| /** | 
 |  * Copyright © 2018 Intel Corporation | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *     http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 | #define SD_JOURNAL_SUPPRESS_LOCATION | 
 |  | 
 | #include <systemd/sd-journal.h> | 
 |  | 
 | #include <ipmid/api.hpp> | 
 | #include <ipmid/message.hpp> | 
 | #include <stdexcept> | 
 |  | 
 | #include <gtest/gtest.h> | 
 |  | 
 | TEST(Payload, InputSize) | 
 | { | 
 |     std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; | 
 |     size_t input_size = i.size(); | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     ASSERT_EQ(input_size, p.size()); | 
 | } | 
 |  | 
 | TEST(Payload, OutputSize) | 
 | { | 
 |     ipmi::message::Payload p; | 
 |     ASSERT_EQ(0, p.size()); | 
 |     std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; | 
 |     p.pack(i); | 
 |     ASSERT_EQ(i.size(), p.size()); | 
 |     p.pack(i); | 
 |     p.pack(i); | 
 |     ASSERT_EQ(3 * i.size(), p.size()); | 
 | } | 
 |  | 
 | TEST(Payload, Resize) | 
 | { | 
 |     std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; | 
 |     ipmi::message::Payload p; | 
 |     p.pack(i); | 
 |     p.resize(16); | 
 |     ASSERT_EQ(p.size(), 16); | 
 | } | 
 |  | 
 | TEST(Payload, Data) | 
 | { | 
 |     std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; | 
 |     ipmi::message::Payload p; | 
 |     p.pack(i); | 
 |     ASSERT_NE(nullptr, p.data()); | 
 | } | 
 |  | 
 | TEST(PayloadResponse, Append) | 
 | { | 
 |     std::string s("0123456789abcdef"); | 
 |     ipmi::message::Payload p; | 
 |     p.append(s.data(), s.data() + s.size()); | 
 |     ASSERT_EQ(s.size(), p.size()); | 
 | } | 
 |  | 
 | TEST(PayloadResponse, AppendDrain) | 
 | { | 
 |     std::string s("0123456789abcdef"); | 
 |     ipmi::message::Payload p; | 
 |     bool b = true; | 
 |     // first pack a lone bit | 
 |     p.pack(b); | 
 |     p.append(s.data(), s.data() + s.size()); | 
 |     // append will 'drain' first, padding the lone bit into a full byte | 
 |     ASSERT_EQ(s.size() + 1, p.size()); | 
 | } | 
 |  | 
 | TEST(PayloadResponse, AppendBits) | 
 | { | 
 |     ipmi::message::Payload p; | 
 |     p.appendBits(3, 0b101); | 
 |     ASSERT_EQ(p.bitStream, 0b101); | 
 |     p.appendBits(4, 0b1100); | 
 |     ASSERT_EQ(p.bitStream, 0b1100101); | 
 |     p.appendBits(1, 0b1); | 
 |     ASSERT_EQ(p.bitStream, 0); | 
 |     ASSERT_EQ(p.bitCount, 0); | 
 |     // appended 8 bits, should be one byte | 
 |     ASSERT_EQ(p.size(), 1); | 
 |     std::vector<uint8_t> k1 = {0b11100101}; | 
 |     ASSERT_EQ(p.raw, k1); | 
 |     p.appendBits(7, 0b1110111); | 
 |     // appended 7 more bits, should still be one byte | 
 |     ASSERT_EQ(p.size(), 1); | 
 |     p.drain(); | 
 |     // drain forces padding; should be two bytes now | 
 |     ASSERT_EQ(p.size(), 2); | 
 |     std::vector<uint8_t> k2 = {0b11100101, 0b01110111}; | 
 |     ASSERT_EQ(p.raw, k2); | 
 | } | 
 |  | 
 | TEST(PayloadResponse, Drain16Bits) | 
 | { | 
 |     ipmi::message::Payload p; | 
 |     p.bitStream = 0b1011010011001111; | 
 |     p.bitCount = 16; | 
 |     p.drain(); | 
 |     ASSERT_EQ(p.size(), 2); | 
 |     ASSERT_EQ(p.bitCount, 0); | 
