blob: fa3b55be18d63ba49ad8c89ad71d6a85095aa9d5 [file] [log] [blame]
#include "dcmihandler.hpp"
#include "host-ipmid/ipmid-api.h"
#include <phosphor-logging/elog-errors.hpp>
#include <phosphor-logging/log.hpp>
#include <sdbusplus/bus.hpp>
#include <nlohmann/json.hpp>
#include "utils.hpp"
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <fstream>
#include <bitset>
#include <cmath>
#include "xyz/openbmc_project/Common/error.hpp"
#include "config.h"
using namespace phosphor::logging;
using InternalFailure =
sdbusplus::xyz::openbmc_project::Common::Error::InternalFailure;
void register_netfn_dcmi_functions() __attribute__((constructor));
constexpr auto PCAP_PATH = "/xyz/openbmc_project/control/host0/power_cap";
constexpr auto PCAP_INTERFACE = "xyz.openbmc_project.Control.Power.Cap";
constexpr auto POWER_CAP_PROP = "PowerCap";
constexpr auto POWER_CAP_ENABLE_PROP = "PowerCapEnable";
constexpr auto DCMI_PARAMETER_REVISION = 2;
constexpr auto DCMI_SPEC_MAJOR_VERSION = 1;
constexpr auto DCMI_SPEC_MINOR_VERSION = 5;
constexpr auto DCMI_CAP_JSON_FILE = "/usr/share/ipmi-providers/dcmi_cap.json";
constexpr auto SENSOR_VALUE_INTF = "xyz.openbmc_project.Sensor.Value";
constexpr auto SENSOR_VALUE_PROP = "Value";
constexpr auto SENSOR_SCALE_PROP = "Scale";
using namespace phosphor::logging;
namespace dcmi
{
// Refer Table 6-14, DCMI Entity ID Extension, DCMI v1.5 spec
static const std::map<uint8_t, std::string> entityIdToName
{
{0x40, "inlet"},
{0x37, "inlet"},
{0x41, "cpu"},
{0x03, "cpu"},
{0x42, "baseboard"},
{0x07, "baseboard"}
};
uint32_t getPcap(sdbusplus::bus::bus& bus)
{
auto settingService = ipmi::getService(bus,
PCAP_INTERFACE,PCAP_PATH);
auto method = bus.new_method_call(settingService.c_str(),
PCAP_PATH,
"org.freedesktop.DBus.Properties",
"Get");
method.append(PCAP_INTERFACE, POWER_CAP_PROP);
auto reply = bus.call(method);
if (reply.is_method_error())
{
log<level::ERR>("Error in getPcap prop");
elog<InternalFailure>();
}
sdbusplus::message::variant<uint32_t> pcap;
reply.read(pcap);
return pcap.get<uint32_t>();
}
bool getPcapEnabled(sdbusplus::bus::bus& bus)
{
auto settingService = ipmi::getService(bus,
PCAP_INTERFACE,PCAP_PATH);
auto method = bus.new_method_call(settingService.c_str(),
PCAP_PATH,
"org.freedesktop.DBus.Properties",
"Get");
method.append(PCAP_INTERFACE, POWER_CAP_ENABLE_PROP);
auto reply = bus.call(method);
if (reply.is_method_error())
{
log<level::ERR>("Error in getPcapEnabled prop");
elog<InternalFailure>();
}
sdbusplus::message::variant<bool> pcapEnabled;
reply.read(pcapEnabled);
return pcapEnabled.get<bool>();
}
void setPcap(sdbusplus::bus::bus& bus, const uint32_t powerCap)
{
auto service = ipmi::getService(bus, PCAP_INTERFACE, PCAP_PATH);
auto method = bus.new_method_call(service.c_str(),
PCAP_PATH,
"org.freedesktop.DBus.Properties",
"Set");
method.append(PCAP_INTERFACE, POWER_CAP_PROP);
method.append(sdbusplus::message::variant<uint32_t>(powerCap));
auto reply = bus.call(method);
if (reply.is_method_error())
{
log<level::ERR>("Error in setPcap property");
elog<InternalFailure>();
}
}
void setPcapEnable(sdbusplus::bus::bus& bus, bool enabled)
{
auto service = ipmi::getService(bus, PCAP_INTERFACE, PCAP_PATH);
auto method = bus.new_method_call(service.c_str(),
PCAP_PATH,
"org.freedesktop.DBus.Properties",
"Set");
method.append(PCAP_INTERFACE, POWER_CAP_ENABLE_PROP);
method.append(sdbusplus::message::variant<bool>(enabled));
auto reply = bus.call(method);
if (reply.is_method_error())
{
log<level::ERR>("Error in setPcapEnabled property");
elog<InternalFailure>();
}
}
void readAssetTagObjectTree(dcmi::assettag::ObjectTree& objectTree)
{
static constexpr auto mapperBusName = "xyz.openbmc_project.ObjectMapper";
static constexpr auto mapperObjPath = "/xyz/openbmc_project/object_mapper";
static constexpr auto mapperIface = "xyz.openbmc_project.ObjectMapper";
static constexpr auto inventoryRoot = "/xyz/openbmc_project/inventory/";
sdbusplus::bus::bus bus{ipmid_get_sd_bus_connection()};
auto depth = 0;
auto mapperCall = bus.new_method_call(mapperBusName,
mapperObjPath,
mapperIface,
"GetSubTree");
mapperCall.append(inventoryRoot);
mapperCall.append(depth);
mapperCall.append(std::vector<std::string>({dcmi::assetTagIntf}));
auto mapperReply = bus.call(mapperCall);
if (mapperReply.is_method_error())
{
log<level::ERR>("Error in mapper call");
elog<InternalFailure>();
}
mapperReply.read(objectTree);
if (objectTree.empty())
{
log<level::ERR>("AssetTag property is not populated");
elog<InternalFailure>();
}
}
std::string readAssetTag()
{
sdbusplus::bus::bus bus{ipmid_get_sd_bus_connection()};
dcmi::assettag::ObjectTree objectTree;
// Read the object tree with the inventory root to figure out the object
// that has implemented the Asset tag interface.
