| /* |
| // Copyright (c) 2017 2018 Intel Corporation |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| */ |
| |
| #include "dbus-sdr/sensorutils.hpp" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <iostream> |
| |
| namespace ipmi |
| { |
| |
| // Helper function to avoid repeated complicated expression |
| static bool baseInRange(double base) |
| { |
| auto min10 = static_cast<double>(minInt10); |
| auto max10 = static_cast<double>(maxInt10); |
| |
| return ((base >= min10) && (base <= max10)); |
| } |
| |
| // Helper function for internal use by getSensorAttributes() |
| // Ensures floating-point "base" is within bounds, |
| // and adjusts integer exponent "expShift" accordingly. |
| // To minimize data loss when later truncating to integer, |
| // the floating-point "base" will be as large as possible, |
| // but still within the bounds (minInt10,maxInt10). |
| // The bounds of "expShift" are (minInt4,maxInt4). |
| // Consider this equation: n = base * (10.0 ** expShift) |
| // This function will try to maximize "base", |
| // adjusting "expShift" to keep the value "n" unchanged, |
| // while keeping base and expShift within bounds. |
| // Returns true if successful, modifies values in-place |
| static bool scaleFloatExp(double& base, int8_t& expShift) |
| { |
| // Comparing with zero should be OK, zero is special in floating-point |
| // If base is exactly zero, no adjustment of the exponent is necessary |
| if (base == 0.0) |
| { |
| return true; |
| } |
| |
| // As long as base value is within allowed range, expand precision |
| // This will help to avoid loss when later rounding to integer |
| while (baseInRange(base)) |
| { |
| if (expShift <= minInt4) |
| { |
| // Already at the minimum expShift, can not decrement it more |
| break; |
| } |
| |
| // Multiply by 10, but shift decimal point to the left, no net change |
| base *= 10.0; |
| --expShift; |
| } |
| |
| // As long as base value is *not* within range, shrink precision |
| // This will pull base value closer to zero, thus within range |
| while (!(baseInRange(base))) |
| { |
| if (expShift >= maxInt4) |
| { |
| // Already at the maximum expShift, can not increment it more |
| break; |
| } |
| |
| // Divide by 10, but shift decimal point to the right, no net change |
| base /= 10.0; |
| ++expShift; |
| } |
| |
| // If the above loop was not able to pull it back within range, |
| // the base value is beyond what expShift can represent, return false. |
| return baseInRange(base); |
| } |
| |
| // Helper function for internal use by getSensorAttributes() |
| // Ensures integer "ibase" is no larger than necessary, |
| // by normalizing it so that the decimal point shift is in the exponent, |
| // whenever possible. |
| // This provides more consistent results, |
| // as many equivalent solutions are collapsed into one consistent solution. |
| // If integer "ibase" is a clean multiple of 10, |
| // divide it by 10 (this is lossless), so it is closer to zero. |
| // Also modify floating-point "dbase" at the same time, |
| // as both integer and floating-point base share the same expShift. |
| // Example: (ibase=300, expShift=2) becomes (ibase=3, expShift=4) |
| // because the underlying value is the same: 200*(10**2) == 2*(10**4) |
| // Always successful, modifies values in-place |
| static void normalizeIntExp(int16_t& ibase, int8_t& expShift, double& dbase) |
| { |
| for (;;) |
| { |
| // If zero, already normalized, ensure exponent also zero |
| if (ibase == 0) |
| { |
| expShift = 0; |
| break; |
| } |
| |
| // If not cleanly divisible by 10, already normalized |
| if ((ibase % 10) != 0) |
| { |