 |     ASSERT_EQ(p.bitStream, 0); | 
 |     std::vector<uint8_t> k1 = {0b11001111, 0b10110100}; | 
 |     ASSERT_EQ(p.raw, k1); | 
 | } | 
 |  | 
 | TEST(PayloadResponse, Drain15Bits) | 
 | { | 
 |     ipmi::message::Payload p; | 
 |     p.bitStream = 0b101101001100111; | 
 |     p.bitCount = 15; | 
 |     p.drain(); | 
 |     ASSERT_EQ(p.size(), 2); | 
 |     ASSERT_EQ(p.bitCount, 0); | 
 |     ASSERT_EQ(p.bitStream, 0); | 
 |     std::vector<uint8_t> k1 = {0b1100111, 0b1011010}; | 
 |     ASSERT_EQ(p.raw, k1); | 
 | } | 
 |  | 
 | TEST(PayloadResponse, Drain15BitsWholeBytesOnly) | 
 | { | 
 |     ipmi::message::Payload p; | 
 |     p.bitStream = 0b101101001100111; | 
 |     p.bitCount = 15; | 
 |     p.drain(true); | 
 |     // only the first whole byte should have been 'drained' into p.raw | 
 |     ASSERT_EQ(p.size(), 1); | 
 |     ASSERT_EQ(p.bitCount, 7); | 
 |     ASSERT_EQ(p.bitStream, 0b1011010); | 
 |     std::vector<uint8_t> k1 = {0b1100111}; | 
 |     ASSERT_EQ(p.raw, k1); | 
 | } | 
 |  | 
 | TEST(PayloadRequest, Pop) | 
 | { | 
 |     std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     const auto& [vb, ve] = p.pop<uint8_t>(4); | 
 |     std::vector<uint8_t> v(vb, ve); | 
 |     std::vector<uint8_t> k = {0xbf, 0x04, 0x86, 0x00}; | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(PayloadRequest, FillBits) | 
 | { | 
 |     std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     p.fillBits(5); | 
 |     ASSERT_FALSE(p.unpackError); | 
 |     ASSERT_EQ(p.bitStream, 0xbf); | 
 |     ASSERT_EQ(p.bitCount, 8); | 
 |     // should still have 5 bits available, no change | 
 |     p.fillBits(5); | 
 |     ASSERT_FALSE(p.unpackError); | 
 |     ASSERT_EQ(p.bitStream, 0xbf); | 
 |     ASSERT_EQ(p.bitCount, 8); | 
 |     // discard 5 bits (low order) | 
 |     p.popBits(5); | 
 |     // should add another byte into the stream (high order) | 
 |     p.fillBits(5); | 
 |     ASSERT_FALSE(p.unpackError); | 
 |     ASSERT_EQ(p.bitStream, 0x25); | 
 |     ASSERT_EQ(p.bitCount, 11); | 
 | } | 
 |  | 
 | TEST(PayloadRequest, FillBitsTooManyBits) | 
 | { | 
 |     std::vector<uint8_t> i = {1, 2, 3, 4, 5, 6, 7, 8, 9}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     p.fillBits(72); | 
 |     ASSERT_TRUE(p.unpackError); | 
 | } | 
 |  | 
 | TEST(PayloadRequest, FillBitsNotEnoughBytes) | 
 | { | 
 |     std::vector<uint8_t> i = {1, 2, 3, 4}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     p.fillBits(48); | 
 |     ASSERT_TRUE(p.unpackError); | 
 | } | 
 |  | 
 | TEST(PayloadRequest, PopBits) | 
 | { | 
 |     std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     p.fillBits(4); | 
 |     uint8_t v = p.popBits(4); | 
 |     ASSERT_FALSE(p.unpackError); | 
 |     ASSERT_EQ(p.bitStream, 0x0b); | 
 |     ASSERT_EQ(p.bitCount, 4); | 
 |     ASSERT_EQ(v, 0x0f); | 
 | } | 
 |  | 
 | TEST(PayloadRequest, PopBitsNoFillBits) | 
 | { | 
 |     std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     p.popBits(4); | 
 |     ASSERT_TRUE(p.unpackError); | 
 | } | 
 |  | 
 | TEST(PayloadRequest, DiscardBits) | 
 | { | 
 |     std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     p.fillBits(5); | 
 |     ASSERT_FALSE(p.unpackError); | 