readAssetTagObjectTree(objectTree);
auto method = bus.new_method_call(
(objectTree.begin()->second.begin()->first).c_str(),
(objectTree.begin()->first).c_str(),
dcmi::propIntf,
"Get");
method.append(dcmi::assetTagIntf);
method.append(dcmi::assetTagProp);
auto reply = bus.call(method);
if (reply.is_method_error())
{
log<level::ERR>("Error in reading asset tag");
elog<InternalFailure>();
}
sdbusplus::message::variant<std::string> assetTag;
reply.read(assetTag);
return assetTag.get<std::string>();
}
void writeAssetTag(const std::string& assetTag)
{
sdbusplus::bus::bus bus{ipmid_get_sd_bus_connection()};
dcmi::assettag::ObjectTree objectTree;
// Read the object tree with the inventory root to figure out the object
// that has implemented the Asset tag interface.
readAssetTagObjectTree(objectTree);
auto method = bus.new_method_call(
(objectTree.begin()->second.begin()->first).c_str(),
(objectTree.begin()->first).c_str(),
dcmi::propIntf,
"Set");
method.append(dcmi::assetTagIntf);
method.append(dcmi::assetTagProp);
method.append(sdbusplus::message::variant<std::string>(assetTag));
auto reply = bus.call(method);
if (reply.is_method_error())
{
log<level::ERR>("Error in writing asset tag");
elog<InternalFailure>();
}
}
std::string getHostName(void)
{
sdbusplus::bus::bus bus{ ipmid_get_sd_bus_connection() };
auto service = ipmi::getService(bus, networkConfigIntf, networkConfigObj);
auto value = ipmi::getDbusProperty(bus, service,
networkConfigObj, networkConfigIntf, hostNameProp);
return value.get<std::string>();
}
Json parseSensorConfig()
{
std::ifstream jsonFile(configFile);
if (!jsonFile.is_open())
{
log<level::ERR>("Temperature readings JSON file not found");
elog<InternalFailure>();
}
auto data = Json::parse(jsonFile, nullptr, false);
if (data.is_discarded())
{
log<level::ERR>("Temperature readings JSON parser failure");
elog<InternalFailure>();
}
return data;
}
} // namespace dcmi
ipmi_ret_t getPowerLimit(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
auto requestData = reinterpret_cast<const dcmi::GetPowerLimitRequest*>
(request);
std::vector<uint8_t> outPayload(sizeof(dcmi::GetPowerLimitResponse));
auto responseData = reinterpret_cast<dcmi::GetPowerLimitResponse*>
(outPayload.data());
if (requestData->groupID != dcmi::groupExtId)
{
*data_len = 0;
return IPMI_CC_INVALID_FIELD_REQUEST;
}
sdbusplus::bus::bus sdbus {ipmid_get_sd_bus_connection()};
uint32_t pcapValue = 0;
bool pcapEnable = false;
try
{
pcapValue = dcmi::getPcap(sdbus);
pcapEnable = dcmi::getPcapEnabled(sdbus);
}
catch (InternalFailure& e)
{
*data_len = 0;
return IPMI_CC_UNSPECIFIED_ERROR;
}
responseData->groupID = dcmi::groupExtId;
/*
* Exception action if power limit is exceeded and cannot be controlled
* with the correction time limit is hardcoded to Hard Power Off system
* and log event to SEL.
*/
constexpr auto exception = 0x01;
responseData->exceptionAction = exception;
responseData->powerLimit = static_cast<uint16_t>(pcapValue);
/*
* Correction time limit and Statistics sampling period is currently not
* populated.
