blob: 6d88d2a1dc27564dc2f60b674bec6939ce637045 [file] [log] [blame]
/**
* Copyright © 2017 IBM Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <phosphor-logging/log.hpp>
#include "fan.hpp"
#include "types.hpp"
#include "utility.hpp"
namespace phosphor
{
namespace fan
{
namespace monitor
{
using namespace phosphor::logging;
using TimerType = phosphor::fan::util::Timer::TimerType;
constexpr auto INVENTORY_PATH = "/xyz/openbmc_project/inventory";
constexpr auto INVENTORY_INTF = "xyz.openbmc_project.Inventory.Manager";
constexpr auto FUNCTIONAL_PROPERTY = "Functional";
constexpr auto OPERATIONAL_STATUS_INTF =
"xyz.openbmc_project.State.Decorator.OperationalStatus";
Fan::Fan(sdbusplus::bus::bus& bus,
phosphor::fan::event::EventPtr& events,
const FanDefinition& def) :
_bus(bus),
_name(std::get<fanNameField>(def)),
_deviation(std::get<fanDeviationField>(def)),
_numSensorFailsForNonFunc(std::get<numSensorFailsForNonfuncField>(def))
{
auto& sensors = std::get<sensorListField>(def);
for (auto& s : sensors)
{
try
{
_sensors.emplace_back(
std::make_unique<TachSensor>(
bus,
*this,
std::get<sensorNameField>(s),
std::get<hasTargetField>(s),
std::get<timeoutField>(def),
events));
}
catch (InvalidSensorError& e)
{
}
}
//Start from a known state of functional
updateInventory(true);
//The TachSensors will now have already read the input
//and target values, so check them.
tachChanged();
}
void Fan::tachChanged()
{
for (auto& s : _sensors)
{
tachChanged(*s);
}
}
void Fan::tachChanged(TachSensor& sensor)
{
auto& timer = sensor.getTimer();
auto running = timer.running();
//If this sensor is out of range at this moment, start
//its timer, at the end of which the inventory
//for the fan may get updated to not functional.
//If this sensor is OK, put everything back into a good state.
if (outOfRange(sensor))
{
if (sensor.functional() && !running)
{
timer.start(sensor.getTimeout(), TimerType::oneshot);
}
}
else
{
if (!sensor.functional())
{
sensor.setFunctional(true);
}
if (running)
{
timer.stop();
}
//If the fan was nonfunctional and enough sensors are now OK,
//the fan can go back to functional
if (!_functional && !tooManySensorsNonfunctional())
{
log<level::INFO>("Setting a fan back to functional",
entry("FAN=%s", _name.c_str()));
updateInventory(true);
}
}
}
uint64_t Fan::getTargetSpeed(const TachSensor& sensor)
{
uint64_t target = 0;
if (sensor.hasTarget())
{
target = sensor.getTarget();
}
else
{
//The sensor doesn't support a target,
//so get it from another sensor.
auto s = std::find_if(_sensors.begin(), _sensors.end(),
[](const auto& s)
{
return s->hasTarget();
});
if (s != _sensors.end())
{
target = (*s)->getTarget();
}
}
return target;
}
bool Fan::tooManySensorsNonfunctional()
{
size_t numFailed = std::count_if(_sensors.begin(), _sensors.end(),
[](const auto& s)
{
return !s->functional();
});
return (numFailed >= _numSensorFailsForNonFunc);
}
bool Fan::outOfRange(const TachSensor& sensor)
{
auto actual = static_cast<uint64_t>(sensor.getInput());
auto target = getTargetSpeed(sensor);
uint64_t min = target * (100 - _deviation) / 100;
uint64_t max = target * (100 + _deviation) / 100;
if ((actual < min) || (actual > max))
{
return true;
}
return false;
}
void Fan::timerExpired(TachSensor& sensor)
{
sensor.setFunctional(false);
//If the fan is currently functional, but too many
//contained sensors are now nonfunctional, update
//the whole fan nonfunctional.
if (_functional && tooManySensorsNonfunctional())
{
log<level::ERR>("Setting a fan to nonfunctional",
entry("FAN=%s", _name.c_str()),
entry("TACH_SENSOR=%s", sensor.name().c_str()),
entry("ACTUAL_SPEED=%lld", sensor.getInput()),
entry("TARGET_SPEED=%lld", getTargetSpeed(sensor)));
updateInventory(false);
}
}
void Fan::updateInventory(bool functional)
{
ObjectMap objectMap = getObjectMap(functional);
std::string service;
service = phosphor::fan::util::getInvService(_bus);
auto msg = _bus.new_method_call(service.c_str(),
INVENTORY_PATH,
INVENTORY_INTF,
"Notify");
msg.append(std::move(objectMap));
auto response = _bus.call(msg);
if (response.is_method_error())
{
log<level::ERR>("Error in Notify call to update inventory");
return;
}
//This will always track the current state of the inventory.
_functional = functional;
}
Fan::ObjectMap Fan::getObjectMap(bool functional)
{
ObjectMap objectMap;
InterfaceMap interfaceMap;
PropertyMap propertyMap;
propertyMap.emplace(FUNCTIONAL_PROPERTY, functional);
interfaceMap.emplace(OPERATIONAL_STATUS_INTF, std::move(propertyMap));
objectMap.emplace(_name, std::move(interfaceMap));
return objectMap;
}
}
}
}