| /** | 
 |  * Copyright © 2018 Intel Corporation | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *     http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 | #include <ipmid/api.hpp> | 
 | #include <ipmid/message.hpp> | 
 |  | 
 | #include <gtest/gtest.h> | 
 |  | 
 | TEST(Uints, Uint8) | 
 | { | 
 |     std::vector<uint8_t> i = {0x04}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint8_t v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     uint8_t k = 0x04; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Uints, Uint8TooManyBytes) | 
 | { | 
 |     std::vector<uint8_t> i = {0x04, 0x86}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint8_t v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     uint8_t k = 0x04; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Uints, Uint8InsufficientBytes) | 
 | { | 
 |     std::vector<uint8_t> i = {}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint8_t v = 0; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_NE(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked (comprehends unpack errors) | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     // check that v is zero | 
 |     ASSERT_EQ(v, 0); | 
 | } | 
 |  | 
 | TEST(Uints, Uint16) | 
 | { | 
 |     std::vector<uint8_t> i = {0x04, 0x86}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint16_t v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     uint16_t k = 0x8604; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Uints, Uint16TooManyBytes) | 
 | { | 
 |     std::vector<uint8_t> i = {0x04, 0x86, 0x00}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint16_t v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     uint16_t k = 0x8604; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Uints, Uint16InsufficientBytes) | 
 | { | 
 |     std::vector<uint8_t> i = {0x04}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint16_t v = 0; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_NE(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked (comprehends unpack errors) | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     // check that v is zero | 
 |     ASSERT_EQ(v, 0); | 
 | } | 
 |  | 
 | TEST(Uints, Uint32) | 
 | { | 
 |     std::vector<uint8_t> i = {0x04, 0x86, 0x00, 0x02}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint32_t v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     uint32_t k = 0x02008604; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Uints, Uint32TooManyBytes) | 
 | { | 
 |     std::vector<uint8_t> i = {0x04, 0x86, 0x00, 0x02, 0x44}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint32_t v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     uint32_t k = 0x02008604; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Uints, Uint32InsufficientBytes) | 
 | { | 
 |     std::vector<uint8_t> i = {0x04, 0x86, 0x00}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint32_t v = 0; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_NE(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked (comprehends unpack errors) | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     // check that v is zero | 
 |     ASSERT_EQ(v, 0); | 
 | } | 
 |  | 
 | TEST(Uints, Uint64) | 
 | { | 
 |     std::vector<uint8_t> i = {0x04, 0x86, 0x00, 0x02, 0x44, 0x33, 0x22, 0x11}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint64_t v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     uint64_t k = 0x1122334402008604ull; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Uints, Uint64TooManyBytes) | 
 | { | 
 |     std::vector<uint8_t> i = {0x04, 0x86, 0x00, 0x02, 0x44, | 
 |                               0x33, 0x22, 0x11, 0x55}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint64_t v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     uint64_t k = 0x1122334402008604ull; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Uints, Uint64InsufficientBytes) | 
 | { | 
 |     std::vector<uint8_t> i = {0x04, 0x86, 0x00, 0x02, 0x44, 0x33, 0x22}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint64_t v = 0; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_NE(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked (comprehends unpack errors) | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     // check that v is zero | 