 |     ASSERT_EQ(p.bitStream, 0xbf); | 
 |     ASSERT_EQ(p.bitCount, 8); | 
 |     p.discardBits(); | 
 |     ASSERT_FALSE(p.unpackError); | 
 |     ASSERT_EQ(p.bitStream, 0); | 
 |     ASSERT_EQ(p.bitCount, 0); | 
 | } | 
 |  | 
 | TEST(PayloadRequest, FullyUnpacked) | 
 | { | 
 |     std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint32_t v1; | 
 |     p.unpack(v1); | 
 |     // still one remaining byte | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     p.fillBits(3); | 
 |     p.popBits(3); | 
 |     // still five remaining bits | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     p.fillBits(5); | 
 |     p.popBits(5); | 
 |     // fully unpacked, should be no errors | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     p.fillBits(4); | 
 |     // fullyUnpacked fails because an attempt to unpack too many bytes | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 | } | 
 |  | 
 | TEST(PayloadRequest, ResetInternal) | 
 | { | 
 |     std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     p.fillBits(4); | 
 |     p.unpackError = true; | 
 |     p.reset(); | 
 |     ASSERT_EQ(p.rawIndex, 0); | 
 |     ASSERT_EQ(p.bitStream, 0); | 
 |     ASSERT_EQ(p.bitCount, 0); | 
 |     ASSERT_FALSE(p.unpackError); | 
 | } | 
 |  | 
 | TEST(PayloadRequest, ResetUsage) | 
 | { | 
 |     // Payload.reset is used to rewind the unpacking to the initial | 
 |     // state. This is needed so that OEM commands can unpack the group | 
 |     // number or the IANA to determine which handler needs to be called | 
 |     std::vector<uint8_t> i = {0x04, 0x86}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint8_t v1; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v1), 0); | 
 |     // check that the payload was not fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     uint8_t k1 = 0x04; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v1, k1); | 
 |     // do a reset on the payload | 
 |     p.reset(); | 
 |     // unpack a uint16 | 
 |     uint16_t v2; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v2), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     uint16_t k2 = 0x8604; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v2, k2); | 
 | } | 
 |  | 
 | TEST(PayloadRequest, PartialPayload) | 
 | { | 
 |     std::vector<uint8_t> i = {0xbf, 0x04, 0x86, 0x00, 0x02}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint8_t v1; | 
 |     ipmi::message::Payload localPayload; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v1, localPayload), 0); | 
 |     // check that the payload was partially unpacked and not in error | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     ASSERT_FALSE(p.unpackError); | 
 |     // check that the 'extracted' payload is not fully unpacked | 
 |     ASSERT_FALSE(localPayload.fullyUnpacked()); | 
 |     uint8_t k1 = 0xbf; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v1, k1); | 
 |     uint32_t v2; | 
 |     // unpack using the 'extracted' payload | 
 |     ASSERT_EQ(localPayload.unpack(v2), 0); | 
 |     ASSERT_TRUE(localPayload.fullyUnpacked()); | 
 |     uint32_t k2 = 0x02008604; | 
 |     ASSERT_EQ(v2, k2); | 
 | } | 
 |  | 
