blob: 9e88f2b5d14efb9b7fdcf9978bdfa7cd1d6a0f44 [file] [log] [blame]
/**
* Copyright © 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ipmid/api.hpp>
#include <ipmid/message.hpp>
#include <gtest/gtest.h>
// TODO: Add testing of Payload response API
TEST(PackBasics, Uint8)
{
ipmi::message::Payload p;
uint8_t v = 4;
p.pack(v);
// check that the number of bytes matches
ASSERT_EQ(p.size(), sizeof(v));
// check that the bytes were correctly packed (LSB first)
std::vector<uint8_t> k = {0x04};
ASSERT_EQ(p.raw, k);
}
TEST(PackBasics, Uint16)
{
ipmi::message::Payload p;
uint16_t v = 0x8604;
p.pack(v);
// check that the number of bytes matches
ASSERT_EQ(p.size(), sizeof(v));
// check that the bytes were correctly packed (LSB first)
std::vector<uint8_t> k = {0x04, 0x86};
ASSERT_EQ(p.raw, k);
}
TEST(PackBasics, Uint32)
{
ipmi::message::Payload p;
uint32_t v = 0x02008604;
p.pack(v);
// check that the number of bytes matches
ASSERT_EQ(p.size(), sizeof(v));
// check that the bytes were correctly packed (LSB first)
std::vector<uint8_t> k = {0x04, 0x86, 0x00, 0x02};
ASSERT_EQ(p.raw, k);
}
TEST(PackBasics, Uint64)
{
ipmi::message::Payload p;
uint64_t v = 0x1122334402008604ull;
p.pack(v);
// check that the number of bytes matches
ASSERT_EQ(p.size(), sizeof(v));
// check that the bytes were correctly packed (LSB first)
std::vector<uint8_t> k = {0x04, 0x86, 0x00, 0x02, 0x44, 0x33, 0x22, 0x11};
ASSERT_EQ(p.raw, k);
}
TEST(PackBasics, Uint24)
{
ipmi::message::Payload p;
uint24_t v = 0x112358;
p.pack(v);
// check that the number of bytes matches
ASSERT_EQ(p.size(), types::nrFixedBits<decltype(v)> / CHAR_BIT);
// check that the bytes were correctly packed (LSB first)
std::vector<uint8_t> k = {0x58, 0x23, 0x11};
ASSERT_EQ(p.raw, k);
}
TEST(PackBasics, Uint3Uint5)
{
// individual bytes are packed low-order-bits first
// v1 will occupy [2:0], v2 will occupy [7:3]
ipmi::message::Payload p;
uint3_t v1 = 0x1;
uint5_t v2 = 0x19;
p.pack(v1, v2);
// check that the number of bytes matches
ASSERT_EQ(p.size(), (types::nrFixedBits<decltype(v1)> +
types::nrFixedBits<decltype(v2)>) /
CHAR_BIT);
// check that the bytes were correctly packed (LSB first)
std::vector<uint8_t> k = {0xc9};
ASSERT_EQ(p.raw, k);
}
TEST(PackBasics, Boolx8)
{
// individual bytes are packed low-order-bits first
// [v8, v7, v6, v5, v4, v3, v2, v1]
ipmi::message::Payload p;
bool v8 = true, v7 = true, v6 = false, v5 = false;
bool v4 = true, v3 = false, v2 = false, v1 = true;
p.pack(v1, v2, v3, v4, v5, v6, v7, v8);
// check that the number of bytes matches
ASSERT_EQ(p.size(), sizeof(uint8_t));
// check that the bytes were correctly packed (LSB first)
std::vector<uint8_t> k = {0xc9};
ASSERT_EQ(p.raw, k);
}
TEST(PackBasics, Bitset8)
{
// individual bytes are packed low-order-bits first
// a bitset for 8 bits fills the full byte
ipmi::message::Payload p;
std::bitset<8> v(0xc9);
p.pack(v);
// check that the number of bytes matches
ASSERT_EQ(p.size(), v.size() / CHAR_BIT);
// check that the bytes were correctly packed (LSB first)
std::vector<uint8_t> k = {0xc9};
ASSERT_EQ(p.raw, k);
}
TEST(PackBasics, Bitset3Bitset5)
{
// individual bytes are packed low-order-bits first
