blob: 7d69218bbe31405c21b4ee28679990f64c08c68b [file] [log] [blame]
/**
* Copyright © 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ipmid/api.hpp>
#include <ipmid/message.hpp>
#include <gtest/gtest.h>
TEST(Uints, Uint8)
{
std::vector<uint8_t> i = {0x04};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint8_t v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
uint8_t k = 0x04;
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v, k);
}
TEST(Uints, Uint8TooManyBytes)
{
std::vector<uint8_t> i = {0x04, 0x86};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint8_t v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was not fully unpacked
ASSERT_FALSE(p.fullyUnpacked());
uint8_t k = 0x04;
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v, k);
}
TEST(Uints, Uint8InsufficientBytes)
{
std::vector<uint8_t> i = {};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint8_t v = 0;
// check that the number of bytes matches
ASSERT_NE(p.unpack(v), 0);
// check that the payload was not fully unpacked (comprehends unpack errors)
ASSERT_FALSE(p.fullyUnpacked());
// check that v is zero
ASSERT_EQ(v, 0);
}
TEST(Uints, Uint16)
{
std::vector<uint8_t> i = {0x04, 0x86};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint16_t v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
uint16_t k = 0x8604;
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v, k);
}
TEST(Uints, Uint16TooManyBytes)
{
std::vector<uint8_t> i = {0x04, 0x86, 0x00};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint16_t v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was not fully unpacked
ASSERT_FALSE(p.fullyUnpacked());
uint16_t k = 0x8604;
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v, k);
}
TEST(Uints, Uint16InsufficientBytes)
{
std::vector<uint8_t> i = {0x04};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint16_t v = 0;
// check that the number of bytes matches
ASSERT_NE(p.unpack(v), 0);
// check that the payload was not fully unpacked (comprehends unpack errors)
ASSERT_FALSE(p.fullyUnpacked());
// check that v is zero
ASSERT_EQ(v, 0);
}
TEST(Uints, Uint32)
{
std::vector<uint8_t> i = {0x04, 0x86, 0x00, 0x02};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint32_t v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
uint32_t k = 0x02008604;
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v, k);
}
TEST(Uints, Uint32TooManyBytes)
{
std::vector<uint8_t> i = {0x04, 0x86, 0x00, 0x02, 0x44};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint32_t v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was not fully unpacked
ASSERT_FALSE(p.fullyUnpacked());
uint32_t k = 0x02008604;
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v, k);
}
TEST(Uints, Uint32InsufficientBytes)
{
std::vector<uint8_t> i = {0x04, 0x86, 0x00};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint32_t v = 0;
// check that the number of bytes matches
ASSERT_NE(p.unpack(v), 0);
// check that the payload was not fully unpacked (comprehends unpack errors)
ASSERT_FALSE(p.fullyUnpacked());
// check that v is zero
ASSERT_EQ(v, 0);
}
TEST(Uints, Uint64)
{
std::vector<uint8_t> i = {0x04, 0x86, 0x00, 0x02, 0x44, 0x33, 0x22, 0x11};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint64_t v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
uint64_t k = 0x1122334402008604ull;
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v, k);
}
TEST(Uints, Uint64TooManyBytes)
{
std::vector<uint8_t> i = {0x04, 0x86, 0x00, 0x02, 0x44,
0x33, 0x22, 0x11, 0x55};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint64_t v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was not fully unpacked
ASSERT_FALSE(p.fullyUnpacked());
uint64_t k = 0x1122334402008604ull;
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v, k);
}
TEST(Uints, Uint64InsufficientBytes)
{
std::vector<uint8_t> i = {0x04, 0x86, 0x00, 0x02, 0x44, 0x33, 0x22};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint64_t v = 0;
// check that the number of bytes matches
ASSERT_NE(p.unpack(v), 0);
// check that the payload was not fully unpacked (comprehends unpack errors)
ASSERT_FALSE(p.fullyUnpacked());
// check that v is zero
ASSERT_EQ(v, 0);
}
TEST(Uints, Uint24)
{
std::vector<uint8_t> i = {0x58, 0x23, 0x11};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint24_t v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