 |     ASSERT_EQ(v, 0); | 
 | } | 
 |  | 
 | TEST(Uints, Uint24) | 
 | { | 
 |     std::vector<uint8_t> i = {0x58, 0x23, 0x11}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint24_t v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     uint24_t k = 0x112358; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(FixedInts, Uint24TooManyBytes) | 
 | { | 
 |     std::vector<uint8_t> i = {0x58, 0x23, 0x11, 0x00}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint24_t v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     uint24_t k = 0x112358; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(FixedInts, Uint24InsufficientBytes) | 
 | { | 
 |     std::vector<uint8_t> i = {0x58, 0x23}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint24_t v = 0; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_NE(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked (comprehends unpack errors) | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     // check that v is zero | 
 |     ASSERT_EQ(v, 0); | 
 | } | 
 |  | 
 | TEST(FixedInts, Uint3Uint5) | 
 | { | 
 |     // individual bytes are unpacked low-order-bits first | 
 |     // v1 will use [2:0], v2 will use [7:3] | 
 |     std::vector<uint8_t> i = {0xc9}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint3_t v1; | 
 |     uint5_t v2; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v1, v2), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     uint3_t k1 = 0x1; | 
 |     uint5_t k2 = 0x19; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v1, k1); | 
 |     ASSERT_EQ(v2, k2); | 
 | } | 
 |  | 
 | TEST(FixedInts, Uint3Uint4TooManyBits) | 
 | { | 
 |     // high order bit should not get unpacked | 
 |     std::vector<uint8_t> i = {0xc9}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint3_t v1; | 
 |     uint4_t v2; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v1, v2), 0); | 
 |     // check that the payload was not fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     uint3_t k1 = 0x1; | 
 |     uint4_t k2 = 0x9; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v1, k1); | 
 |     ASSERT_EQ(v2, k2); | 
 | } | 
 |  | 
 | TEST(FixedInts, Uint3Uint6InsufficientBits) | 
 | { | 
 |     // insufficient bits to unpack v2 | 
 |     std::vector<uint8_t> i = {0xc9}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint3_t v1; | 
 |     uint6_t v2; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_NE(p.unpack(v1, v2), 0); | 
 |     // check that the payload was not fully unpacked (comprehends unpack errors) | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     uint3_t k1 = 0x1; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v1, k1); | 
 |     // check that v2 is zero | 
 |     ASSERT_EQ(v2, 0); | 
 | } | 
 |  | 
 | TEST(Bools, Boolx8) | 
 | { | 
 |     // individual bytes are unpacked low-order-bits first | 
 |     // [v8, v7, v6, v5, v4, v3, v2, v1] | 
 |     std::vector<uint8_t> i = {0xc9}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     bool v8, v7, v6, v5; | 
 |     bool v4, v3, v2, v1; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v1, v2, v3, v4, v5, v6, v7, v8), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     bool k8 = true, k7 = true, k6 = false, k5 = false; | 
 |     bool k4 = true, k3 = false, k2 = false, k1 = true; | 
 |     ASSERT_EQ(v1, k1); | 
 |     ASSERT_EQ(v2, k2); | 
 |     ASSERT_EQ(v3, k3); | 
 |     ASSERT_EQ(v4, k4); | 
 |     ASSERT_EQ(v5, k5); | 
 |     ASSERT_EQ(v6, k6); | 
 |     ASSERT_EQ(v7, k7); | 
 |     ASSERT_EQ(v8, k8); | 
 | } | 
 |  | 
 | TEST(Bools, Boolx8TooManyBits) | 
 | { | 
 |     // high order bit should not get unpacked | 
 |     // individual bytes are unpacked low-order-bits first | 
 |     // [v7, v6, v5, v4, v3, v2, v1] | 
 |     std::vector<uint8_t> i = {0xc9}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     bool v7, v6, v5; | 
 |     bool v4, v3, v2, v1; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v1, v2, v3, v4, v5, v6, v7), 0); | 
 |     // check that the payload was not fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     bool k7 = true, k6 = false, k5 = false; | 
 |     bool k4 = true, k3 = false, k2 = false, k1 = true; | 
 |     ASSERT_EQ(v1, k1); | 
 |     ASSERT_EQ(v2, k2); | 