// v1 will occupy [2:0], v2 will occupy [7:3]
ipmi::message::Payload p;
std::bitset<3> v1(0x1);
std::bitset<5> v2(0x19);
p.pack(v1, v2);
// check that the number of bytes matches
ASSERT_EQ(p.size(), (v1.size() + v2.size()) / CHAR_BIT);
// check that the bytes were correctly packed (LSB first)
std::vector<uint8_t> k = {0xc9};
ASSERT_EQ(p.raw, k);
}
TEST(PackBasics, Bitset32)
{
// individual bytes are packed low-order-bits first
// v1 will occupy 4 bytes, but in LSByte first order
// v1[7:0] v1[15:9] v1[23:16] v1[31:24]
ipmi::message::Payload p;
std::bitset<32> v(0x02008604);
p.pack(v);
// check that the number of bytes matches
ASSERT_EQ(p.size(), v.size() / CHAR_BIT);
// check that the bytes were correctly packed (LSB first)
std::vector<uint8_t> k = {0x04, 0x86, 0x00, 0x02};
ASSERT_EQ(p.raw, k);
}
TEST(PackBasics, Tuple)
{
// tuples are the new struct, pack a tuple
ipmi::message::Payload p;
auto v = std::make_tuple(static_cast<uint16_t>(0x8604), 'A');
p.pack(v);
// check that the number of bytes matches
ASSERT_EQ(p.size(), sizeof(uint16_t) + sizeof(char));
// check that the bytes were correctly packed (LSB first)
std::vector<uint8_t> k = {0x04, 0x86, 0x41};
ASSERT_EQ(p.raw, k);
}
TEST(PackBasics, Array4xUint8)
{
// an array of bytes will be output verbatim, low-order element first
ipmi::message::Payload p;
std::array<uint8_t, 4> v = {{0x02, 0x00, 0x86, 0x04}};
p.pack(v);
// check that the number of bytes matches
ASSERT_EQ(p.size(), v.size() * sizeof(v[0]));
// check that the bytes were correctly packed (in byte order)
std::vector<uint8_t> k = {0x02, 0x00, 0x86, 0x04};
ASSERT_EQ(p.raw, k);
}
TEST(PackBasics, Array4xUint32)
{
// an array of multi-byte values will be output in order low-order
// element first, each multi-byte element in LSByte order
// v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24]
// v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24]
// v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24]
// v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24]
ipmi::message::Payload p;
std::array<uint32_t, 4> v = {
{0x11223344, 0x22446688, 0x33557799, 0x12345678}};
p.pack(v);
// check that the number of bytes matches
ASSERT_EQ(p.size(), v.size() * sizeof(v[0]));
// check that the bytes were correctly packed (in byte order)
std::vector<uint8_t> k = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22,
0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34, 0x12};
ASSERT_EQ(p.raw, k);
}
TEST(PackBasics, VectorUint32)
{
// a vector of multi-byte values will be output in order low-order
// element first, each multi-byte element in LSByte order
// v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24]
// v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24]
// v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24]
// v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24]
ipmi::message::Payload p;
std::vector<uint32_t> v = {
{0x11223344, 0x22446688, 0x33557799, 0x12345678}};
p.pack(v);
// check that the number of bytes matches
ASSERT_EQ(p.size(), v.size() * sizeof(v[0]));
// check that the bytes were correctly packed (in byte order)
std::vector<uint8_t> k = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22,