*/
*data_len = outPayload.size();
memcpy(response, outPayload.data(), *data_len);
if (pcapEnable)
{
return IPMI_CC_OK;
}
else
{
return IPMI_DCMI_CC_NO_ACTIVE_POWER_LIMIT;
}
}
ipmi_ret_t setPowerLimit(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
auto requestData = reinterpret_cast<const dcmi::SetPowerLimitRequest*>
(request);
std::vector<uint8_t> outPayload(sizeof(dcmi::SetPowerLimitResponse));
auto responseData = reinterpret_cast<dcmi::SetPowerLimitResponse*>
(outPayload.data());
if (requestData->groupID != dcmi::groupExtId)
{
*data_len = 0;
return IPMI_CC_INVALID_FIELD_REQUEST;
}
sdbusplus::bus::bus sdbus {ipmid_get_sd_bus_connection()};
// Only process the power limit requested in watts.
try
{
dcmi::setPcap(sdbus, requestData->powerLimit);
}
catch (InternalFailure& e)
{
*data_len = 0;
return IPMI_CC_UNSPECIFIED_ERROR;
}
log<level::INFO>("Set Power Cap",
entry("POWERCAP=%u", requestData->powerLimit));
responseData->groupID = dcmi::groupExtId;
memcpy(response, outPayload.data(), outPayload.size());
*data_len = outPayload.size();
return IPMI_CC_OK;
}
ipmi_ret_t applyPowerLimit(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
auto requestData = reinterpret_cast<const dcmi::ApplyPowerLimitRequest*>
(request);
std::vector<uint8_t> outPayload(sizeof(dcmi::ApplyPowerLimitResponse));
auto responseData = reinterpret_cast<dcmi::ApplyPowerLimitResponse*>
(outPayload.data());
if (requestData->groupID != dcmi::groupExtId)
{
*data_len = 0;
return IPMI_CC_INVALID_FIELD_REQUEST;
}
sdbusplus::bus::bus sdbus {ipmid_get_sd_bus_connection()};
try
{
dcmi::setPcapEnable(sdbus,
static_cast<bool>(requestData->powerLimitAction));
}
catch (InternalFailure& e)
{
*data_len = 0;
return IPMI_CC_UNSPECIFIED_ERROR;
}
log<level::INFO>("Set Power Cap Enable",
entry("POWERCAPENABLE=%u", requestData->powerLimitAction));
responseData->groupID = dcmi::groupExtId;
memcpy(response, outPayload.data(), outPayload.size());
*data_len = outPayload.size();
return IPMI_CC_OK;
}
ipmi_ret_t getAssetTag(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
auto requestData = reinterpret_cast<const dcmi::GetAssetTagRequest*>
(request);
std::vector<uint8_t> outPayload(sizeof(dcmi::GetAssetTagResponse));
auto responseData = reinterpret_cast<dcmi::GetAssetTagResponse*>
(outPayload.data());
if (requestData->groupID != dcmi::groupExtId)
{
*data_len = 0;
return IPMI_CC_INVALID_FIELD_REQUEST;
}
// Verify offset to read and number of bytes to read are not exceeding the
// range.
if ((requestData->offset > dcmi::assetTagMaxOffset) ||
(requestData->bytes > dcmi::maxBytes) ||
((requestData->offset + requestData->bytes) > dcmi::assetTagMaxSize))
{
*data_len = 0;
return IPMI_CC_PARM_OUT_OF_RANGE;
}
std::string assetTag;
try
{
assetTag = dcmi::readAssetTag();
}
catch (InternalFailure& e)
{
*data_len = 0;
return IPMI_CC_UNSPECIFIED_ERROR;
}
responseData->groupID = dcmi::groupExtId;
// Return if the asset tag is not populated.
if (!assetTag.size())
{
responseData->tagLength = 0;
memcpy(response, outPayload.data(), outPayload.size());
*data_len = outPayload.size();
return IPMI_CC_OK;
}
// If the asset tag is longer than 63 bytes, restrict it to 63 bytes to suit
// Get Asset Tag command.
if (assetTag.size() > dcmi::assetTagMaxSize)
{
assetTag.resize(dcmi::assetTagMaxSize);
}
// If the requested offset is beyond the asset tag size.
if (requestData->offset >= assetTag.size())
{
*data_len = 0;
return IPMI_CC_PARM_OUT_OF_RANGE;
}
auto returnData = assetTag.substr(requestData->offset, requestData->bytes);
responseData->tagLength = assetTag.size();
memcpy(response, outPayload.data(), outPayload.size());
memcpy(static_cast<uint8_t*>(response) + outPayload.size(),
returnData.data(), returnData.size());
*data_len = outPayload.size() + returnData.size();
return IPMI_CC_OK;
}
ipmi_ret_t setAssetTag(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
auto requestData = reinterpret_cast<const dcmi::SetAssetTagRequest*>
(request);
std::vector<uint8_t> outPayload(sizeof(dcmi::SetAssetTagResponse));
auto responseData = reinterpret_cast<dcmi::SetAssetTagResponse*>
(outPayload.data());
if (requestData->groupID != dcmi::groupExtId)
{
*data_len = 0;
return IPMI_CC_INVALID_FIELD_REQUEST;
}
// Verify offset to read and number of bytes to read are not exceeding the
// range.
