| /** |
| * Copyright © 2018 Intel Corporation |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #include <ipmid/api.hpp> |
| #include <ipmid/message.hpp> |
| |
| #include <gtest/gtest.h> |
| |
| // TODO: Add testing of Payload response API |
| |
| TEST(PackBasics, Uint8) |
| { |
| ipmi::message::Payload p; |
| uint8_t v = 4; |
| p.pack(v); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), sizeof(v)); |
| // check that the bytes were correctly packed (LSB first) |
| std::vector<uint8_t> k = {0x04}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackBasics, Uint16) |
| { |
| ipmi::message::Payload p; |
| uint16_t v = 0x8604; |
| p.pack(v); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), sizeof(v)); |
| // check that the bytes were correctly packed (LSB first) |
| std::vector<uint8_t> k = {0x04, 0x86}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackBasics, Uint32) |
| { |
| ipmi::message::Payload p; |
| uint32_t v = 0x02008604; |
| p.pack(v); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), sizeof(v)); |
| // check that the bytes were correctly packed (LSB first) |
| std::vector<uint8_t> k = {0x04, 0x86, 0x00, 0x02}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackBasics, Uint64) |
| { |
| ipmi::message::Payload p; |
| uint64_t v = 0x1122334402008604ull; |
| p.pack(v); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), sizeof(v)); |
| // check that the bytes were correctly packed (LSB first) |
| std::vector<uint8_t> k = {0x04, 0x86, 0x00, 0x02, 0x44, 0x33, 0x22, 0x11}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackBasics, Uint24) |
| { |
| ipmi::message::Payload p; |
| uint24_t v = 0x112358; |
| p.pack(v); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), types::nrFixedBits<decltype(v)> / CHAR_BIT); |
| // check that the bytes were correctly packed (LSB first) |
| std::vector<uint8_t> k = {0x58, 0x23, 0x11}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackBasics, Uint3Uint5) |
| { |
| // individual bytes are packed low-order-bits first |
| // v1 will occupy [2:0], v2 will occupy [7:3] |
| ipmi::message::Payload p; |
| uint3_t v1 = 0x1; |
| uint5_t v2 = 0x19; |
| p.pack(v1, v2); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), (types::nrFixedBits<decltype(v1)> + |
| types::nrFixedBits<decltype(v2)>) / |
| CHAR_BIT); |
| // check that the bytes were correctly packed (LSB first) |
| std::vector<uint8_t> k = {0xc9}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackBasics, Boolx8) |
| { |
| // individual bytes are packed low-order-bits first |
| // [v8, v7, v6, v5, v4, v3, v2, v1] |
| ipmi::message::Payload p; |
| bool v8 = true, v7 = true, v6 = false, v5 = false; |
| bool v4 = true, v3 = false, v2 = false, v1 = true; |
| p.pack(v1, v2, v3, v4, v5, v6, v7, v8); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), sizeof(uint8_t)); |
| // check that the bytes were correctly packed (LSB first) |
| std::vector<uint8_t> k = {0xc9}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackBasics, Bitset8) |
| { |
| // individual bytes are packed low-order-bits first |
| // a bitset for 8 bits fills the full byte |
| ipmi::message::Payload p; |
| std::bitset<8> v(0xc9); |
| p.pack(v); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), v.size() / CHAR_BIT); |
| // check that the bytes were correctly packed (LSB first) |
| std::vector<uint8_t> k = {0xc9}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackBasics, Bitset3Bitset5) |
| { |
| // individual bytes are packed low-order-bits first |
| // v1 will occupy [2:0], v2 will occupy [7:3] |
| ipmi::message::Payload p; |
| std::bitset<3> v1(0x1); |
| std::bitset<5> v2(0x19); |