 |     ASSERT_EQ(v3, k3); | 
 |     ASSERT_EQ(v4, k4); | 
 |     ASSERT_EQ(v5, k5); | 
 |     ASSERT_EQ(v6, k6); | 
 |     ASSERT_EQ(v7, k7); | 
 | } | 
 |  | 
 | TEST(Bools, Boolx8InsufficientBits) | 
 | { | 
 |     // individual bytes are unpacked low-order-bits first | 
 |     // [v8, v7, v6, v5, v4, v3, v2, v1] | 
 |     std::vector<uint8_t> i = {0xc9}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     bool v9; | 
 |     bool v8, v7, v6, v5; | 
 |     bool v4, v3, v2, v1; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_NE(p.unpack(v1, v2, v3, v4, v5, v6, v7, v8, v9), 0); | 
 |     // check that the payload was not fully unpacked (comprehends unpack errors) | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     bool k8 = true, k7 = true, k6 = false, k5 = false; | 
 |     bool k4 = true, k3 = false, k2 = false, k1 = true; | 
 |     ASSERT_EQ(v1, k1); | 
 |     ASSERT_EQ(v2, k2); | 
 |     ASSERT_EQ(v3, k3); | 
 |     ASSERT_EQ(v4, k4); | 
 |     ASSERT_EQ(v5, k5); | 
 |     ASSERT_EQ(v6, k6); | 
 |     ASSERT_EQ(v7, k7); | 
 |     ASSERT_EQ(v8, k8); | 
 | } | 
 |  | 
 | TEST(Bitsets, Bitset8) | 
 | { | 
 |     // individual bytes are unpacked low-order-bits first | 
 |     // a bitset for 8 bits fills the full byte | 
 |     std::vector<uint8_t> i = {0xc9}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::bitset<8> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     std::bitset<8> k(0xc9); | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Bitsets, Bitset7TooManyBits) | 
 | { | 
 |     // individual bytes are unpacked low-order-bits first | 
 |     // a bitset for 8 bits fills the full byte | 
 |     std::vector<uint8_t> i = {0xc9}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::bitset<7> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     std::bitset<7> k(0x49); | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Bitsets, Bitset9InsufficientBits) | 
 | { | 
 |     // individual bytes are unpacked low-order-bits first | 
 |     // a bitset for 8 bits fills the full byte | 
 |     std::vector<uint8_t> i = {0xc9}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::bitset<9> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_NE(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked (comprehends unpack errors) | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     std::bitset<9> k(0); | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Bitsets, Bitset3Bitset5) | 
 | { | 
 |     // individual bytes are unpacked low-order-bits first | 
 |     // v1 will use [2:0], v2 will use [7:3] | 
 |     std::vector<uint8_t> i = {0xc9}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::bitset<3> v1; | 
 |     std::bitset<5> v2; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v1, v2), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     std::bitset<3> k1(0x1); | 
 |     std::bitset<5> k2(0x19); | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v1, k1); | 
 |     ASSERT_EQ(v2, k2); | 
 | } | 
 |  | 
 | TEST(Bitsets, Bitset3Bitset4TooManyBits) | 
 | { | 
 |     // high order bit should not get unpacked | 
 |     std::vector<uint8_t> i = {0xc9}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::bitset<3> v1; | 
 |     std::bitset<4> v2; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v1, v2), 0); | 
 |     // check that the payload was not fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     std::bitset<3> k1 = 0x1; | 
 |     std::bitset<4> k2 = 0x9; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v1, k1); | 
 |     ASSERT_EQ(v2, k2); | 
 | } | 
 |  | 
 | TEST(Bitsets, Bitset3Bitset6InsufficientBits) | 
 | { | 
 |     // insufficient bits to unpack v2 | 
 |     std::vector<uint8_t> i = {0xc9}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::bitset<3> v1; | 
 |     std::bitset<6> v2; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_NE(p.unpack(v1, v2), 0); | 
 |     // check that the payload was not fully unpacked (comprehends unpack errors) | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     std::bitset<3> k1 = 0x1; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v1, k1); | 
 |     // check that v2 is zero | 
 |     ASSERT_EQ(v2, 0); | 
 | } | 
 |  | 
 | TEST(Bitsets, Bitset32) | 
 | { | 
