)
{
_errorTimer->restartOnce(std::chrono::seconds(*_errorDelay));
}
}
else if (_errorTimer->isEnabled())
{
_errorTimer->setEnabled(false);
}
}
void TachSensor::handleTargetChange(sdbusplus::message_t& msg)
{
readPropertyFromMessage(msg, _interface, FAN_TARGET_PROPERTY, _tachTarget);
// Check all tach sensors on the fan against the target
_fan.tachChanged();
// record previous target value
if (_prevTargets.front() != _tachTarget)
{
_prevTargets.push_front(_tachTarget);
_prevTargets.pop_back();
}
}
void TachSensor::handleTachChange(sdbusplus::message_t& msg)
{
readPropertyFromMessage(msg, util::FAN_SENSOR_VALUE_INTF,
FAN_VALUE_PROPERTY, _tachInput);
// Check just this sensor against the target
_fan.tachChanged(*this);
// record previous tach value
_prevTachs.push_front(_tachInput);
_prevTachs.pop_back();
}
void TachSensor::startTimer(TimerMode mode)
{
using namespace std::chrono;
if (!timerRunning() || mode != _timerMode)
{
log<level::DEBUG>(
fmt::format("Start timer({}) on tach sensor {}. [delay = {}s]",
static_cast<int>(mode), _name,
duration_cast<seconds>(getDelay(mode)).count())
.c_str());
_timer.restartOnce(getDelay(mode));
_timerMode = mode;
}
}
std::chrono::microseconds TachSensor::getDelay(TimerMode mode)
{
using namespace std::chrono;
switch (mode)
{
case TimerMode::nonfunc:
return duration_cast<microseconds>(seconds(_timeout));
case TimerMode::func:
return duration_cast<microseconds>(seconds(_funcDelay));
default:
// Log an internal error for undefined timer mode
log<level::ERR>("Undefined timer mode",
entry("TIMER_MODE=%u", mode));
elog<InternalFailure>();
return duration_cast<microseconds>(seconds(0));
}
}
void TachSensor::setCounter(bool count)
{
if (count)
{
if (_counter < _threshold)
{
++_counter;
log<level::DEBUG>(
fmt::format(
"Incremented error counter on {} to {} (threshold {})",
_name, _counter, _threshold)
.c_str());
}
}
else
{
if (_counter > 0)
{
--_counter;
log<level::DEBUG>(
fmt::format(
"Decremented error counter on {} to {} (threshold {})",
_name, _counter, _threshold)
.c_str());
}
}
}
void TachSensor::startCountTimer()
{
if (_countTimer)
{
log<level::DEBUG>(
fmt::format("Starting count timer on sensor {}", _name).c_str());
_countTimer->restart(std::chrono::seconds(_countInterval));
}
}
void TachSensor::stopCountTimer()
{
if (_countTimer && _countTimer->isEnabled())
{
log<level::DEBUG>(
fmt::format("Stopping count timer on tach sensor {}.", _name)
.c_str());
_countTimer->setEnabled(false);
}
}
void TachSensor::updateInventory(bool functional)
{
auto objectMap =
util::getObjMap<bool>(_invName, util::OPERATIONAL_STATUS_INTF,
util::FUNCTIONAL_PROPERTY, functional);
auto response = util::SDBusPlus::callMethod(
_bus, util::INVENTORY_SVC, util::INVENTORY_PATH, util::INVENTORY_INTF,
"Notify", objectMap);
if (response.is_method_error())
{
log<level::ERR>("Error in notify update of tach sensor inventory");
}
}
} // namespace monitor
} // namespace fan
} // namespace phosphor