0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34, 0x12};
ASSERT_EQ(p.raw, k);
}
TEST(PackBasics, VectorUint8)
{
// a vector of bytes will be output verbatim, low-order element first
ipmi::message::Payload p;
std::vector<uint8_t> v = {0x02, 0x00, 0x86, 0x04};
p.pack(v);
// check that the number of bytes matches
ASSERT_EQ(p.size(), v.size() * sizeof(v[0]));
// check that the bytes were correctly packed (in byte order)
std::vector<uint8_t> k = {0x02, 0x00, 0x86, 0x04};
ASSERT_EQ(p.raw, k);
}
TEST(PackBasics, VectorUnaligned)
{
ipmi::message::Payload p;
EXPECT_EQ(p.pack(true, std::vector<uint8_t>{1}), 1);
EXPECT_EQ(p.raw, std::vector<uint8_t>{0b1});
}
TEST(PackBasics, StringView)
{
ipmi::message::Payload p;
EXPECT_EQ(p.pack(std::string_view{"\x24\x30\x11"}), 0);
EXPECT_EQ(p.raw, std::vector<uint8_t>({0x24, 0x30, 0x11}));
}
TEST(PackBasics, StringViewUnaligned)
{
ipmi::message::Payload p;
EXPECT_EQ(p.pack(true, std::string_view{"abc"}), 1);
EXPECT_EQ(p.raw, std::vector<uint8_t>({0b1}));
}
TEST(PackBasics, OptionalEmpty)
{
// an optional will only pack if the value is present
ipmi::message::Payload p;
std::optional<uint32_t> v;
p.pack(v);
// check that the number of bytes matches
ASSERT_EQ(p.size(), 0);
// check that the bytes were correctly packed (in byte order)
std::vector<uint8_t> k = {};
ASSERT_EQ(p.raw, k);
}
TEST(PackBasics, OptionalContainsValue)
{
// an optional will only pack if the value is present
ipmi::message::Payload p;
std::optional<uint32_t> v(0x04860002);
p.pack(v);
// check that the number of bytes matches
ASSERT_EQ(p.size(), sizeof(uint32_t));
// check that the bytes were correctly packed (in byte order)
std::vector<uint8_t> k = {0x02, 0x00, 0x86, 0x04};
ASSERT_EQ(p.raw, k);
}
TEST(PackBasics, Payload)
{
ipmi::message::Payload p;
EXPECT_EQ(p.pack(true), 0);
EXPECT_EQ(p.pack(ipmi::message::Payload({0x24, 0x30})), 0);
EXPECT_EQ(p.raw, std::vector<uint8_t>({0b1, 0x24, 0x30}));
}
TEST(PackBasics, PayloadUnaligned)
{
ipmi::message::Payload p;
EXPECT_EQ(p.pack(true, ipmi::message::Payload({0x24})), 1);
EXPECT_EQ(p.raw, std::vector<uint8_t>({0b1}));
}
TEST(PackBasics, PayloadOtherUnaligned)
{
ipmi::message::Payload p, q;
q.appendBits(1, 1);
EXPECT_EQ(p.pack(true), 0);
EXPECT_EQ(p.pack(q), 1);
EXPECT_EQ(p.raw, std::vector<uint8_t>({0b1}));
}
TEST(PackBasics, PrependPayload)
{
ipmi::message::Payload p;
EXPECT_EQ(p.pack(true), 0);
EXPECT_EQ(p.prepend(ipmi::message::Payload({0x24, 0x30})), 0);
EXPECT_EQ(p.raw, std::vector<uint8_t>({0x24, 0x30, 0b1}));
}
TEST(PackBasics, PrependPayloadUnaligned)
{
ipmi::message::Payload p;
p.appendBits(1, 1);
EXPECT_EQ(p.prepend(ipmi::message::Payload({0x24})), 1);
p.drain();
EXPECT_EQ(p.raw, std::vector<uint8_t>({0b1}));
}
TEST(PackBasics, PrependPayloadOtherUnaligned)
{
ipmi::message::Payload p, q;
q.appendBits(1, 1);
EXPECT_EQ(p.pack(true), 0);
EXPECT_EQ(p.prepend(q), 1);
EXPECT_EQ(p.raw, std::vector<uint8_t>({0b1}));
}
TEST(PackAdvanced, Uints)
{
// all elements will be processed in order, with each multi-byte
// element being processed LSByte first
// v1[7:0] v2[7:0] v2[15:8] v3[7:0] v3[15:8] v3[23:16] v3[31:24]
// v4[7:0] v4[15:8] v4[23:16] v4[31:24]
