| /** |
| * Copyright © 2018 Intel Corporation |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #include <ipmid/api.hpp> |
| #include <ipmid/message.hpp> |
| |
| #include <gtest/gtest.h> |
| |
| TEST(Payload, InputSize) |
| { |
| std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; |
| size_t input_size = i.size(); |
| ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); |
| ASSERT_EQ(input_size, p.size()); |
| } |
| |
| TEST(Payload, OutputSize) |
| { |
| ipmi::message::Payload p; |
| ASSERT_EQ(0, p.size()); |
| std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; |
| p.pack(i); |
| ASSERT_EQ(i.size(), p.size()); |
| p.pack(i); |
| p.pack(i); |
| ASSERT_EQ(3 * i.size(), p.size()); |
| } |
| |
| TEST(Payload, Resize) |
| { |
| std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; |
| ipmi::message::Payload p; |
| p.pack(i); |
| p.resize(16); |
| ASSERT_EQ(p.size(), 16); |
| } |
| |
| TEST(Payload, Data) |
| { |
| std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; |
| ipmi::message::Payload p; |
| p.pack(i); |
| ASSERT_NE(nullptr, p.data()); |
| } |
| |
| TEST(PayloadResponse, Append) |
| { |
| std::string s("0123456789abcdef"); |
| ipmi::message::Payload p; |
| p.append(s.data(), s.data() + s.size()); |
| ASSERT_EQ(s.size(), p.size()); |
| } |
| |
| TEST(PayloadResponse, AppendDrain) |
| { |
| std::string s("0123456789abcdef"); |
| ipmi::message::Payload p; |
| bool b = true; |
| // first pack a lone bit |
| p.pack(b); |
| p.append(s.data(), s.data() + s.size()); |
| // append will 'drain' first, padding the lone bit into a full byte |
| ASSERT_EQ(s.size() + 1, p.size()); |
| } |
| |
| TEST(PayloadResponse, AppendBits) |
| { |
| ipmi::message::Payload p; |
| p.appendBits(3, 0b101); |
| ASSERT_EQ(p.bitStream, 0b101); |
| p.appendBits(4, 0b1100); |
| ASSERT_EQ(p.bitStream, 0b1100101); |
| p.appendBits(1, 0b1); |
| ASSERT_EQ(p.bitStream, 0); |
| ASSERT_EQ(p.bitCount, 0); |
| // appended 8 bits, should be one byte |
| ASSERT_EQ(p.size(), 1); |
| std::vector<uint8_t> k1 = {0b11100101}; |
| ASSERT_EQ(p.raw, k1); |
| p.appendBits(7, 0b1110111); |
| // appended 7 more bits, should still be one byte |
| ASSERT_EQ(p.size(), 1); |
| p.drain(); |
| // drain forces padding; should be two bytes now |
| ASSERT_EQ(p.size(), 2); |
| std::vector<uint8_t> k2 = {0b11100101, 0b01110111}; |
| ASSERT_EQ(p.raw, k2); |
| } |
| |
| TEST(PayloadResponse, Drain16Bits) |
| { |
| ipmi::message::Payload p; |
| p.bitStream = 0b1011010011001111; |
| p.bitCount = 16; |
| p.drain(); |
| ASSERT_EQ(p.size(), 2); |
| ASSERT_EQ(p.bitCount, 0); |
| ASSERT_EQ(p.bitStream, 0); |
| std::vector<uint8_t> k1 = {0b11001111, 0b10110100}; |
| ASSERT_EQ(p.raw, k1); |
| } |
| |
| TEST(PayloadResponse, Drain15Bits) |
| { |
| ipmi::message::Payload p; |
| p.bitStream = 0b101101001100111; |
| p.bitCount = 15; |
| p.drain(); |
| ASSERT_EQ(p.size(), 2); |
| ASSERT_EQ(p.bitCount, 0); |
| ASSERT_EQ(p.bitStream, 0); |
| std::vector<uint8_t> k1 = {0b1100111, 0b1011010}; |
| ASSERT_EQ(p.raw, k1); |
| } |
| |
| TEST(PayloadResponse, Drain15BitsWholeBytesOnly) |
| { |
| ipmi::message::Payload p; |
| p.bitStream = 0b101101001100111; |
| p.bitCount = 15; |
| p.drain(true); |
| // only the first whole byte should have been 'drained' into p.raw |
| ASSERT_EQ(p.size(), 1); |
| ASSERT_EQ(p.bitCount, 7); |
| ASSERT_EQ(p.bitStream, 0b1011010); |
| std::vector<uint8_t> k1 = {0b1100111}; |
| ASSERT_EQ(p.raw, k1); |
| } |
| |
| TEST(PayloadRequest, Pop) |
| { |
| std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; |
| ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); |
| const auto& [vb, ve] = p.pop<uint8_t>(4); |
| std::vector<uint8_t> v(vb, ve); |
| std::vector<uint8_t> k = {0xbf, 0x04, 0x86, 0x00}; |
| ASSERT_EQ(v, k); |
| } |
| |
| TEST(PayloadRequest, FillBits) |
| { |
| std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; |
| ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); |
| p.fillBits(5); |
| ASSERT_FALSE(p.unpackError); |
| ASSERT_EQ(p.bitStream, 0xbf); |
| ASSERT_EQ(p.bitCount, 8); |
| // should still have 5 bits available, no change |
| p.fillBits(5); |
| ASSERT_FALSE(p.unpackError); |
| ASSERT_EQ(p.bitStream, 0xbf); |
| ASSERT_EQ(p.bitCount, 8); |
| // discard 5 bits (low order) |
| p.popBits(5); |
| // should add another byte into the stream (high order) |
| p.fillBits(5); |
| ASSERT_FALSE(p.unpackError); |