uint24_t k = 0x112358;
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v, k);
}
TEST(FixedInts, Uint24TooManyBytes)
{
std::vector<uint8_t> i = {0x58, 0x23, 0x11, 0x00};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint24_t v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was not fully unpacked
ASSERT_FALSE(p.fullyUnpacked());
uint24_t k = 0x112358;
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v, k);
}
TEST(FixedInts, Uint24InsufficientBytes)
{
std::vector<uint8_t> i = {0x58, 0x23};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint24_t v = 0;
// check that the number of bytes matches
ASSERT_NE(p.unpack(v), 0);
// check that the payload was not fully unpacked (comprehends unpack errors)
ASSERT_FALSE(p.fullyUnpacked());
// check that v is zero
ASSERT_EQ(v, 0);
}
TEST(FixedInts, Uint3Uint5)
{
// individual bytes are unpacked low-order-bits first
// v1 will use [2:0], v2 will use [7:3]
std::vector<uint8_t> i = {0xc9};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint3_t v1;
uint5_t v2;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v1, v2), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
uint3_t k1 = 0x1;
uint5_t k2 = 0x19;
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v1, k1);
ASSERT_EQ(v2, k2);
}
TEST(FixedInts, Uint3Uint4TooManyBits)
{
// high order bit should not get unpacked
std::vector<uint8_t> i = {0xc9};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint3_t v1;
uint4_t v2;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v1, v2), 0);
// check that the payload was not fully unpacked
ASSERT_FALSE(p.fullyUnpacked());
uint3_t k1 = 0x1;
uint4_t k2 = 0x9;
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v1, k1);
ASSERT_EQ(v2, k2);
}
TEST(FixedInts, Uint3Uint6InsufficientBits)
{
// insufficient bits to unpack v2
std::vector<uint8_t> i = {0xc9};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint3_t v1;
uint6_t v2;
// check that the number of bytes matches
ASSERT_NE(p.unpack(v1, v2), 0);
// check that the payload was not fully unpacked (comprehends unpack errors)
ASSERT_FALSE(p.fullyUnpacked());
uint3_t k1 = 0x1;
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v1, k1);
// check that v2 is zero
ASSERT_EQ(v2, 0);
}
TEST(Bools, Boolx8)
{
// individual bytes are unpacked low-order-bits first
// [v8, v7, v6, v5, v4, v3, v2, v1]
std::vector<uint8_t> i = {0xc9};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
bool v8, v7, v6, v5;
bool v4, v3, v2, v1;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v1, v2, v3, v4, v5, v6, v7, v8), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
// check that the bytes were correctly unpacked (LSB first)
bool k8 = true, k7 = true, k6 = false, k5 = false;
bool k4 = true, k3 = false, k2 = false, k1 = true;
ASSERT_EQ(v1, k1);
ASSERT_EQ(v2, k2);
ASSERT_EQ(v3, k3);
ASSERT_EQ(v4, k4);
ASSERT_EQ(v5, k5);
ASSERT_EQ(v6, k6);
ASSERT_EQ(v7, k7);
ASSERT_EQ(v8, k8);
}
TEST(Bools, Boolx8TooManyBits)
{
// high order bit should not get unpacked
// individual bytes are unpacked low-order-bits first
// [v7, v6, v5, v4, v3, v2, v1]
std::vector<uint8_t> i = {0xc9};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
bool v7, v6, v5;
bool v4, v3, v2, v1;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v1, v2, v3, v4, v5, v6, v7), 0);
// check that the payload was not fully unpacked
ASSERT_FALSE(p.fullyUnpacked());
// check that the bytes were correctly unpacked (LSB first)
bool k7 = true, k6 = false, k5 = false;
bool k4 = true, k3 = false, k2 = false, k1 = true;
ASSERT_EQ(v1, k1);
ASSERT_EQ(v2, k2);
ASSERT_EQ(v3, k3);
ASSERT_EQ(v4, k4);
ASSERT_EQ(v5, k5);
ASSERT_EQ(v6, k6);
ASSERT_EQ(v7, k7);
}
TEST(Bools, Boolx8InsufficientBits)
{
// individual bytes are unpacked low-order-bits first
// [v8, v7, v6, v5, v4, v3, v2, v1]
std::vector<uint8_t> i = {0xc9};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
bool v9;
bool v8, v7, v6, v5;
bool v4, v3, v2, v1;
// check that the number of bytes matches
ASSERT_NE(p.unpack(v1, v2, v3, v4, v5, v6, v7, v8, v9), 0);
// check that the payload was not fully unpacked (comprehends unpack errors)
ASSERT_FALSE(p.fullyUnpacked());
// check that the bytes were correctly unpacked (LSB first)
bool k8 = true, k7 = true, k6 = false, k5 = false;
bool k4 = true, k3 = false, k2 = false, k1 = true;
ASSERT_EQ(v1, k1);
ASSERT_EQ(v2, k2);
ASSERT_EQ(v3, k3);
ASSERT_EQ(v4, k4);