if ((requestData->offset > dcmi::assetTagMaxOffset) ||
(requestData->bytes > dcmi::maxBytes) ||
((requestData->offset + requestData->bytes) > dcmi::assetTagMaxSize))
{
*data_len = 0;
return IPMI_CC_PARM_OUT_OF_RANGE;
}
std::string assetTag;
try
{
assetTag = dcmi::readAssetTag();
if (requestData->offset > assetTag.size())
{
*data_len = 0;
return IPMI_CC_PARM_OUT_OF_RANGE;
}
assetTag.replace(requestData->offset,
assetTag.size() - requestData->offset,
static_cast<const char*>(request) +
sizeof(dcmi::SetAssetTagRequest),
requestData->bytes);
dcmi::writeAssetTag(assetTag);
responseData->groupID = dcmi::groupExtId;
responseData->tagLength = assetTag.size();
memcpy(response, outPayload.data(), outPayload.size());
*data_len = outPayload.size();
return IPMI_CC_OK;
}
catch (InternalFailure& e)
{
*data_len = 0;
return IPMI_CC_UNSPECIFIED_ERROR;
}
}
ipmi_ret_t getMgmntCtrlIdStr(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
auto requestData = reinterpret_cast<const dcmi::GetMgmntCtrlIdStrRequest *>
(request);
auto responseData = reinterpret_cast<dcmi::GetMgmntCtrlIdStrResponse *>
(response);
std::string hostName;
*data_len = 0;
if (requestData->groupID != dcmi::groupExtId ||
requestData->bytes > dcmi::maxBytes ||
requestData->offset + requestData->bytes > dcmi::maxCtrlIdStrLen)
{
return IPMI_CC_INVALID_FIELD_REQUEST;
}
try
{
hostName = dcmi::getHostName();
}
catch (InternalFailure& e)
{
return IPMI_CC_UNSPECIFIED_ERROR;
}
if (requestData->offset > hostName.length())
{
return IPMI_CC_PARM_OUT_OF_RANGE;
}
auto responseStr = hostName.substr(requestData->offset, requestData->bytes);
auto responseStrLen = std::min(static_cast<std::size_t>(requestData->bytes),
responseStr.length() + 1);
responseData->groupID = dcmi::groupExtId;
responseData->strLen = hostName.length();
std::copy(begin(responseStr), end(responseStr), responseData->data);
*data_len = sizeof(*responseData) + responseStrLen;
return IPMI_CC_OK;
}
ipmi_ret_t setMgmntCtrlIdStr(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
static std::array<char, dcmi::maxCtrlIdStrLen + 1> newCtrlIdStr;
auto requestData = reinterpret_cast<const dcmi::SetMgmntCtrlIdStrRequest *>
(request);
auto responseData = reinterpret_cast<dcmi::SetMgmntCtrlIdStrResponse *>
(response);
*data_len = 0;
if (requestData->groupID != dcmi::groupExtId ||
requestData->bytes > dcmi::maxBytes ||
requestData->offset + requestData->bytes > dcmi::maxCtrlIdStrLen + 1 ||
(requestData->offset + requestData->bytes == dcmi::maxCtrlIdStrLen + 1 &&
requestData->data[requestData->bytes - 1] != '\0'))
{
return IPMI_CC_INVALID_FIELD_REQUEST;
}
try
{
/* if there is no old value and offset is not 0 */
if (newCtrlIdStr[0] == '\0' && requestData->offset != 0)
{
/* read old ctrlIdStr */
auto hostName = dcmi::getHostName();
hostName.resize(dcmi::maxCtrlIdStrLen);
std::copy(begin(hostName), end(hostName), begin(newCtrlIdStr));
newCtrlIdStr[hostName.length()] = '\0';
}
/* replace part of string and mark byte after the last as \0 */
auto restStrIter = std::copy_n(requestData->data,
requestData->bytes, begin(newCtrlIdStr) + requestData->offset);
/* if the last written byte is not 64th - add '\0' */
if (requestData->offset + requestData->bytes <= dcmi::maxCtrlIdStrLen)
{
*restStrIter = '\0';
}
/* if input data contains '\0' whole string is sent - update hostname */
auto it = std::find(requestData->data,
requestData->data + requestData->bytes, '\0');
if (it != requestData->data + requestData->bytes)
{
sdbusplus::bus::bus bus{ ipmid_get_sd_bus_connection() };
ipmi::setDbusProperty(bus, dcmi::networkServiceName,
dcmi::networkConfigObj, dcmi::networkConfigIntf,
dcmi::hostNameProp, std::string(newCtrlIdStr.data()));
}
}
catch (InternalFailure& e)
{
*data_len = 0;
return IPMI_CC_UNSPECIFIED_ERROR;
}
responseData->groupID = dcmi::groupExtId;
responseData->offset = requestData->offset + requestData->bytes;
*data_len = sizeof(*responseData);
return IPMI_CC_OK;
}
//List of the capabilities under each parameter
dcmi::DCMICaps dcmiCaps =
{
//Supported DCMI Capabilities
{
dcmi::DCMICapParameters::SUPPORTED_DCMI_CAPS,
{