| p.pack(v1, v2); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), (v1.size() + v2.size()) / CHAR_BIT); |
| // check that the bytes were correctly packed (LSB first) |
| std::vector<uint8_t> k = {0xc9}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackBasics, Bitset32) |
| { |
| // individual bytes are packed low-order-bits first |
| // v1 will occupy 4 bytes, but in LSByte first order |
| // v1[7:0] v1[15:9] v1[23:16] v1[31:24] |
| ipmi::message::Payload p; |
| std::bitset<32> v(0x02008604); |
| p.pack(v); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), v.size() / CHAR_BIT); |
| // check that the bytes were correctly packed (LSB first) |
| std::vector<uint8_t> k = {0x04, 0x86, 0x00, 0x02}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackBasics, Tuple) |
| { |
| // tuples are the new struct, pack a tuple |
| ipmi::message::Payload p; |
| auto v = std::make_tuple(static_cast<uint16_t>(0x8604), 'A'); |
| p.pack(v); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), sizeof(uint16_t) + sizeof(char)); |
| // check that the bytes were correctly packed (LSB first) |
| std::vector<uint8_t> k = {0x04, 0x86, 0x41}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackBasics, Array4xUint8) |
| { |
| // an array of bytes will be output verbatim, low-order element first |
| ipmi::message::Payload p; |
| std::array<uint8_t, 4> v = {{0x02, 0x00, 0x86, 0x04}}; |
| p.pack(v); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), v.size() * sizeof(v[0])); |
| // check that the bytes were correctly packed (in byte order) |
| std::vector<uint8_t> k = {0x02, 0x00, 0x86, 0x04}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackBasics, Array4xUint32) |
| { |
| // an array of multi-byte values will be output in order low-order |
| // element first, each multi-byte element in LSByte order |
| // v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24] |
| // v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24] |
| // v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24] |
| // v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24] |
| ipmi::message::Payload p; |
| std::array<uint32_t, 4> v = { |
| {0x11223344, 0x22446688, 0x33557799, 0x12345678}}; |
| p.pack(v); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), v.size() * sizeof(v[0])); |
| // check that the bytes were correctly packed (in byte order) |
| std::vector<uint8_t> k = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22, |
| 0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34, 0x12}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackBasics, VectorUint32) |
| { |
| // a vector of multi-byte values will be output in order low-order |
| // element first, each multi-byte element in LSByte order |
| // v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24] |
| // v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24] |
| // v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24] |
| // v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24] |
| ipmi::message::Payload p; |
| std::vector<uint32_t> v = { |
| {0x11223344, 0x22446688, 0x33557799, 0x12345678}}; |
| p.pack(v); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), v.size() * sizeof(v[0])); |
| // check that the bytes were correctly packed (in byte order) |
| std::vector<uint8_t> k = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22, |
| 0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34, 0x12}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackBasics, VectorUint8) |
| { |
| // a vector of bytes will be output verbatim, low-order element first |
| ipmi::message::Payload p; |