 |     // individual bytes are unpacked low-order-bits first | 
 |     // v1 will use 4 bytes, but in LSByte first order | 
 |     // v1[7:0] v1[15:9] v1[23:16] v1[31:24] | 
 |     std::vector<uint8_t> i = {0xb4, 0x86, 0x91, 0xc2}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::bitset<32> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     std::bitset<32> k(0xc29186b4); | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Bitsets, Bitset31TooManyBits) | 
 | { | 
 |     // high order bit should not get unpacked | 
 |     std::vector<uint8_t> i = {0xb4, 0x86, 0x91, 0xc2}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::bitset<31> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     std::bitset<31> k(0x429186b4); | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Bitsets, Bitset33InsufficientBits) | 
 | { | 
 |     // insufficient bits to unpack v2 | 
 |     std::vector<uint8_t> i = {0xb4, 0x86, 0x91, 0xc2}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::bitset<33> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_NE(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked (comprehends unpack errors) | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     std::bitset<33> k(0); | 
 |     // check that v is zero | 
 |     ASSERT_EQ(v, 0); | 
 | } | 
 |  | 
 | TEST(Arrays, Array4xUint8) | 
 | { | 
 |     // an array of bytes will be read verbatim, low-order element first | 
 |     std::vector<uint8_t> i = {0x02, 0x00, 0x86, 0x04}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::array<uint8_t, 4> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     std::array<uint8_t, 4> k = {{0x02, 0x00, 0x86, 0x04}}; | 
 |     // check that the bytes were correctly unpacked (in byte order) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Arrays, Array4xUint8TooManyBytes) | 
 | { | 
 |     // last byte should not get unpacked | 
 |     // an array of bytes will be read verbatim, low-order element first | 
 |     std::vector<uint8_t> i = {0x02, 0x00, 0x86, 0x04, 0x22}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::array<uint8_t, 4> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     std::array<uint8_t, 4> k = {{0x02, 0x00, 0x86, 0x04}}; | 
 |     // check that the bytes were correctly unpacked (in byte order) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Arrays, Array4xUint8InsufficientBytes) | 
 | { | 
 |     // last byte should not get unpacked | 
 |     // an array of bytes will be read verbatim, low-order element first | 
 |     std::vector<uint8_t> i = {0x02, 0x00, 0x86}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::array<uint8_t, 4> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_NE(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     // arrays of uint8_t will be unpacked all at once | 
 |     // so nothing will get unpacked | 
 |     std::array<uint8_t, 4> k = {{0, 0, 0, 0}}; | 
 |     // check that the bytes were correctly unpacked (in byte order) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Arrays, Array4xUint32) | 
 | { | 
 |     // an array of multi-byte values will be unpacked in order low-order | 
 |     // element first, each multi-byte element in LSByte order | 
 |     // v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24] | 
 |     // v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24] | 
 |     // v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24] | 
 |     // v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24] | 
 |     std::vector<uint8_t> i = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22, | 
 |                               0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34, 0x12}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::array<uint32_t, 4> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     std::array<uint32_t, 4> k = { | 
 |         {0x11223344, 0x22446688, 0x33557799, 0x12345678}}; | 
 |     // check that the bytes were correctly unpacked (in byte order) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Arrays, Array4xUint32TooManyBytes) | 
 | { | 
 |     // last byte should not get unpacked | 
 |     // an array of multi-byte values will be unpacked in order low-order | 
 |     // element first, each multi-byte element in LSByte order | 