ASSERT_EQ(v5, k5);
ASSERT_EQ(v6, k6);
ASSERT_EQ(v7, k7);
ASSERT_EQ(v8, k8);
}
TEST(Bitsets, Bitset8)
{
// individual bytes are unpacked low-order-bits first
// a bitset for 8 bits fills the full byte
std::vector<uint8_t> i = {0xc9};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::bitset<8> v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
std::bitset<8> k(0xc9);
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v, k);
}
TEST(Bitsets, Bitset7TooManyBits)
{
// individual bytes are unpacked low-order-bits first
// a bitset for 8 bits fills the full byte
std::vector<uint8_t> i = {0xc9};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::bitset<7> v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was not fully unpacked
ASSERT_FALSE(p.fullyUnpacked());
std::bitset<7> k(0x49);
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v, k);
}
TEST(Bitsets, Bitset9InsufficientBits)
{
// individual bytes are unpacked low-order-bits first
// a bitset for 8 bits fills the full byte
std::vector<uint8_t> i = {0xc9};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::bitset<9> v;
// check that the number of bytes matches
ASSERT_NE(p.unpack(v), 0);
// check that the payload was not fully unpacked (comprehends unpack errors)
ASSERT_FALSE(p.fullyUnpacked());
std::bitset<9> k(0);
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v, k);
}
TEST(Bitsets, Bitset3Bitset5)
{
// individual bytes are unpacked low-order-bits first
// v1 will use [2:0], v2 will use [7:3]
std::vector<uint8_t> i = {0xc9};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::bitset<3> v1;
std::bitset<5> v2;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v1, v2), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
std::bitset<3> k1(0x1);
std::bitset<5> k2(0x19);
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v1, k1);
ASSERT_EQ(v2, k2);
}
TEST(Bitsets, Bitset3Bitset4TooManyBits)
{
// high order bit should not get unpacked
std::vector<uint8_t> i = {0xc9};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::bitset<3> v1;
std::bitset<4> v2;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v1, v2), 0);
// check that the payload was not fully unpacked
ASSERT_FALSE(p.fullyUnpacked());
std::bitset<3> k1 = 0x1;
std::bitset<4> k2 = 0x9;
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v1, k1);
ASSERT_EQ(v2, k2);
}
TEST(Bitsets, Bitset3Bitset6InsufficientBits)
{
// insufficient bits to unpack v2
std::vector<uint8_t> i = {0xc9};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::bitset<3> v1;
std::bitset<6> v2;
// check that the number of bytes matches
ASSERT_NE(p.unpack(v1, v2), 0);
// check that the payload was not fully unpacked (comprehends unpack errors)
ASSERT_FALSE(p.fullyUnpacked());
std::bitset<3> k1 = 0x1;
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v1, k1);
// check that v2 is zero
ASSERT_EQ(v2, 0);
}
TEST(Bitsets, Bitset32)
{
// individual bytes are unpacked low-order-bits first
// v1 will use 4 bytes, but in LSByte first order
// v1[7:0] v1[15:9] v1[23:16] v1[31:24]
std::vector<uint8_t> i = {0xb4, 0x86, 0x91, 0xc2};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::bitset<32> v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
std::bitset<32> k(0xc29186b4);
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v, k);
}
TEST(Bitsets, Bitset31TooManyBits)
{
// high order bit should not get unpacked
std::vector<uint8_t> i = {0xb4, 0x86, 0x91, 0xc2};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::bitset<31> v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was not fully unpacked
ASSERT_FALSE(p.fullyUnpacked());
std::bitset<31> k(0x429186b4);
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v, k);
}
TEST(Bitsets, Bitset33InsufficientBits)
{
// insufficient bits to unpack v2
std::vector<uint8_t> i = {0xb4, 0x86, 0x91, 0xc2};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::bitset<33> v;
// check that the number of bytes matches
ASSERT_NE(p.unpack(v), 0);
// check that the payload was not fully unpacked (comprehends unpack errors)
ASSERT_FALSE(p.fullyUnpacked());
std::bitset<33> k(0);
// check that v is zero
ASSERT_EQ(v, 0);
}
TEST(Arrays, Array4xUint8)
{
// an array of bytes will be read verbatim, low-order element first
std::vector<uint8_t> i = {0x02, 0x00, 0x86, 0x04};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::array<uint8_t, 4> v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