| break; |
| } |
| |
| // If exponent already at max, already normalized |
| if (expShift >= maxInt4) |
| { |
| break; |
| } |
| |
| // Bring values closer to zero, correspondingly shift exponent, |
| // without changing the underlying number that this all represents, |
| // similar to what is done by scaleFloatExp(). |
| // The floating-point base must be kept in sync with the integer base, |
| // as both floating-point and integer share the same exponent. |
| ibase /= 10; |
| dbase /= 10.0; |
| ++expShift; |
| } |
| } |
| |
| // The IPMI equation: |
| // y = (Mx + (B * 10^(bExp))) * 10^(rExp) |
| // Section 36.3 of this document: |
| // https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf |
| // |
| // The goal is to exactly match the math done by the ipmitool command, |
| // at the other side of the interface: |
| // https://github.com/ipmitool/ipmitool/blob/42a023ff0726c80e8cc7d30315b987fe568a981d/lib/ipmi_sdr.c#L360 |
| // |
| // To use with Wolfram Alpha, make all variables single letters |
| // bExp becomes E, rExp becomes R |
| // https://www.wolframalpha.com/input/?i=y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29 |
| bool getSensorAttributes(const double max, const double min, int16_t& mValue, |
| int8_t& rExp, int16_t& bValue, int8_t& bExp, |
| bool& bSigned) |
| { |
| if (!(std::isfinite(min))) |
| { |
| std::cerr << "getSensorAttributes: Min value is unusable\n"; |
| return false; |
| } |
| if (!(std::isfinite(max))) |
| { |
| std::cerr << "getSensorAttributes: Max value is unusable\n"; |
| return false; |
| } |
| |
| // Because NAN has already been tested for, this comparison works |
| if (max <= min) |
| { |
| std::cerr << "getSensorAttributes: Max must be greater than min\n"; |
| return false; |
| } |
| |
| // Given min and max, we must solve for M, B, bExp, rExp |
| // y comes in from D-Bus (the actual sensor reading) |
| // x is calculated from y by scaleIPMIValueFromDouble() below |
| // If y is min, x should equal = 0 (or -128 if signed) |
| // If y is max, x should equal 255 (or 127 if signed) |
| double fullRange = max - min; |
| double lowestX; |
| |
| rExp = 0; |
| bExp = 0; |
| |
| // TODO(): The IPMI document is ambiguous, as to whether |
| // the resulting byte should be signed or unsigned, |
| // essentially leaving it up to the caller. |
| // The document just refers to it as "raw reading", |
| // or "byte of reading", without giving further details. |
| // Previous code set it signed if min was less than zero, |
| // so I'm sticking with that, until I learn otherwise. |
| if (min < 0.0) |
| { |
| // TODO(): It would be worth experimenting with the range (-127,127), |
| // instead of the range (-128,127), because this |
| // would give good symmetry around zero, and make results look better. |
| // Divide by 254 instead of 255, and change -128 to -127 elsewhere. |
| bSigned = true; |
| lowestX = -128.0; |
| } |
| else |
| { |
| bSigned = false; |
| lowestX = 0.0; |
| } |
| |
| // Step 1: Set y to (max - min), set x to 255, set B to 0, solve for M |
| // This works, regardless of signed or unsigned, |
| // because total range is the same. |
| double dM = fullRange / 255.0; |
| |
| // Step 2: Constrain M, and set rExp accordingly |
| if (!(scaleFloatExp(dM, rExp))) |
| { |
| std::cerr << "getSensorAttributes: Multiplier range exceeds scale (M=" |
| << dM << ", rExp=" << (int)rExp << ")\n"; |
| return false; |
| } |
| |
| mValue = static_cast<int16_t>(std::round(dM)); |
| |
| normalizeIntExp(mValue, rExp, dM); |
| |
| // The multiplier can not be zero, for obvious reasons |
| if (mValue == 0) |
| { |
| std::cerr << "getSensorAttributes: Multiplier range below scale\n"; |