| std::vector<uint8_t> v = {0x02, 0x00, 0x86, 0x04}; |
| p.pack(v); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), v.size() * sizeof(v[0])); |
| // check that the bytes were correctly packed (in byte order) |
| std::vector<uint8_t> k = {0x02, 0x00, 0x86, 0x04}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackBasics, OptionalEmpty) |
| { |
| // an optional will only pack if the value is present |
| ipmi::message::Payload p; |
| std::optional<uint32_t> v; |
| p.pack(v); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), 0); |
| // check that the bytes were correctly packed (in byte order) |
| std::vector<uint8_t> k = {}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackBasics, OptionalContainsValue) |
| { |
| // an optional will only pack if the value is present |
| ipmi::message::Payload p; |
| std::optional<uint32_t> v(0x04860002); |
| p.pack(v); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), sizeof(uint32_t)); |
| // check that the bytes were correctly packed (in byte order) |
| std::vector<uint8_t> k = {0x02, 0x00, 0x86, 0x04}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackAdvanced, Uints) |
| { |
| // all elements will be processed in order, with each multi-byte |
| // element being processed LSByte first |
| // v1[7:0] v2[7:0] v2[15:8] v3[7:0] v3[15:8] v3[23:16] v3[31:24] |
| // v4[7:0] v4[15:8] v4[23:16] v4[31:24] |
| // v4[39:25] v4[47:40] v4[55:48] v4[63:56] |
| ipmi::message::Payload p; |
| uint8_t v1 = 0x02; |
| uint16_t v2 = 0x0604; |
| uint32_t v3 = 0x44332211; |
| uint64_t v4 = 0xccbbaa9988776655ull; |
| p.pack(v1, v2, v3, v4); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), sizeof(v1) + sizeof(v2) + sizeof(v3) + sizeof(v4)); |
| // check that the bytes were correctly packed (LSB first) |
| std::vector<uint8_t> k = {0x02, 0x04, 0x06, 0x11, 0x22, 0x33, 0x44, 0x55, |
| 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackAdvanced, TupleInts) |
| { |
| // all elements will be processed in order, with each multi-byte |
| // element being processed LSByte first |
| // v1[7:0] v2[7:0] v2[15:8] v3[7:0] v3[15:8] v3[23:16] v3[31:24] |
| // v4[7:0] v4[15:8] v4[23:16] v4[31:24] |
| // v4[39:25] v4[47:40] v4[55:48] v4[63:56] |
| ipmi::message::Payload p; |
| uint8_t v1 = 0x02; |
| uint16_t v2 = 0x0604; |
| uint32_t v3 = 0x44332211; |
| uint64_t v4 = 0xccbbaa9988776655ull; |
| auto v = std::make_tuple(v1, v2, v3, v4); |
| p.pack(v); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), sizeof(v1) + sizeof(v2) + sizeof(v3) + sizeof(v4)); |
| // check that the bytes were correctly packed (LSB first) |
| std::vector<uint8_t> k = {0x02, 0x04, 0x06, 0x11, 0x22, 0x33, 0x44, 0x55, |
| 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackAdvanced, VariantArray) |
| { |
| ipmi::message::Payload p; |
| std::variant<std::array<uint8_t, 2>, uint32_t> variant; |
| auto data = std::array<uint8_t, 2>{2, 4}; |
| variant = data; |
| |
| p.pack(variant); |
| ASSERT_EQ(p.size(), sizeof(data)); |
| |
| // check that the bytes were correctly packed packed (LSB first) |
| std::vector<uint8_t> k = {2, 4}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackAdvanced, BoolsnBitfieldsnFixedIntsOhMy) |
| { |
| // each element will be added, filling the low-order bits first |
| // with multi-byte values getting added LSByte first |
| // v1 will occupy k[0][1:0] |
| // v2 will occupy k[0][2] |
| // v3[4:0] will occupy k[0][7:3], v3[6:5] will occupy k[1][1:0] |
| // v4 will occupy k[1][2] |
| // v5 will occupy k[1][7:3] |
| ipmi::message::Payload p; |
| uint2_t v1 = 2; // binary 0b10 |
| bool v2 = true; // binary 0b1 |
| std::bitset<7> v3(0x73); // binary 0b1110011 |