 | std::vector<std::string> logs; | 
 |  | 
 | extern "C" { | 
 | int sd_journal_send(const char* format, ...) | 
 | { | 
 |     logs.push_back(format); | 
 |     return 0; | 
 | } | 
 |  | 
 | int sd_journal_send_with_location(const char* file, const char* line, | 
 |                                   const char* func, const char* format, ...) | 
 | { | 
 |     logs.push_back(format); | 
 |     return 0; | 
 | } | 
 | } | 
 |  | 
 | class PayloadLogging : public testing::Test | 
 | { | 
 |   public: | 
 |     void SetUp() | 
 |     { | 
 |         logs.clear(); | 
 |     } | 
 | }; | 
 |  | 
 | TEST_F(PayloadLogging, TrailingOk) | 
 | { | 
 |     { | 
 |         ipmi::message::Payload p({1, 2}); | 
 |     } | 
 |     EXPECT_EQ(logs.size(), 0); | 
 | } | 
 |  | 
 | TEST_F(PayloadLogging, EnforcingUnchecked) | 
 | { | 
 |     { | 
 |         ipmi::message::Payload p({1, 2}); | 
 |         p.trailingOk = false; | 
 |     } | 
 |     EXPECT_EQ(logs.size(), 1); | 
 | } | 
 |  | 
 | TEST_F(PayloadLogging, EnforcingUncheckedUnpacked) | 
 | { | 
 |     { | 
 |         ipmi::message::Payload p({1, 2}); | 
 |         p.trailingOk = false; | 
 |         uint8_t out; | 
 |         p.unpack(out, out); | 
 |     } | 
 |     EXPECT_EQ(logs.size(), 1); | 
 | } | 
 |  | 
 | TEST_F(PayloadLogging, EnforcingUncheckedError) | 
 | { | 
 |     { | 
 |         ipmi::message::Payload p({1, 2}); | 
 |         p.trailingOk = false; | 
 |         uint32_t out; | 
 |         p.unpack(out); | 
 |     } | 
 |     EXPECT_EQ(logs.size(), 0); | 
 | } | 
 |  | 
 | TEST_F(PayloadLogging, EnforcingChecked) | 
 | { | 
 |     { | 
 |         ipmi::message::Payload p({1, 2}); | 
 |         p.trailingOk = false; | 
 |         EXPECT_FALSE(p.fullyUnpacked()); | 
 |     } | 
 |     EXPECT_EQ(logs.size(), 0); | 
 | } | 
 |  | 
 | TEST_F(PayloadLogging, EnforcingCheckedUnpacked) | 
 | { | 
 |     { | 
 |         ipmi::message::Payload p({1, 2}); | 
 |         p.trailingOk = false; | 
 |         uint8_t out; | 
 |         p.unpack(out, out); | 
 |         EXPECT_TRUE(p.fullyUnpacked()); | 
 |     } | 
 |     EXPECT_EQ(logs.size(), 0); | 
 | } | 
 |  | 
 | TEST_F(PayloadLogging, EnforcingUnpackPayload) | 
 | { | 
 |     { | 
 |         ipmi::message::Payload p; | 
 |         { | 
 |             ipmi::message::Payload q({1, 2}); | 
 |             q.trailingOk = false; | 
 |             q.unpack(p); | 
 |         } | 
 |         EXPECT_EQ(logs.size(), 0); | 
 |     } | 
 |     EXPECT_EQ(logs.size(), 1); | 
 | } | 
 |  | 
 | TEST_F(PayloadLogging, EnforcingMove) | 
 | { | 
 |     { | 
 |         ipmi::message::Payload p; | 
 |         { | 
 |             ipmi::message::Payload q({1, 2}); | 
 |             q.trailingOk = false; | 
 |             p = std::move(q); | 
 |         } | 
 |         EXPECT_EQ(logs.size(), 0); | 
 |     } | 
 |     EXPECT_EQ(logs.size(), 1); | 
 | } | 
 |  | 
 | TEST_F(PayloadLogging, EnforcingException) | 
 | { | 
 |     try | 
 |     { | 
 |         ipmi::message::Payload p({1, 2}); | 
 |         p.trailingOk = false; | 
 |         throw std::runtime_error("test"); | 
 |     } | 
 |     catch (...) | 
 |     { | 
 |     } | 
 |     EXPECT_EQ(logs.size(), 0); | 
 | } |