blob: a5a82e9ede4b4c7d5862e101665bbfc6f0ac1b7e [file] [log] [blame]
/*
// Copyright (c) 2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include "dbus-sdr/sdrutils.hpp"
#include <optional>
#include <unordered_set>
#ifdef FEATURE_HYBRID_SENSORS
#include <ipmid/utils.hpp>
namespace ipmi
{
namespace sensor
{
extern const IdInfoMap sensors;
} // namespace sensor
} // namespace ipmi
#endif
namespace details
{
uint16_t getSensorSubtree(std::shared_ptr<SensorSubTree>& subtree)
{
static std::shared_ptr<SensorSubTree> sensorTreePtr;
static uint16_t sensorUpdatedIndex = 0;
std::shared_ptr<sdbusplus::asio::connection> dbus = getSdBus();
static sdbusplus::bus::match_t sensorAdded(
*dbus,
"type='signal',member='InterfacesAdded',arg0path='/xyz/openbmc_project/"
"sensors/'",
[](sdbusplus::message_t&) { sensorTreePtr.reset(); });
static sdbusplus::bus::match_t sensorRemoved(
*dbus,
"type='signal',member='InterfacesRemoved',arg0path='/xyz/"
"openbmc_project/sensors/'",
[](sdbusplus::message_t&) { sensorTreePtr.reset(); });
if (sensorTreePtr)
{
subtree = sensorTreePtr;
return sensorUpdatedIndex;
}
sensorTreePtr = std::make_shared<SensorSubTree>();
static constexpr const int32_t depth = 2;
auto lbdUpdateSensorTree =
[&dbus](const char* path, const auto& interfaces) {
auto mapperCall = dbus->new_method_call(
"xyz.openbmc_project.ObjectMapper",
"/xyz/openbmc_project/object_mapper",
"xyz.openbmc_project.ObjectMapper", "GetSubTree");
SensorSubTree sensorTreePartial;
mapperCall.append(path, depth, interfaces);
try
{
auto mapperReply = dbus->call(mapperCall);
mapperReply.read(sensorTreePartial);
}
catch (const sdbusplus::exception_t& e)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"fail to update subtree",
phosphor::logging::entry("PATH=%s", path),
phosphor::logging::entry("WHAT=%s", e.what()));
return false;
}
if constexpr (debug)
{
std::fprintf(stderr, "IPMI updated: %zu sensors under %s\n",
sensorTreePartial.size(), path);
}
sensorTreePtr->merge(std::move(sensorTreePartial));
return true;
};
// Add sensors to SensorTree
static constexpr const std::array sensorInterfaces = {
"xyz.openbmc_project.Sensor.Value",
"xyz.openbmc_project.Sensor.ValueMutability",
"xyz.openbmc_project.Sensor.Threshold.Warning",
"xyz.openbmc_project.Sensor.Threshold.Critical"};
static constexpr const std::array vrInterfaces = {
"xyz.openbmc_project.Control.VoltageRegulatorMode"};
bool sensorRez = lbdUpdateSensorTree("/xyz/openbmc_project/sensors",
sensorInterfaces);
#ifdef FEATURE_HYBRID_SENSORS
if (!ipmi::sensor::sensors.empty())
{
for (const auto& sensor : ipmi::sensor::sensors)
{
// Threshold sensors should not be emplaced in here.
if (boost::starts_with(sensor.second.sensorPath,
"/xyz/openbmc_project/sensors/"))
{
continue;
}
// The bus service name is not listed in ipmi::sensor::Info. Give it
// an empty string. For those function using non-threshold sensors,
// the bus service name will be retrieved in an alternative way.
boost::container::flat_map<std::string, std::vector<std::string>>
connectionMap{
{"", {sensor.second.propertyInterfaces.begin()->first}}};
sensorTreePtr->emplace(sensor.second.sensorPath, connectionMap);
}
}
#endif
// Error if searching for sensors failed.
if (!sensorRez)
{
return sensorUpdatedIndex;
}
// Add VR control as optional search path.