3, {{"PowerManagement", 2, 0, 1},
{"OOBSecondaryLan", 3, 2, 1},
{"SerialTMODE", 3, 1, 1},
{"InBandSystemInterfaceChannel", 3, 0, 1}
}
}
},
//Mandatory Platform Attributes
{
dcmi::DCMICapParameters::MANDATORY_PLAT_ATTRIBUTES,
{
5, {{"SELAutoRollOver", 1, 15, 1},
{"FlushEntireSELUponRollOver", 1, 14, 1},
{"RecordLevelSELFlushUponRollOver", 1, 13, 1},
{"NumberOfSELEntries", 1, 0, 12},
{"TempMonitoringSamplingFreq", 5, 0, 8}
}
}
},
//Optional Platform Attributes
{
dcmi::DCMICapParameters::OPTIONAL_PLAT_ATTRIBUTES,
{
2, {{"PowerMgmtDeviceSlaveAddress", 1, 1, 7},
{"BMCChannelNumber", 2, 4, 4},
{"DeviceRivision", 2, 0, 4}
}
}
},
//Manageability Access Attributes
{
dcmi::DCMICapParameters::MANAGEABILITY_ACCESS_ATTRIBUTES,
{
3, {{"MandatoryPrimaryLanOOBSupport", 1, 0, 8},
{"OptionalSecondaryLanOOBSupport", 2, 0, 8},
{"OptionalSerialOOBMTMODECapability", 3, 0, 8}
}
}
}
};
ipmi_ret_t getDCMICapabilities(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
std::ifstream dcmiCapFile(DCMI_CAP_JSON_FILE);
if (!dcmiCapFile.is_open())
{
log<level::ERR>("DCMI Capabilities file not found");
return IPMI_CC_UNSPECIFIED_ERROR;
}
auto data = nlohmann::json::parse(dcmiCapFile, nullptr, false);
if (data.is_discarded())
{
log<level::ERR>("DCMI Capabilities JSON parser failure");
return IPMI_CC_UNSPECIFIED_ERROR;
}
auto requestData = reinterpret_cast<const dcmi::GetDCMICapRequest*>
(request);
//get list of capabilities in a parameter
auto caps =
dcmiCaps.find(static_cast<dcmi::DCMICapParameters>(requestData->param));
if (caps == dcmiCaps.end())
{
log<level::ERR>("Invalid input parameter");
return IPMI_CC_INVALID_FIELD_REQUEST;
}
if (requestData->groupID != dcmi::groupExtId)
{
*data_len = 0;
return IPMI_CC_INVALID_FIELD_REQUEST;
}
auto responseData = reinterpret_cast<dcmi::GetDCMICapResponse*>
(response);
//For each capabilities in a parameter fill the data from
//the json file based on the capability name.
for (auto cap : caps->second.capList)
{
//If the data is beyond first byte boundary, insert in a
//16bit pattern for example number of SEL entries are represented
//in 12bits.
if ((cap.length + cap.position) > 8)
{
//Read the value corresponding to capability name and assign to
//16bit bitset.
std::bitset<16> val(data.value(cap.name.c_str(), 0));
val <<= cap.position;
reinterpret_cast<uint16_t*>(responseData->data)[
(cap.bytePosition - 1) / sizeof(uint16_t)] |= val.to_ulong();
}
else
{
responseData->data[cap.bytePosition - 1] |=
data.value(cap.name.c_str(), 0) << cap.position;
}
}
responseData->groupID = dcmi::groupExtId;
responseData->major = DCMI_SPEC_MAJOR_VERSION;
responseData->minor = DCMI_SPEC_MINOR_VERSION;
responseData->paramRevision = DCMI_PARAMETER_REVISION;
*data_len = sizeof(*responseData) + caps->second.size;
return IPMI_CC_OK;
}
namespace dcmi
{
namespace temp_readings
{
Temperature readTemp(const std::string& dbusService,
const std::string& dbusPath)
{
// Read the temperature value from d-bus object. Need some conversion.
// As per the interface xyz.openbmc_project.Sensor.Value, the temperature
// is an int64_t and in degrees C. It needs to be scaled by using the
// formula Value * 10^Scale. The ipmi spec has the temperature as a uint8_t,
// with a separate single bit for the sign.
sdbusplus::bus::bus bus{ipmid_get_sd_bus_connection()};
auto result = ipmi::getAllDbusProperties(bus, dbusService, dbusPath,
"xyz.openbmc_project.Sensor.Value");
auto temperature = result.at("Value").get<int64_t>();
uint64_t absTemp = std::abs(temperature);
auto factor = result.at("Scale").get<int64_t>();
uint64_t scale = std::pow(10, factor); // pow() returns float/double
unsigned long long tempDegrees = 0;
// Overflow safe multiplication when the scale is > 0
if (scale && __builtin_umulll_overflow(
absTemp, scale, &tempDegrees))
{
log<level::ERR>("Multiplication overflow detected",
entry("TEMP_VALUE=%llu", absTemp),
entry("SCALE_FACTOR=%llu", scale));
elog<InternalFailure>();
}
else
{
// The (uint64_t)scale value is 0, effectively this is division
tempDegrees = absTemp * std::pow(10, factor);
}
// Max absolute temp as per ipmi spec is 128.