 |     // v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24] | 
 |     // v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24] | 
 |     // v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24] | 
 |     // v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24] | 
 |     std::vector<uint8_t> i = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, | 
 |                               0x44, 0x22, 0x99, 0x77, 0x55, 0x33, | 
 |                               0x78, 0x56, 0x34, 0x12, 0xaa}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::array<uint32_t, 4> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     std::array<uint32_t, 4> k = { | 
 |         {0x11223344, 0x22446688, 0x33557799, 0x12345678}}; | 
 |     // check that the bytes were correctly unpacked (in byte order) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Arrays, Array4xUint32InsufficientBytes) | 
 | { | 
 |     // last value should not get unpacked | 
 |     // an array of multi-byte values will be unpacked in order low-order | 
 |     // element first, each multi-byte element in LSByte order | 
 |     // v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24] | 
 |     // v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24] | 
 |     // v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24] | 
 |     // v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24] | 
 |     std::vector<uint8_t> i = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22, | 
 |                               0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::array<uint32_t, 4> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_NE(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     // arrays of uint32_t will be unpacked in a way that looks atomic | 
 |     std::array<uint32_t, 4> k = {{0, 0, 0, 0}}; | 
 |     // check that the bytes were correctly unpacked (in byte order) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Vectors, VectorUint32) | 
 | { | 
 |     // a vector of multi-byte values will be unpacked in order low-order | 
 |     // element first, each multi-byte element in LSByte order | 
 |     // v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24] | 
 |     // v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24] | 
 |     // v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24] | 
 |     // v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24] | 
 |     std::vector<uint8_t> i = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22, | 
 |                               0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34, 0x12}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::vector<uint32_t> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     std::vector<uint32_t> k = {0x11223344, 0x22446688, 0x33557799, 0x12345678}; | 
 |     // check that the bytes were correctly unpacked (in byte order) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | // combination of TooManyBytes and InsufficientBytes because | 
 | // vectors will attempt to unpack full <T>s until the end of the input | 
 | TEST(Vectors, VectorUint32NonIntegralBytes) | 
 | { | 
 |     // last value should not get unpacked | 
 |     // a vector of multi-byte values will be unpacked in order low-order | 
 |     // element first, each multi-byte element in LSByte order, | 
 |     // and will attempt to consume all bytes remaining | 
 |     // v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24] | 
 |     // v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24] | 
 |     // v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24] | 
 |     // v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24] | 
 |     std::vector<uint8_t> i = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22, | 
 |                               0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::vector<uint32_t> v; | 
 |     // check that the vector unpacks successfully | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     // arrays of uint32_t will be unpacked one at a time, so the | 
 |     // last entry should not get unpacked properly | 
 |     std::vector<uint32_t> k = {0x11223344, 0x22446688, 0x33557799}; | 
 |     // check that the bytes were correctly unpacked (in byte order) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Vectors, VectorUint8) | 