(void)lbdUpdateSensorTree("/xyz/openbmc_project/vr", vrInterfaces);
subtree = sensorTreePtr;
sensorUpdatedIndex++;
// The SDR is being regenerated, wipe the old stats
sdrStatsTable.wipeTable();
sdrWriteTable.wipeTable();
return sensorUpdatedIndex;
}
bool getSensorNumMap(std::shared_ptr<SensorNumMap>& sensorNumMap)
{
static std::shared_ptr<SensorNumMap> sensorNumMapPtr;
bool sensorNumMapUpated = false;
static uint16_t prevSensorUpdatedIndex = 0;
std::shared_ptr<SensorSubTree> sensorTree;
uint16_t curSensorUpdatedIndex = details::getSensorSubtree(sensorTree);
if (!sensorTree)
{
return sensorNumMapUpated;
}
if ((curSensorUpdatedIndex == prevSensorUpdatedIndex) && sensorNumMapPtr)
{
sensorNumMap = sensorNumMapPtr;
return sensorNumMapUpated;
}
prevSensorUpdatedIndex = curSensorUpdatedIndex;
sensorNumMapPtr = std::make_shared<SensorNumMap>();
uint16_t sensorNum = 0;
uint16_t sensorIndex = 0;
for (const auto& sensor : *sensorTree)
{
sensorNumMapPtr->insert(
SensorNumMap::value_type(sensorNum, sensor.first));
sensorIndex++;
if (sensorIndex == maxSensorsPerLUN)
{
sensorIndex = lun1Sensor0;
}
else if (sensorIndex == (lun1Sensor0 | maxSensorsPerLUN))
{
// Skip assigning LUN 0x2 any sensors
sensorIndex = lun3Sensor0;
}
else if (sensorIndex == (lun3Sensor0 | maxSensorsPerLUN))
{
// this is an error, too many IPMI sensors
throw std::out_of_range("Maximum number of IPMI sensors exceeded.");
}
sensorNum = sensorIndex;
}
sensorNumMap = sensorNumMapPtr;
sensorNumMapUpated = true;
return sensorNumMapUpated;
}
} // namespace details
bool getSensorSubtree(SensorSubTree& subtree)
{
std::shared_ptr<SensorSubTree> sensorTree;
details::getSensorSubtree(sensorTree);
if (!sensorTree)
{
return false;
}
subtree = *sensorTree;
return true;
}
#ifdef FEATURE_HYBRID_SENSORS
// Static sensors are listed in sensor-gen.cpp.
ipmi::sensor::IdInfoMap::const_iterator
findStaticSensor(const std::string& path)
{
return std::find_if(
ipmi::sensor::sensors.begin(), ipmi::sensor::sensors.end(),
[&path](const ipmi::sensor::IdInfoMap::value_type& findSensor) {
return findSensor.second.sensorPath == path;
});
}
#endif
std::string getSensorTypeStringFromPath(const std::string& path)
{
// get sensor type string from path, path is defined as
// /xyz/openbmc_project/sensors/<type>/label
size_t typeEnd = path.rfind("/");
if (typeEnd == std::string::npos)
{
return path;
}
size_t typeStart = path.rfind("/", typeEnd - 1);
if (typeStart == std::string::npos)
{
return path;
}
// Start at the character after the '/'
typeStart++;
return path.substr(typeStart, typeEnd - typeStart);
}
uint8_t getSensorTypeFromPath(const std::string& path)
{
uint8_t sensorType = 0;
std::string type = getSensorTypeStringFromPath(path);
auto findSensor = sensorTypes.find(type.c_str());
if (findSensor != sensorTypes.end())
{
sensorType =
static_cast<uint8_t>(std::get<sensorTypeCodes>(findSensor->second));
} // else default 0x0 RESERVED
return sensorType;
}
uint16_t getSensorNumberFromPath(const std::string& path)
{
std::shared_ptr<SensorNumMap> sensorNumMapPtr;
details::getSensorNumMap(sensorNumMapPtr);
if (!sensorNumMapPtr)
{
return invalidSensorNumber;
}
try
{
return sensorNumMapPtr->right.at(path);
}
catch (const std::out_of_range& e)
{
phosphor::logging::log<phosphor::logging::level::ERR>(e.what());
return invalidSensorNumber;
}
}
uint8_t getSensorEventTypeFromPath(const std::string& path)
{
uint8_t sensorEventType = 0;
std::string type = getSensorTypeStringFromPath(path);
auto findSensor = sensorTypes.find(type.c_str());
if (findSensor != sensorTypes.end())
{
sensorEventType = static_cast<uint8_t>(
std::get<sensorEventTypeCodes>(findSensor->second));
}
return sensorEventType;
}