if (tempDegrees > maxTemp)
{
tempDegrees = maxTemp;
}
return std::make_tuple(static_cast<uint8_t>(tempDegrees),
(temperature < 0));
}
std::tuple<Response, NumInstances> read(const std::string& type,
uint8_t instance)
{
Response response{};
sdbusplus::bus::bus bus{ipmid_get_sd_bus_connection()};
if (!instance)
{
log<level::ERR>("Expected non-zero instance");
elog<InternalFailure>();
}
auto data = parseSensorConfig();
static const std::vector<Json> empty{};
std::vector<Json> readings = data.value(type, empty);
size_t numInstances = readings.size();
for (const auto& j : readings)
{
uint8_t instanceNum = j.value("instance", 0);
// Not the instance we're interested in
if (instanceNum != instance)
{
continue;
}
std::string path = j.value("dbus", "");
std::string service;
try
{
service =
ipmi::getService(bus,
"xyz.openbmc_project.Sensor.Value",
path);
}
catch (std::exception& e)
{
log<level::DEBUG>(e.what());
return std::make_tuple(response, numInstances);
}
response.instance = instance;
uint8_t temp{};
bool sign{};
std::tie(temp, sign) = readTemp(service, path);
response.temperature = temp;
response.sign = sign;
// Found the instance we're interested in
break;
}
if (numInstances > maxInstances)
{
numInstances = maxInstances;
}
return std::make_tuple(response, numInstances);
}
std::tuple<ResponseList, NumInstances> readAll(const std::string& type,
uint8_t instanceStart)
{
ResponseList response{};
sdbusplus::bus::bus bus{ipmid_get_sd_bus_connection()};
size_t numInstances = 0;
auto data = parseSensorConfig();
static const std::vector<Json> empty{};
std::vector<Json> readings = data.value(type, empty);
numInstances = readings.size();
for (const auto& j : readings)
{
try
{
// Max of 8 response data sets
if (response.size() == maxDataSets)
{
break;
}
uint8_t instanceNum = j.value("instance", 0);
// Not in the instance range we're interested in
if (instanceNum < instanceStart)
{
continue;
}
std::string path = j.value("dbus", "");
auto service =
ipmi::getService(bus,
"xyz.openbmc_project.Sensor.Value",
path);
Response r{};
r.instance = instanceNum;
uint8_t temp{};
bool sign{};
std::tie(temp, sign) = readTemp(service, path);
r.temperature = temp;
r.sign = sign;
response.push_back(r);
}
catch (std::exception& e)
{
log<level::DEBUG>(e.what());
continue;
}
}
if (numInstances > maxInstances)
{
numInstances = maxInstances;
}
return std::make_tuple(response, numInstances);
}
} // namsespace temp_readings
} // namsepace dcmi
ipmi_ret_t getTempReadings(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
auto requestData =
reinterpret_cast<const dcmi::GetTempReadingsRequest*>(request);
auto responseData =
reinterpret_cast<dcmi::GetTempReadingsResponseHdr*>(response);
if (*data_len != sizeof(dcmi::GetTempReadingsRequest))
{
log<level::ERR>("Malformed request data",
entry("DATA_SIZE=%d", *data_len));
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
*data_len = 0;
auto it = dcmi::entityIdToName.find(requestData->entityId);
if (it == dcmi::entityIdToName.end())
{
log<level::ERR>("Unknown Entity ID",
entry("ENTITY_ID=%d", requestData->entityId));
return IPMI_CC_INVALID_FIELD_REQUEST;
}
if (requestData->groupID != dcmi::groupExtId)
{
log<level::ERR>("Invalid Group ID",
entry("GROUP_ID=%d", requestData->groupID));
return IPMI_CC_INVALID_FIELD_REQUEST;
}
if (requestData->sensorType != dcmi::temperatureSensorType)
{
log<level::ERR>("Invalid sensor type",
entry("SENSOR_TYPE=%d", requestData->sensorType));
return IPMI_CC_INVALID_FIELD_REQUEST;
}
dcmi::temp_readings::ResponseList temps{};
try
{
if (!requestData->entityInstance)
{
// Read all instances
std::tie(temps, responseData->numInstances) =
dcmi::temp_readings::readAll(it->second,
requestData->instanceStart);
}
else
{
// Read one instance
temps.resize(1);
std::tie(temps[0], responseData->numInstances) =
dcmi::temp_readings::read(it->second,
requestData->entityInstance);
}
responseData->numDataSets = temps.size();
}
catch (InternalFailure& e)
{
return IPMI_CC_UNSPECIFIED_ERROR;
}
responseData->groupID = dcmi::groupExtId;
size_t payloadSize =
temps.size() * sizeof(dcmi::temp_readings::Response);
if (!temps.empty())
{
memcpy(responseData + 1, // copy payload right after the response header
temps.data(),
payloadSize);
}
*data_len = sizeof(dcmi::GetTempReadingsResponseHdr) + payloadSize;
return IPMI_CC_OK;
}
int64_t getPowerReading(sdbusplus::bus::bus& bus)
{
std::ifstream sensorFile(POWER_READING_SENSOR);
std::string objectPath;
if (!sensorFile.is_open())
{
log<level::ERR>("Power reading configuration file not found",
entry("POWER_SENSOR_FILE=%s", POWER_READING_SENSOR));
elog<InternalFailure>();
}
auto data = nlohmann::json::parse(sensorFile, nullptr, false);
if (data.is_discarded())
{
log<level::ERR>("Error in parsing configuration file",
entry("POWER_SENSOR_FILE=%s", POWER_READING_SENSOR));
elog<InternalFailure>();
}
objectPath = data.value("path", "");
if (objectPath.empty())
{
log<level::ERR>("Power sensor D-Bus object path is empty",
entry("POWER_SENSOR_FILE=%s", POWER_READING_SENSOR));
elog<InternalFailure>();
}
// Return default value if failed to read from D-Bus object
int64_t power = 0;
try
{
auto service = ipmi::getService(bus, SENSOR_VALUE_INTF, objectPath);
//Read the sensor value and scale properties
auto properties = ipmi::getAllDbusProperties(
bus, service, objectPath, SENSOR_VALUE_INTF);
auto value = properties[SENSOR_VALUE_PROP].get<int64_t>();
auto scale = properties[SENSOR_SCALE_PROP].get<int64_t>();
// Power reading needs to be scaled with the Scale value using the
// formula Value * 10^Scale.