 | { | 
 |     // a vector of bytes will be unpacked verbatim, low-order element first | 
 |     std::vector<uint8_t> i = {0x02, 0x00, 0x86, 0x04}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::vector<uint8_t> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     std::vector<uint8_t> k = {0x02, 0x00, 0x86, 0x04}; | 
 |     // check that the bytes were correctly unpacked (in byte order) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Vectors, VectorEmptyOk) | 
 | { | 
 |     // an empty input vector to show that unpacking elements is okay | 
 |     std::vector<uint8_t> i{}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::vector<uint32_t> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     std::vector<uint32_t> k{}; | 
 |     // check that the unpacked vector is empty as expected | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Vectors, VectorOfTuplesOk) | 
 | { | 
 |     // a vector of bytes will be unpacked verbatim, low-order element first | 
 |     std::vector<uint8_t> i = {0x02, 0x00, 0x86, 0x04}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::vector<std::tuple<uint8_t, uint8_t>> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     std::vector<std::tuple<uint8_t, uint8_t>> k = {{0x02, 0x00}, {0x86, 0x04}}; | 
 |     // check that the bytes were correctly unpacked (in byte order) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(Vectors, VectorOfTuplesInsufficientBytes) | 
 | { | 
 |     // a vector of bytes will be unpacked verbatim, low-order element first | 
 |     std::vector<uint8_t> i = {0x02, 0x00, 0x86, 0x04, 0xb4}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::vector<std::tuple<uint8_t, uint8_t>> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was not fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     std::vector<std::tuple<uint8_t, uint8_t>> k = {{0x02, 0x00}, {0x86, 0x04}}; | 
 |     // check that the bytes were correctly unpacked (in byte order) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | // Cannot test TooManyBytes or InsufficientBytes for vector<uint8_t> | 
 | // because it will always unpack whatever bytes are remaining | 
 | // TEST(Vectors, VectorUint8TooManyBytes) {} | 
 | // TEST(Vectors, VectorUint8InsufficientBytes) {} | 
 |  | 
 | TEST(UnpackAdvanced, OptionalOk) | 
 | { | 
 |     // a vector of bytes will be unpacked verbatim, low-order element first | 
 |     std::vector<uint8_t> i = {0xbe, 0x02, 0x00, 0x86, 0x04}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::optional<std::tuple<uint8_t, uint32_t>> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     std::optional<std::tuple<uint8_t, uint32_t>> k{{0xbe, 0x04860002}}; | 
 |     // check that the bytes were correctly unpacked (in byte order) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(UnpackAdvanced, OptionalInsufficientBytes) | 
 | { | 
 |     // a vector of bytes will be unpacked verbatim, low-order element first | 
 |     std::vector<uint8_t> i = {0x02, 0x00, 0x86, 0x04}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     std::optional<std::tuple<uint8_t, uint32_t>> v; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_FALSE(p.fullyUnpacked()); | 
 |     std::optional<std::tuple<uint8_t, uint32_t>> k; | 
 |     // check that the bytes were correctly unpacked (in byte order) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(UnpackAdvanced, Uints) | 
 | { | 
 |     // all elements will be unpacked in order, with each multi-byte | 
 |     // element being processed LSByte first | 
 |     // v1[7:0] v2[7:0] v2[15:8] v3[7:0] v3[15:8] v3[23:16] v3[31:24] | 
 |     // v4[7:0] v4[15:8] v4[23:16] v4[31:24] | 
 |     // v4[39:25] v4[47:40] v4[55:48] v4[63:56] | 
 |     std::vector<uint8_t> i = {0x02, 0x04, 0x06, 0x11, 0x22, 0x33, 0x44, 0x55, | 
 |                               0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint8_t v1; | 
 |     uint16_t v2; | 
 |     uint32_t v3; | 
 |     uint64_t v4; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v1, v2, v3, v4), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     uint8_t k1 = 0x02; | 
 |     uint16_t k2 = 0x0604; | 
 |     uint32_t k3 = 0x44332211; | 
 |     uint64_t k4 = 0xccbbaa9988776655ull; | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v1, k1); | 