std::string getPathFromSensorNumber(uint16_t sensorNum)
{
std::shared_ptr<SensorNumMap> sensorNumMapPtr;
details::getSensorNumMap(sensorNumMapPtr);
if (!sensorNumMapPtr)
{
return std::string();
}
try
{
return sensorNumMapPtr->left.at(sensorNum);
}
catch (const std::out_of_range& e)
{
phosphor::logging::log<phosphor::logging::level::ERR>(e.what());
return std::string();
}
}
namespace ipmi
{
std::map<std::string, std::vector<std::string>>
getObjectInterfaces(const char* path)
{
std::map<std::string, std::vector<std::string>> interfacesResponse;
std::vector<std::string> interfaces;
std::shared_ptr<sdbusplus::asio::connection> dbus = getSdBus();
sdbusplus::message_t getObjectMessage =
dbus->new_method_call("xyz.openbmc_project.ObjectMapper",
"/xyz/openbmc_project/object_mapper",
"xyz.openbmc_project.ObjectMapper", "GetObject");
getObjectMessage.append(path, interfaces);
try
{
sdbusplus::message_t response = dbus->call(getObjectMessage);
response.read(interfacesResponse);
}
catch (const std::exception& e)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Failed to GetObject", phosphor::logging::entry("PATH=%s", path),
phosphor::logging::entry("WHAT=%s", e.what()));
}
return interfacesResponse;
}
std::map<std::string, Value> getEntityManagerProperties(const char* path,
const char* interface)
{
std::map<std::string, Value> properties;
std::shared_ptr<sdbusplus::asio::connection> dbus = getSdBus();
sdbusplus::message_t getProperties =
dbus->new_method_call("xyz.openbmc_project.EntityManager", path,
"org.freedesktop.DBus.Properties", "GetAll");
getProperties.append(interface);
try
{
sdbusplus::message_t response = dbus->call(getProperties);
response.read(properties);
}
catch (const std::exception& e)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Failed to GetAll", phosphor::logging::entry("PATH=%s", path),
phosphor::logging::entry("INTF=%s", interface),
phosphor::logging::entry("WHAT=%s", e.what()));
}
return properties;
}
// Fetch the ipmiDecoratorPaths to get the list of dbus objects that
// have ipmi decorator to prevent unnessary dbus call to fetch the info
std::optional<std::unordered_set<std::string>>&
getIpmiDecoratorPaths(const std::optional<ipmi::Context::ptr>& ctx)
{
static std::optional<std::unordered_set<std::string>> ipmiDecoratorPaths;
if (!ctx.has_value() || ipmiDecoratorPaths != std::nullopt)
{
return ipmiDecoratorPaths;
}
boost::system::error_code ec;
std::vector<std::string> paths =
(*ctx)->bus->yield_method_call<std::vector<std::string>>(
(*ctx)->yield, ec, "xyz.openbmc_project.ObjectMapper",
"/xyz/openbmc_project/object_mapper",
"xyz.openbmc_project.ObjectMapper", "GetSubTreePaths", "/",
int32_t(0),
std::array<const char*, 1>{
"xyz.openbmc_project.Inventory.Decorator.Ipmi"});
if (ec)
{
return ipmiDecoratorPaths;
}
ipmiDecoratorPaths = std::unordered_set<std::string>(paths.begin(),
paths.end());
return ipmiDecoratorPaths;
}
const std::string* getSensorConfigurationInterface(
const std::map<std::string, std::vector<std::string>>&
sensorInterfacesResponse)
{
auto entityManagerService =
sensorInterfacesResponse.find("xyz.openbmc_project.EntityManager");
if (entityManagerService == sensorInterfacesResponse.end())
{
return nullptr;
}
// Find the fan configuration first (fans can have multiple configuration
// interfaces).
for (const auto& entry : entityManagerService->second)
{
if (entry == "xyz.openbmc_project.Configuration.AspeedFan" ||
entry == "xyz.openbmc_project.Configuration.I2CFan" ||
entry == "xyz.openbmc_project.Configuration.NuvotonFan")
{
return &entry;
}
}
for (const auto& entry : entityManagerService->second)
{
if (boost::algorithm::starts_with(entry,
"xyz.openbmc_project.Configuration."))