| ASSERT_EQ(p.bitStream, 0x25); |
| ASSERT_EQ(p.bitCount, 11); |
| } |
| |
| TEST(PayloadRequest, FillBitsTooManyBits) |
| { |
| std::vector<uint8_t> i = {1, 2, 3, 4, 5, 6, 7, 8, 9}; |
| ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); |
| p.fillBits(72); |
| ASSERT_TRUE(p.unpackError); |
| } |
| |
| TEST(PayloadRequest, FillBitsNotEnoughBytes) |
| { |
| std::vector<uint8_t> i = {1, 2, 3, 4}; |
| ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); |
| p.fillBits(48); |
| ASSERT_TRUE(p.unpackError); |
| } |
| |
| TEST(PayloadRequest, PopBits) |
| { |
| std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; |
| ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); |
| p.fillBits(4); |
| uint8_t v = p.popBits(4); |
| ASSERT_FALSE(p.unpackError); |
| ASSERT_EQ(p.bitStream, 0x0b); |
| ASSERT_EQ(p.bitCount, 4); |
| ASSERT_EQ(v, 0x0f); |
| } |
| |
| TEST(PayloadRequest, PopBitsNoFillBits) |
| { |
| std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; |
| ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); |
| p.popBits(4); |
| ASSERT_TRUE(p.unpackError); |
| } |
| |
| TEST(PayloadRequest, DiscardBits) |
| { |
| std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; |
| ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); |
| p.fillBits(5); |
| ASSERT_FALSE(p.unpackError); |
| ASSERT_EQ(p.bitStream, 0xbf); |
| ASSERT_EQ(p.bitCount, 8); |
| p.discardBits(); |
| ASSERT_FALSE(p.unpackError); |
| ASSERT_EQ(p.bitStream, 0); |
| ASSERT_EQ(p.bitCount, 0); |
| } |
| |
| TEST(PayloadRequest, FullyUnpacked) |
| { |
| std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; |
| ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); |
| uint32_t v1; |
| p.unpack(v1); |
| // still one remaining byte |
| ASSERT_FALSE(p.fullyUnpacked()); |
| p.fillBits(3); |
| p.popBits(3); |
| // still five remaining bits |
| ASSERT_FALSE(p.fullyUnpacked()); |
| p.fillBits(5); |
| p.popBits(5); |
| // fully unpacked, should be no errors |
| ASSERT_TRUE(p.fullyUnpacked()); |
| p.fillBits(4); |
| // fullyUnpacked fails because an attempt to unpack too many bytes |
| ASSERT_FALSE(p.fullyUnpacked()); |
| } |
| |
| TEST(PayloadRequest, ResetInternal) |
| { |
| std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; |
| ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); |
| p.fillBits(4); |
| p.unpackError = true; |
| p.reset(); |
| ASSERT_EQ(p.rawIndex, 0); |
| ASSERT_EQ(p.bitStream, 0); |
| ASSERT_EQ(p.bitCount, 0); |
| ASSERT_FALSE(p.unpackError); |
| } |
| |
| TEST(PayloadRequest, ResetUsage) |
| { |
| // Payload.reset is used to rewind the unpacking to the initial |
| // state. This is needed so that OEM commands can unpack the group |
| // number or the IANA to determine which handler needs to be called |
| std::vector<uint8_t> i = {0x04, 0x86}; |
| ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); |
| uint8_t v1; |
| // check that the number of bytes matches |
| ASSERT_EQ(p.unpack(v1), 0); |
| // check that the payload was not fully unpacked |
| ASSERT_FALSE(p.fullyUnpacked()); |
| uint8_t k1 = 0x04; |
| // check that the bytes were correctly unpacked (LSB first) |
| ASSERT_EQ(v1, k1); |
| // do a reset on the payload |
| p.reset(); |
| // unpack a uint16 |
| uint16_t v2; |
| // check that the number of bytes matches |
| ASSERT_EQ(p.unpack(v2), 0); |
| // check that the payload was fully unpacked |
| ASSERT_TRUE(p.fullyUnpacked()); |
| uint16_t k2 = 0x8604; |
| // check that the bytes were correctly unpacked (LSB first) |
| ASSERT_EQ(v2, k2); |
| } |
| |
| TEST(PayloadRequest, PartialPayload) |
| { |
| std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; |
| ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); |
| uint8_t v1; |
| ipmi::message::Payload localPayload; |
| // check that the number of bytes matches |
| ASSERT_EQ(p.unpack(v1, localPayload), 0); |
| // check that the payload was partially unpacked and not in error |
| ASSERT_FALSE(p.fullyUnpacked()); |
| ASSERT_FALSE(p.unpackError); |
| // check that the 'extracted' payload is not fully unpacked |
| ASSERT_FALSE(localPayload.fullyUnpacked()); |
| uint8_t k1 = 0xbf; |
| // check that the bytes were correctly unpacked (LSB first) |
| ASSERT_EQ(v1, k1); |
| uint32_t v2; |
| // unpack using the 'extracted' payload |
| ASSERT_EQ(localPayload.unpack(v2), 0); |
| ASSERT_TRUE(localPayload.fullyUnpacked()); |
| uint32_t k2 = 0x02008604; |
| ASSERT_EQ(v2, k2); |
| } |