| return false; |
| } |
| |
| // Step 3: set y to min, set x to min, keep M and rExp, solve for B |
| // If negative, x will be -128 (the most negative possible byte), not 0 |
| |
| // Solve the IPMI equation for B, instead of y |
| // https://www.wolframalpha.com/input/?i=solve+y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29+for+B |
| // B = 10^(-rExp - bExp) (y - M 10^rExp x) |
| // TODO(): Compare with this alternative solution from SageMathCell |
| // https://sagecell.sagemath.org/?z=eJyrtC1LLNJQr1TX5KqAMCuATF8I0xfIdIIwnYDMIteKAggPxAIKJMEFkiACxfk5Zaka0ZUKtrYKGhq-CloKFZoK2goaTkCWhqGBgpaWAkilpqYmQgBklmasjoKTJgDAECTH&lang=sage&interacts=eJyLjgUAARUAuQ== |
| double dB = std::pow(10.0, ((-rExp) - bExp)) * |
| (min - ((dM * std::pow(10.0, rExp) * lowestX))); |
| |
| // Step 4: Constrain B, and set bExp accordingly |
| if (!(scaleFloatExp(dB, bExp))) |
| { |
| std::cerr << "getSensorAttributes: Offset (B=" << dB << ", bExp=" |
| << (int)bExp << ") exceeds multiplier scale (M=" << dM |
| << ", rExp=" << (int)rExp << ")\n"; |
| return false; |
| } |
| |
| bValue = static_cast<int16_t>(std::round(dB)); |
| |
| normalizeIntExp(bValue, bExp, dB); |
| |
| // Unlike the multiplier, it is perfectly OK for bValue to be zero |
| return true; |
| } |
| |
| uint8_t scaleIPMIValueFromDouble(const double value, const int16_t mValue, |
| const int8_t rExp, const int16_t bValue, |
| const int8_t bExp, const bool bSigned) |
| { |
| // Avoid division by zero below |
| if (mValue == 0) |
| { |
| throw std::out_of_range("Scaling multiplier is uninitialized"); |
| } |
| |
| auto dM = static_cast<double>(mValue); |
| auto dB = static_cast<double>(bValue); |
| |
| // Solve the IPMI equation for x, instead of y |
| // https://www.wolframalpha.com/input/?i=solve+y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29+for+x |
| // x = (10^(-rExp) (y - B 10^(rExp + bExp)))/M and M 10^rExp!=0 |
| // TODO(): Compare with this alternative solution from SageMathCell |
| // https://sagecell.sagemath.org/?z=eJyrtC1LLNJQr1TX5KqAMCuATF8I0xfIdIIwnYDMIteKAggPxAIKJMEFkiACxfk5Zaka0ZUKtrYKGhq-CloKFZoK2goaTkCWhqGBgpaWAkilpqYmQgBklmasDlAlAMB8JP0=&lang=sage&interacts=eJyLjgUAARUAuQ== |
| double dX = |
| (std::pow(10.0, -rExp) * (value - (dB * std::pow(10.0, rExp + bExp)))) / |
| dM; |
| |
| auto scaledValue = static_cast<int32_t>(std::round(dX)); |
| |
| int32_t minClamp; |
| int32_t maxClamp; |
| |
| // Because of rounding and integer truncation of scaling factors, |
| // sometimes the resulting byte is slightly out of range. |
| // Still allow this, but clamp the values to range. |
| if (bSigned) |
| { |
| minClamp = std::numeric_limits<int8_t>::lowest(); |
| maxClamp = std::numeric_limits<int8_t>::max(); |
| } |
| else |
| { |
| minClamp = std::numeric_limits<uint8_t>::lowest(); |
| maxClamp = std::numeric_limits<uint8_t>::max(); |
| } |
| |
| auto clampedValue = std::clamp(scaledValue, minClamp, maxClamp); |
| |
| // This works for both signed and unsigned, |
| // because it is the same underlying byte storage. |
| return static_cast<uint8_t>(clampedValue); |
| } |
| |
| uint8_t getScaledIPMIValue(const double value, const double max, |
| const double min) |
| { |
| int16_t mValue = 0; |
| int8_t rExp = 0; |
| int16_t bValue = 0; |
| int8_t bExp = 0; |
| bool bSigned = false; |
| |
| bool result = |
| getSensorAttributes(max, min, mValue, rExp, bValue, bExp, bSigned); |
| if (!result) |
| { |
| throw std::runtime_error("Illegal sensor attributes"); |
| } |
| |
| return scaleIPMIValueFromDouble(value, mValue, rExp, bValue, bExp, bSigned); |
| } |
| |
| } // namespace ipmi |