std::array<uint8_t, 4> k = {{0x02, 0x00, 0x86, 0x04}};
// check that the bytes were correctly unpacked (in byte order)
ASSERT_EQ(v, k);
}
TEST(Arrays, Array4xUint8TooManyBytes)
{
// last byte should not get unpacked
// an array of bytes will be read verbatim, low-order element first
std::vector<uint8_t> i = {0x02, 0x00, 0x86, 0x04, 0x22};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::array<uint8_t, 4> v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was not fully unpacked
ASSERT_FALSE(p.fullyUnpacked());
std::array<uint8_t, 4> k = {{0x02, 0x00, 0x86, 0x04}};
// check that the bytes were correctly unpacked (in byte order)
ASSERT_EQ(v, k);
}
TEST(Arrays, Array4xUint8InsufficientBytes)
{
// last byte should not get unpacked
// an array of bytes will be read verbatim, low-order element first
std::vector<uint8_t> i = {0x02, 0x00, 0x86};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::array<uint8_t, 4> v;
// check that the number of bytes matches
ASSERT_NE(p.unpack(v), 0);
// check that the payload was not fully unpacked
ASSERT_FALSE(p.fullyUnpacked());
// arrays of uint8_t will be unpacked all at once
// so nothing will get unpacked
std::array<uint8_t, 4> k = {{0, 0, 0, 0}};
// check that the bytes were correctly unpacked (in byte order)
ASSERT_EQ(v, k);
}
TEST(Arrays, Array4xUint32)
{
// an array of multi-byte values will be unpacked in order low-order
// element first, each multi-byte element in LSByte order
// v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24]
// v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24]
// v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24]
// v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24]
std::vector<uint8_t> i = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22,
0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34, 0x12};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::array<uint32_t, 4> v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
std::array<uint32_t, 4> k = {
{0x11223344, 0x22446688, 0x33557799, 0x12345678}};
// check that the bytes were correctly unpacked (in byte order)
ASSERT_EQ(v, k);
}
TEST(Arrays, Array4xUint32TooManyBytes)
{
// last byte should not get unpacked
// an array of multi-byte values will be unpacked in order low-order
// element first, each multi-byte element in LSByte order
// v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24]
// v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24]
// v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24]
// v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24]
std::vector<uint8_t> i = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66,
0x44, 0x22, 0x99, 0x77, 0x55, 0x33,
0x78, 0x56, 0x34, 0x12, 0xaa};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::array<uint32_t, 4> v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was not fully unpacked
ASSERT_FALSE(p.fullyUnpacked());
std::array<uint32_t, 4> k = {
{0x11223344, 0x22446688, 0x33557799, 0x12345678}};
// check that the bytes were correctly unpacked (in byte order)
ASSERT_EQ(v, k);
}
TEST(Arrays, Array4xUint32InsufficientBytes)
{
// last value should not get unpacked
// an array of multi-byte values will be unpacked in order low-order
// element first, each multi-byte element in LSByte order
// v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24]
// v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24]
// v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24]
// v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24]
std::vector<uint8_t> i = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22,
0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::array<uint32_t, 4> v;
// check that the number of bytes matches
ASSERT_NE(p.unpack(v), 0);
// check that the payload was not fully unpacked
ASSERT_FALSE(p.fullyUnpacked());
// arrays of uint32_t will be unpacked in a way that looks atomic
std::array<uint32_t, 4> k = {{0, 0, 0, 0}};
// check that the bytes were correctly unpacked (in byte order)
ASSERT_EQ(v, k);
}
TEST(Vectors, VectorUint32)
{
// a vector of multi-byte values will be unpacked in order low-order
// element first, each multi-byte element in LSByte order
// v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24]
// v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24]