 |     ASSERT_EQ(v2, k2); | 
 |     ASSERT_EQ(v3, k3); | 
 |     ASSERT_EQ(v4, k4); | 
 | } | 
 |  | 
 | TEST(UnpackAdvanced, TupleInts) | 
 | { | 
 |     // all elements will be unpacked in order, with each multi-byte | 
 |     // element being processed LSByte first | 
 |     // v1[7:0] v2[7:0] v2[15:8] v3[7:0] v3[15:8] v3[23:16] v3[31:24] | 
 |     // v4[7:0] v4[15:8] v4[23:16] v4[31:24] | 
 |     // v4[39:25] v4[47:40] v4[55:48] v4[63:56] | 
 |     std::vector<uint8_t> i = {0x02, 0x04, 0x06, 0x11, 0x22, 0x33, 0x44, 0x55, | 
 |                               0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint8_t v1; | 
 |     uint16_t v2; | 
 |     uint32_t v3; | 
 |     uint64_t v4; | 
 |     auto v = std::make_tuple(v1, v2, v3, v4); | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     uint8_t k1 = 0x02; | 
 |     uint16_t k2 = 0x0604; | 
 |     uint32_t k3 = 0x44332211; | 
 |     uint64_t k4 = 0xccbbaa9988776655ull; | 
 |     auto k = std::make_tuple(k1, k2, k3, k4); | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v, k); | 
 | } | 
 |  | 
 | TEST(UnpackAdvanced, BoolsnBitfieldsnFixedIntsOhMy) | 
 | { | 
 |     // each element will be unpacked, filling the low-order bits first | 
 |     // with multi-byte values getting unpacked LSByte first | 
 |     // v1 will use k[0][1:0] | 
 |     // v2 will use k[0][2] | 
 |     // v3[4:0] will use k[0][7:3], v3[6:5] will use k[1][1:0] | 
 |     // v4 will use k[1][2] | 
 |     // v5 will use k[1][7:3] | 
 |     std::vector<uint8_t> i = {0x9e, 0xdb}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint2_t v1; | 
 |     bool v2; | 
 |     std::bitset<7> v3; | 
 |     bool v4; | 
 |     uint5_t v5; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v1, v2, v3, v4, v5), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     uint2_t k1 = 2;          // binary 0b10 | 
 |     bool k2 = true;          // binary 0b1 | 
 |     std::bitset<7> k3(0x73); // binary 0b1110011 | 
 |     bool k4 = false;         // binary 0b0 | 
 |     uint5_t k5 = 27;         // binary 0b11011 | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v1, k1); | 
 |     ASSERT_EQ(v2, k2); | 
 |     ASSERT_EQ(v3, k3); | 
 |     ASSERT_EQ(v4, k4); | 
 |     ASSERT_EQ(v5, k5); | 
 | } | 
 |  | 
 | TEST(UnpackAdvanced, UnalignedBitUnpacking) | 
 | { | 
 |     // unaligned multi-byte values will be unpacked the same as | 
 |     // other bits, effectively reading from a large value, low-order | 
 |     // bits first, then consuming the stream LSByte first | 
 |     // v1 will use k[0][1:0] | 
 |     // v2[5:0] will use k[0][7:2], v2[7:6] will use k[1][1:0] | 
 |     // v3 will use k[1][2] | 
 |     // v4[4:0] will use k[1][7:3] v4[12:5] will use k[2][7:0] | 
 |     // v4[15:13] will use k[3][2:0] | 
 |     // v5 will use k[3][3] | 
 |     // v6[3:0] will use k[3][7:0] v6[11:4] will use k[4][7:0] | 
 |     // v6[19:12] will use k[5][7:0] v6[27:20] will use k[6][7:0] | 
 |     // v6[31:28] will use k[7][3:0] | 
 |     // v7 will use k[7][7:4] | 
 |     std::vector<uint8_t> i = {0x96, 0xd2, 0x2a, 0xcd, 0xd3, 0x3b, 0xbc, 0x9d}; | 
 |     ipmi::message::Payload p(std::forward<std::vector<uint8_t>>(i)); | 
 |     uint2_t v1; | 
 |     uint8_t v2; | 
 |     bool v3; | 
 |     uint16_t v4; | 
 |     bool v5; | 
 |     uint32_t v6; | 
 |     uint4_t v7; | 
 |     // check that the number of bytes matches | 
 |     ASSERT_EQ(p.unpack(v1, v2, v3, v4, v5, v6, v7), 0); | 
 |     // check that the payload was fully unpacked | 
 |     ASSERT_TRUE(p.fullyUnpacked()); | 
 |     uint2_t k1 = 2;           // binary 0b10 | 
 |     uint8_t k2 = 0xa5;        // binary 0b10100101 | 
 |     bool k3 = false;          // binary 0b0 | 
 |     uint16_t k4 = 0xa55a;     // binary 0b1010010101011010 | 
 |     bool k5 = true;           // binary 0b1 | 
 |     uint32_t k6 = 0xdbc3bd3c; // binary 0b11011011110000111011110100111100 | 
 |     uint4_t k7 = 9;           // binary 0b1001 | 
 |     // check that the bytes were correctly unpacked (LSB first) | 
 |     ASSERT_EQ(v1, k1); | 
 |     ASSERT_EQ(v2, k2); | 
 |     ASSERT_EQ(v3, k3); | 
 |     ASSERT_EQ(v4, k4); | 
 |     ASSERT_EQ(v5, k5); | 
 |     ASSERT_EQ(v6, k6); | 
 |     ASSERT_EQ(v7, k7); | 
 | } |