{
return &entry;
}
}
return nullptr;
}
// Follow Association properties for Sensor back to the Board dbus object to
// check for an EntityId and EntityInstance property.
void updateIpmiFromAssociation(
const std::string& path,
const std::unordered_set<std::string>& ipmiDecoratorPaths,
const DbusInterfaceMap& sensorMap, uint8_t& entityId,
uint8_t& entityInstance)
{
namespace fs = std::filesystem;
auto sensorAssociationObject =
sensorMap.find("xyz.openbmc_project.Association.Definitions");
if (sensorAssociationObject == sensorMap.end())
{
if constexpr (debug)
{
std::fprintf(stderr, "path=%s, no association interface found\n",
path.c_str());
}
return;
}
auto associationObject =
sensorAssociationObject->second.find("Associations");
if (associationObject == sensorAssociationObject->second.end())
{
if constexpr (debug)
{
std::fprintf(stderr, "path=%s, no association records found\n",
path.c_str());
}
return;
}
std::vector<Association> associationValues =
std::get<std::vector<Association>>(associationObject->second);
// loop through the Associations looking for the right one:
for (const auto& entry : associationValues)
{
// forward, reverse, endpoint
const std::string& forward = std::get<0>(entry);
const std::string& reverse = std::get<1>(entry);
const std::string& endpoint = std::get<2>(entry);
// We only currently concern ourselves with chassis+all_sensors.
if (!(forward == "chassis" && reverse == "all_sensors"))
{
continue;
}
// the endpoint is the board entry provided by
// Entity-Manager. so let's grab its properties if it has
// the right interface.
// just try grabbing the properties first.
ipmi::PropertyMap::iterator entityIdProp;
ipmi::PropertyMap::iterator entityInstanceProp;
if (ipmiDecoratorPaths.contains(endpoint))
{
std::map<std::string, Value> ipmiProperties =
getEntityManagerProperties(
endpoint.c_str(),
"xyz.openbmc_project.Inventory.Decorator.Ipmi");
entityIdProp = ipmiProperties.find("EntityId");
entityInstanceProp = ipmiProperties.find("EntityInstance");
if (entityIdProp != ipmiProperties.end())
{
entityId = static_cast<uint8_t>(
std::get<uint64_t>(entityIdProp->second));
}
if (entityInstanceProp != ipmiProperties.end())
{
entityInstance = static_cast<uint8_t>(
std::get<uint64_t>(entityInstanceProp->second));
}
}
// Now check the entity-manager entry for this sensor to see
// if it has its own value and use that instead.
//
// In theory, checking this first saves us from checking
// both, except in most use-cases identified, there won't be
// a per sensor override, so we need to always check both.
std::string sensorNameFromPath = fs::path(path).filename();
std::string sensorConfigPath = endpoint + "/" + sensorNameFromPath;
// Download the interfaces for the sensor from
// Entity-Manager to find the name of the configuration
// interface.
std::map<std::string, std::vector<std::string>>
sensorInterfacesResponse =
getObjectInterfaces(sensorConfigPath.c_str());
const std::string* configurationInterface =
getSensorConfigurationInterface(sensorInterfacesResponse);
// If there are multi association path settings and only one path exist,
// we need to continue if cannot find configuration interface for this
// sensor.
if (!configurationInterface)
{
continue;
}
// We found a configuration interface.
std::map<std::string, Value> configurationProperties =
getEntityManagerProperties(sensorConfigPath.c_str(),
configurationInterface->c_str());
entityIdProp = configurationProperties.find("EntityId");
entityInstanceProp = configurationProperties.find("EntityInstance");
if (entityIdProp != configurationProperties.end())
{
entityId =
static_cast<uint8_t>(std::get<uint64_t>(entityIdProp->second));
}
if (entityInstanceProp != configurationProperties.end())
{
entityInstance = static_cast<uint8_t>(
std::get<uint64_t>(entityInstanceProp->second));
}
// stop searching Association records.
break;
} // end for Association vectors.
if constexpr (debug)
{
std::fprintf(stderr, "path=%s, entityId=%d, entityInstance=%d\n",
path.c_str(), entityId, entityInstance);
}
}
} // namespace ipmi