// v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24]
// v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24]
std::vector<uint8_t> i = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22,
0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34, 0x12};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::vector<uint32_t> v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
std::vector<uint32_t> k = {0x11223344, 0x22446688, 0x33557799, 0x12345678};
// check that the bytes were correctly unpacked (in byte order)
ASSERT_EQ(v, k);
}
// combination of TooManyBytes and InsufficientBytes because
// vectors will attempt to unpack full <T>s until the end of the input
TEST(Vectors, VectorUint32NonIntegralBytes)
{
// last value should not get unpacked
// a vector of multi-byte values will be unpacked in order low-order
// element first, each multi-byte element in LSByte order,
// and will attempt to consume all bytes remaining
// v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24]
// v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24]
// v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24]
// v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24]
std::vector<uint8_t> i = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22,
0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::vector<uint32_t> v;
// check that the vector unpacks successfully
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was not fully unpacked
ASSERT_FALSE(p.fullyUnpacked());
// arrays of uint32_t will be unpacked one at a time, so the
// last entry should not get unpacked properly
std::vector<uint32_t> k = {0x11223344, 0x22446688, 0x33557799};
// check that the bytes were correctly unpacked (in byte order)
ASSERT_EQ(v, k);
}
TEST(Vectors, VectorUint8)
{
// a vector of bytes will be unpacked verbatim, low-order element first
std::vector<uint8_t> i = {0x02, 0x00, 0x86, 0x04};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::vector<uint8_t> v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
std::vector<uint8_t> k = {0x02, 0x00, 0x86, 0x04};
// check that the bytes were correctly unpacked (in byte order)
ASSERT_EQ(v, k);
}
TEST(Vectors, VectorEmptyOk)
{
// an empty input vector to show that unpacking elements is okay
std::vector<uint8_t> i{};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::vector<uint32_t> v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
std::vector<uint32_t> k{};
// check that the unpacked vector is empty as expected
ASSERT_EQ(v, k);
}
TEST(Vectors, VectorOfTuplesOk)
{
// a vector of bytes will be unpacked verbatim, low-order element first
std::vector<uint8_t> i = {0x02, 0x00, 0x86, 0x04};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::vector<std::tuple<uint8_t, uint8_t>> v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
std::vector<std::tuple<uint8_t, uint8_t>> k = {{0x02, 0x00}, {0x86, 0x04}};
// check that the bytes were correctly unpacked (in byte order)
ASSERT_EQ(v, k);
}
TEST(Vectors, VectorOfTuplesInsufficientBytes)
{
// a vector of bytes will be unpacked verbatim, low-order element first
std::vector<uint8_t> i = {0x02, 0x00, 0x86, 0x04, 0xb4};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::vector<std::tuple<uint8_t, uint8_t>> v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was not fully unpacked
ASSERT_FALSE(p.fullyUnpacked());
std::vector<std::tuple<uint8_t, uint8_t>> k = {{0x02, 0x00}, {0x86, 0x04}};
// check that the bytes were correctly unpacked (in byte order)
ASSERT_EQ(v, k);
}
// Cannot test TooManyBytes or InsufficientBytes for vector<uint8_t>
// because it will always unpack whatever bytes are remaining
// TEST(Vectors, VectorUint8TooManyBytes) {}
// TEST(Vectors, VectorUint8InsufficientBytes) {}
TEST(UnpackAdvanced, OptionalOk)
{
// a vector of bytes will be unpacked verbatim, low-order element first
std::vector<uint8_t> i = {0xbe, 0x02, 0x00, 0x86, 0x04};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::optional<std::tuple<uint8_t, uint32_t>> v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
std::optional<std::tuple<uint8_t, uint32_t>> k{{0xbe, 0x04860002}};
// check that the bytes were correctly unpacked (in byte order)
ASSERT_EQ(v, k);
}
TEST(UnpackAdvanced, OptionalInsufficientBytes)
{
// a vector of bytes will be unpacked verbatim, low-order element first