power = value * std::pow(10, scale);
}
catch (std::exception& e)
{
log<level::INFO>("Failure to read power value from D-Bus object",
entry("OBJECT_PATH=%s", objectPath),
entry("INTERFACE=%s", SENSOR_VALUE_INTF));
}
return power;
}
ipmi_ret_t getPowerReading(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
ipmi_ret_t rc = IPMI_CC_OK;
auto requestData = reinterpret_cast<const dcmi::GetPowerReadingRequest*>
(request);
auto responseData = reinterpret_cast<dcmi::GetPowerReadingResponse*>
(response);
if (requestData->groupID != dcmi::groupExtId)
{
*data_len = 0;
return IPMI_CC_INVALID_FIELD_REQUEST;
}
sdbusplus::bus::bus bus{ipmid_get_sd_bus_connection()};
int64_t power = 0;
try
{
power = getPowerReading(bus);
}
catch (InternalFailure& e)
{
log<level::ERR>("Error in reading power sensor value",
entry("INTERFACE=%s", SENSOR_VALUE_INTF),
entry("PROPERTY=%s", SENSOR_VALUE_PROP));
return IPMI_CC_UNSPECIFIED_ERROR;
}
responseData->groupID = dcmi::groupExtId;
// TODO: openbmc/openbmc#2819
// Minumum, Maximum, Average power, TimeFrame, TimeStamp,
// PowerReadingState readings need to be populated
// after Telemetry changes.
uint16_t totalPower = static_cast<uint16_t>(power);
responseData->currentPower = totalPower;
responseData->minimumPower = totalPower;
responseData->maximumPower = totalPower;
responseData->averagePower = totalPower;
*data_len = sizeof(*responseData);
return rc;
}
namespace dcmi
{
namespace sensor_info
{
Response createFromJson(const Json& config)
{
Response response{};
uint16_t recordId = config.value("record_id", 0);
response.recordIdLsb = recordId & 0xFF;
response.recordIdMsb = (recordId >> 8) & 0xFF;
return response;
}
std::tuple<Response, NumInstances> read(const std::string& type,
uint8_t instance,
const Json& config)
{
Response response{};
if (!instance)
{
log<level::ERR>("Expected non-zero instance");
elog<InternalFailure>();
}
static const std::vector<Json> empty{};
std::vector<Json> readings = config.value(type, empty);
size_t numInstances = readings.size();
for (const auto& reading : readings)
{
uint8_t instanceNum = reading.value("instance", 0);
// Not the instance we're interested in
if (instanceNum != instance)
{
continue;
}
response = createFromJson(reading);
// Found the instance we're interested in
break;
}
if (numInstances > maxInstances)
{
log<level::DEBUG>("Trimming IPMI num instances",
entry("NUM_INSTANCES=%d", numInstances));
numInstances = maxInstances;
}
return std::make_tuple(response, numInstances);
}
std::tuple<ResponseList, NumInstances> readAll(const std::string& type,
uint8_t instanceStart,
const Json& config)
{
ResponseList responses{};
size_t numInstances = 0;
static const std::vector<Json> empty{};
std::vector<Json> readings = config.value(type, empty);
numInstances = readings.size();
for (const auto& reading : readings)
{
try
{
// Max of 8 records
if (responses.size() == maxRecords)
{
break;
}
uint8_t instanceNum = reading.value("instance", 0);
// Not in the instance range we're interested in
if (instanceNum < instanceStart)
{
continue;
}
Response response = createFromJson(reading);
responses.push_back(response);
}
catch (std::exception& e)
{
log<level::DEBUG>(e.what());
continue;
}
}
if (numInstances > maxInstances)
{
log<level::DEBUG>("Trimming IPMI num instances",
entry("NUM_INSTANCES=%d", numInstances));
numInstances = maxInstances;
}
return std::make_tuple(responses, numInstances);
}
} // namespace sensor_info
} // namespace dcmi
ipmi_ret_t getSensorInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
auto requestData =
reinterpret_cast<const dcmi::GetSensorInfoRequest*>(request);
auto responseData =
reinterpret_cast<dcmi::GetSensorInfoResponseHdr*>(response);
if (*data_len != sizeof(dcmi::GetSensorInfoRequest))
{
log<level::ERR>("Malformed request data",
entry("DATA_SIZE=%d", *data_len));
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
*data_len = 0;