| bool v4 = false; // binary 0b0 |
| uint5_t v5 = 27; // binary 0b11011 |
| // concat binary: 0b1101101110011110 -> 0xdb9e -> 0x9e 0xdb (LSByte first) |
| p.pack(v1, v2, v3, v4, v5); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), sizeof(uint16_t)); |
| // check that the bytes were correctly packed (LSB first) |
| std::vector<uint8_t> k = {0x9e, 0xdb}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackAdvanced, UnalignedBitPacking) |
| { |
| // unaligned multi-byte values will be packed the same as |
| // other bits, effectively building up a large value, low-order |
| // bits first, then outputting a stream of LSByte values |
| // v1 will occupy k[0][1:0] |
| // v2[5:0] will occupy k[0][7:2], v2[7:6] will occupy k[1][1:0] |
| // v3 will occupy k[1][2] |
| // v4[4:0] will occupy k[1][7:3] v4[12:5] will occupy k[2][7:0] |
| // v4[15:13] will occupy k[3][2:0] |
| // v5 will occupy k[3][3] |
| // v6[3:0] will occupy k[3][7:0] v6[11:4] will occupy k[4][7:0] |
| // v6[19:12] will occupy k[5][7:0] v6[27:20] will occupy k[6][7:0] |
| // v6[31:28] will occupy k[7][3:0] |
| // v7 will occupy k[7][7:4] |
| ipmi::message::Payload p; |
| uint2_t v1 = 2; // binary 0b10 |
| uint8_t v2 = 0xa5; // binary 0b10100101 |
| bool v3 = false; // binary 0b0 |
| uint16_t v4 = 0xa55a; // binary 0b1010010101011010 |
| bool v5 = true; // binary 0b1 |
| uint32_t v6 = 0xdbc3bd3c; // binary 0b11011011110000111011110100111100 |
| uint4_t v7 = 9; // binary 0b1001 |
| // concat binary: |
| // 0b1001110110111100001110111101001111001101001010101101001010010110 |
| // -> 0x9dbc3bd3cd2ad296 -> 0x96 0xd2 0x2a 0xcd 0xd3 0x3b 0xbc 0x9d |
| p.pack(v1, v2, v3, v4, v5, v6, v7); |
| // check that the number of bytes matches |
| ASSERT_EQ(p.size(), sizeof(uint64_t)); |
| // check that the bytes were correctly packed (LSB first) |
| std::vector<uint8_t> k = {0x96, 0xd2, 0x2a, 0xcd, 0xd3, 0x3b, 0xbc, 0x9d}; |
| ASSERT_EQ(p.raw, k); |
| } |
| |
| TEST(PackAdvanced, ComplexOptionalTuple) |
| { |
| constexpr size_t macSize = 6; |
| // inspired from a real-world case of Get Session Info |
| constexpr uint8_t handle = 0x23; // handle for active session |
| constexpr uint8_t maxSessions = 15; // number of possible active sessions |
| constexpr uint8_t currentSessions = 4; // number of current active sessions |
| std::optional< // only returned for active session |
| std::tuple<uint8_t, // user ID |
| uint8_t, // privilege |
| uint4_t, // channel number |
| uint4_t // protocol (RMCP+) |
| >> |
| activeSession; |
| std::optional< // only returned for channel type LAN |
| std::tuple<uint32_t, // IPv4 address |
| std::array<uint8_t, macSize>, // MAC address |
| uint16_t // port |
| >> |
| lanSession; |
| |
| constexpr uint8_t userID = 7; |
| constexpr uint8_t priv = 4; |
| constexpr uint4_t channel = 2; |
| constexpr uint4_t protocol = 1; |
| activeSession.emplace(userID, priv, channel, protocol); |
| constexpr std::array<uint8_t, macSize> macAddr{0}; |
| lanSession.emplace(0x0a010105, macAddr, 55327); |
| |
| ipmi::message::Payload p; |
| p.pack(handle, maxSessions, currentSessions, activeSession, lanSession); |
| ASSERT_EQ(p.size(), sizeof(handle) + sizeof(maxSessions) + |
| sizeof(currentSessions) + 3 * sizeof(uint8_t) + |
| sizeof(uint32_t) + sizeof(uint8_t) * macSize + |
| sizeof(uint16_t)); |
| uint8_t protocol_channel = |
| (static_cast<uint8_t>(protocol) << 4) | static_cast<uint8_t>(channel); |
| std::vector<uint8_t> k = {handle, maxSessions, currentSessions, userID, |
| priv, protocol_channel, |
| // ip addr |
| 0x05, 0x01, 0x01, 0x0a, |
| // mac addr |
| 0, 0, 0, 0, 0, 0, |
| // port |
| 0x1f, 0xd8}; |
| ASSERT_EQ(p.raw, k); |
| } |