std::vector<uint8_t> i = {0x02, 0x00, 0x86, 0x04};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
std::optional<std::tuple<uint8_t, uint32_t>> v;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was fully unpacked
ASSERT_FALSE(p.fullyUnpacked());
std::optional<std::tuple<uint8_t, uint32_t>> k;
// check that the bytes were correctly unpacked (in byte order)
ASSERT_EQ(v, k);
}
TEST(UnpackAdvanced, Uints)
{
// all elements will be unpacked in order, with each multi-byte
// element being processed LSByte first
// v1[7:0] v2[7:0] v2[15:8] v3[7:0] v3[15:8] v3[23:16] v3[31:24]
// v4[7:0] v4[15:8] v4[23:16] v4[31:24]
// v4[39:25] v4[47:40] v4[55:48] v4[63:56]
std::vector<uint8_t> i = {0x02, 0x04, 0x06, 0x11, 0x22, 0x33, 0x44, 0x55,
0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint8_t v1;
uint16_t v2;
uint32_t v3;
uint64_t v4;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v1, v2, v3, v4), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
uint8_t k1 = 0x02;
uint16_t k2 = 0x0604;
uint32_t k3 = 0x44332211;
uint64_t k4 = 0xccbbaa9988776655ull;
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v1, k1);
ASSERT_EQ(v2, k2);
ASSERT_EQ(v3, k3);
ASSERT_EQ(v4, k4);
}
TEST(UnpackAdvanced, TupleInts)
{
// all elements will be unpacked in order, with each multi-byte
// element being processed LSByte first
// v1[7:0] v2[7:0] v2[15:8] v3[7:0] v3[15:8] v3[23:16] v3[31:24]
// v4[7:0] v4[15:8] v4[23:16] v4[31:24]
// v4[39:25] v4[47:40] v4[55:48] v4[63:56]
std::vector<uint8_t> i = {0x02, 0x04, 0x06, 0x11, 0x22, 0x33, 0x44, 0x55,
0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint8_t v1;
uint16_t v2;
uint32_t v3;
uint64_t v4;
auto v = std::make_tuple(v1, v2, v3, v4);
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
uint8_t k1 = 0x02;
uint16_t k2 = 0x0604;
uint32_t k3 = 0x44332211;
uint64_t k4 = 0xccbbaa9988776655ull;
auto k = std::make_tuple(k1, k2, k3, k4);
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v, k);
}
TEST(UnpackAdvanced, BoolsnBitfieldsnFixedIntsOhMy)
{
// each element will be unpacked, filling the low-order bits first
// with multi-byte values getting unpacked LSByte first
// v1 will use k[0][1:0]
// v2 will use k[0][2]
// v3[4:0] will use k[0][7:3], v3[6:5] will use k[1][1:0]
// v4 will use k[1][2]
// v5 will use k[1][7:3]
std::vector<uint8_t> i = {0x9e, 0xdb};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint2_t v1;
bool v2;
std::bitset<7> v3;
bool v4;
uint5_t v5;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v1, v2, v3, v4, v5), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
uint2_t k1 = 2; // binary 0b10
bool k2 = true; // binary 0b1
std::bitset<7> k3(0x73); // binary 0b1110011
bool k4 = false; // binary 0b0
uint5_t k5 = 27; // binary 0b11011
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v1, k1);
ASSERT_EQ(v2, k2);
ASSERT_EQ(v3, k3);
ASSERT_EQ(v4, k4);
ASSERT_EQ(v5, k5);
}
TEST(UnpackAdvanced, UnalignedBitUnpacking)
{
// unaligned multi-byte values will be unpacked the same as
// other bits, effectively reading from a large value, low-order
// bits first, then consuming the stream LSByte first
// v1 will use k[0][1:0]
// v2[5:0] will use k[0][7:2], v2[7:6] will use k[1][1:0]
// v3 will use k[1][2]
// v4[4:0] will use k[1][7:3] v4[12:5] will use k[2][7:0]
// v4[15:13] will use k[3][2:0]
// v5 will use k[3][3]
// v6[3:0] will use k[3][7:0] v6[11:4] will use k[4][7:0]
// v6[19:12] will use k[5][7:0] v6[27:20] will use k[6][7:0]
// v6[31:28] will use k[7][3:0]
// v7 will use k[7][7:4]
std::vector<uint8_t> i = {0x96, 0xd2, 0x2a, 0xcd, 0xd3, 0x3b, 0xbc, 0x9d};
ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i));
uint2_t v1;
uint8_t v2;
bool v3;
uint16_t v4;
bool v5;
uint32_t v6;
uint4_t v7;
// check that the number of bytes matches
ASSERT_EQ(p.unpack(v1, v2, v3, v4, v5, v6, v7), 0);
// check that the payload was fully unpacked
ASSERT_TRUE(p.fullyUnpacked());
uint2_t k1 = 2; // binary 0b10
uint8_t k2 = 0xa5; // binary 0b10100101
bool k3 = false; // binary 0b0
uint16_t k4 = 0xa55a; // binary 0b1010010101011010
bool k5 = true; // binary 0b1
uint32_t k6 = 0xdbc3bd3c; // binary 0b11011011110000111011110100111100
uint4_t k7 = 9; // binary 0b1001
// check that the bytes were correctly unpacked (LSB first)
ASSERT_EQ(v1, k1);
ASSERT_EQ(v2, k2);
ASSERT_EQ(v3, k3);
ASSERT_EQ(v4, k4);
ASSERT_EQ(v5, k5);
ASSERT_EQ(v6, k6);
ASSERT_EQ(v7, k7);
}