auto it = dcmi::entityIdToName.find(requestData->entityId);
if (it == dcmi::entityIdToName.end())
{
log<level::ERR>("Unknown Entity ID",
entry("ENTITY_ID=%d", requestData->entityId));
return IPMI_CC_INVALID_FIELD_REQUEST;
}
if (requestData->groupID != dcmi::groupExtId)
{
log<level::ERR>("Invalid Group ID",
entry("GROUP_ID=%d", requestData->groupID));
return IPMI_CC_INVALID_FIELD_REQUEST;
}
if (requestData->sensorType != dcmi::temperatureSensorType)
{
log<level::ERR>("Invalid sensor type",
entry("SENSOR_TYPE=%d", requestData->sensorType));
return IPMI_CC_INVALID_FIELD_REQUEST;
}
dcmi::sensor_info::ResponseList sensors{};
static dcmi::Json config{};
static bool parsed = false;
try
{
if (!parsed)
{
config = dcmi::parseSensorConfig();
parsed = true;
}
if (!requestData->entityInstance)
{
// Read all instances
std::tie(sensors, responseData->numInstances) =
dcmi::sensor_info::readAll(it->second,
requestData->instanceStart,
config);
}
else
{
// Read one instance
sensors.resize(1);
std::tie(sensors[0], responseData->numInstances) =
dcmi::sensor_info::read(it->second,
requestData->entityInstance,
config);
}
responseData->numRecords = sensors.size();
}
catch (InternalFailure& e)
{
return IPMI_CC_UNSPECIFIED_ERROR;
}
responseData->groupID = dcmi::groupExtId;
size_t payloadSize = sensors.size() * sizeof(dcmi::sensor_info::Response);
if (!sensors.empty())
{
memcpy(responseData + 1, // copy payload right after the response header
sensors.data(),
payloadSize);
}
*data_len = sizeof(dcmi::GetSensorInfoResponseHdr) + payloadSize;
return IPMI_CC_OK;
}
void register_netfn_dcmi_functions()
{
// <Get Power Limit>
printf("Registering NetFn:[0x%X], Cmd:[0x%X]\n",
NETFUN_GRPEXT, dcmi::Commands::GET_POWER_LIMIT);
ipmi_register_callback(NETFUN_GRPEXT, dcmi::Commands::GET_POWER_LIMIT,
NULL, getPowerLimit, PRIVILEGE_USER);
// <Set Power Limit>
printf("Registering NetFn:[0x%X], Cmd:[0x%X]\n",
NETFUN_GRPEXT, dcmi::Commands::SET_POWER_LIMIT);
ipmi_register_callback(NETFUN_GRPEXT, dcmi::Commands::SET_POWER_LIMIT,
NULL, setPowerLimit, PRIVILEGE_OPERATOR);
// <Activate/Deactivate Power Limit>
printf("Registering NetFn:[0x%X], Cmd:[0x%X]\n",
NETFUN_GRPEXT, dcmi::Commands::APPLY_POWER_LIMIT);
ipmi_register_callback(NETFUN_GRPEXT, dcmi::Commands::APPLY_POWER_LIMIT,
NULL, applyPowerLimit, PRIVILEGE_OPERATOR);
// <Get Asset Tag>
printf("Registering NetFn:[0x%X], Cmd:[0x%X]\n",
NETFUN_GRPEXT, dcmi::Commands::GET_ASSET_TAG);
ipmi_register_callback(NETFUN_GRPEXT, dcmi::Commands::GET_ASSET_TAG,
NULL, getAssetTag, PRIVILEGE_USER);
// <Set Asset Tag>
printf("Registering NetFn:[0x%X], Cmd:[0x%X]\n",
NETFUN_GRPEXT, dcmi::Commands::SET_ASSET_TAG);
ipmi_register_callback(NETFUN_GRPEXT, dcmi::Commands::SET_ASSET_TAG,
NULL, setAssetTag, PRIVILEGE_OPERATOR);
// <Get Management Controller Identifier String>
printf("Registering NetFn:[0x%X], Cmd:[0x%X]\n",
NETFUN_GRPEXT, dcmi::Commands::GET_MGMNT_CTRL_ID_STR);
ipmi_register_callback(NETFUN_GRPEXT, dcmi::Commands::GET_MGMNT_CTRL_ID_STR,
NULL, getMgmntCtrlIdStr, PRIVILEGE_USER);
// <Set Management Controller Identifier String>
printf("Registering NetFn:[0x%X], Cmd:[0x%X]\n",
NETFUN_GRPEXT, dcmi::Commands::SET_MGMNT_CTRL_ID_STR);
ipmi_register_callback(NETFUN_GRPEXT, dcmi::Commands::SET_MGMNT_CTRL_ID_STR,
NULL, setMgmntCtrlIdStr, PRIVILEGE_ADMIN);
// <Get DCMI capabilities>
ipmi_register_callback(NETFUN_GRPEXT, dcmi::Commands::GET_CAPABILITIES,
NULL, getDCMICapabilities, PRIVILEGE_USER);
// <Get Temperature Readings>
ipmi_register_callback(NETFUN_GRPEXT, dcmi::Commands::GET_TEMP_READINGS,
NULL, getTempReadings, PRIVILEGE_USER);
// <Get Power Reading>
ipmi_register_callback(NETFUN_GRPEXT, dcmi::Commands::GET_POWER_READING,
NULL, getPowerReading, PRIVILEGE_USER);
// <Get Sensor Info>
ipmi_register_callback(NETFUN_GRPEXT, dcmi::Commands::GET_SENSOR_INFO,
NULL, getSensorInfo, PRIVILEGE_USER);
return;
}
// 956379