// v4[39:25] v4[47:40] v4[55:48] v4[63:56]
ipmi::message::Payload p;
uint8_t v1 = 0x02;
uint16_t v2 = 0x0604;
uint32_t v3 = 0x44332211;
uint64_t v4 = 0xccbbaa9988776655ull;
p.pack(v1, v2, v3, v4);
// check that the number of bytes matches
ASSERT_EQ(p.size(), sizeof(v1) + sizeof(v2) + sizeof(v3) + sizeof(v4));
// check that the bytes were correctly packed (LSB first)
std::vector<uint8_t> k = {0x02, 0x04, 0x06, 0x11, 0x22, 0x33, 0x44, 0x55,
0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc};
ASSERT_EQ(p.raw, k);
}
TEST(PackAdvanced, TupleInts)
{
// all elements will be processed in order, with each multi-byte
// element being processed LSByte first
// v1[7:0] v2[7:0] v2[15:8] v3[7:0] v3[15:8] v3[23:16] v3[31:24]
// v4[7:0] v4[15:8] v4[23:16] v4[31:24]
// v4[39:25] v4[47:40] v4[55:48] v4[63:56]
ipmi::message::Payload p;
uint8_t v1 = 0x02;
uint16_t v2 = 0x0604;
uint32_t v3 = 0x44332211;
uint64_t v4 = 0xccbbaa9988776655ull;
auto v = std::make_tuple(v1, v2, v3, v4);
p.pack(v);
// check that the number of bytes matches
ASSERT_EQ(p.size(), sizeof(v1) + sizeof(v2) + sizeof(v3) + sizeof(v4));
// check that the bytes were correctly packed (LSB first)
std::vector<uint8_t> k = {0x02, 0x04, 0x06, 0x11, 0x22, 0x33, 0x44, 0x55,
0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc};
ASSERT_EQ(p.raw, k);
}
TEST(PackAdvanced, VariantArray)
{
ipmi::message::Payload p;
std::variant<std::array<uint8_t, 2>, uint32_t> variant;
auto data = std::array<uint8_t, 2>{2, 4};
variant = data;
p.pack(variant);
ASSERT_EQ(p.size(), sizeof(data));
// check that the bytes were correctly packed packed (LSB first)
std::vector<uint8_t> k = {2, 4};
ASSERT_EQ(p.raw, k);
}
TEST(PackAdvanced, BoolsnBitfieldsnFixedIntsOhMy)
{
// each element will be added, filling the low-order bits first
// with multi-byte values getting added LSByte first
// v1 will occupy k[0][1:0]
// v2 will occupy k[0][2]
// v3[4:0] will occupy k[0][7:3], v3[6:5] will occupy k[1][1:0]
// v4 will occupy k[1][2]
// v5 will occupy k[1][7:3]
ipmi::message::Payload p;
uint2_t v1 = 2; // binary 0b10
bool v2 = true; // binary 0b1
std::bitset<7> v3(0x73); // binary 0b1110011
bool v4 = false; // binary 0b0
uint5_t v5 = 27; // binary 0b11011
// concat binary: 0b1101101110011110 -> 0xdb9e -> 0x9e 0xdb (LSByte first)
p.pack(v1, v2, v3, v4, v5);
// check that the number of bytes matches
ASSERT_EQ(p.size(), sizeof(uint16_t));
// check that the bytes were correctly packed (LSB first)
std::vector<uint8_t> k = {0x9e, 0xdb};
ASSERT_EQ(p.raw, k);
}
TEST(PackAdvanced, UnalignedBitPacking)
{
// unaligned multi-byte values will be packed the same as
// other bits, effectively building up a large value, low-order
// bits first, then outputting a stream of LSByte values
// v1 will occupy k[0][1:0]
// v2[5:0] will occupy k[0][7:2], v2[7:6] will occupy k[1][1:0]
// v3 will occupy k[1][2]
// v4[4:0] will occupy k[1][7:3] v4[12:5] will occupy k[2][7:0]
// v4[15:13] will occupy k[3][2:0]
// v5 will occupy k[3][3]
// v6[3:0] will occupy k[3][7:0] v6[11:4] will occupy k[4][7:0]
// v6[19:12] will occupy k[5][7:0] v6[27:20] will occupy k[6][7:0]
// v6[31:28] will occupy k[7][3:0]
// v7 will occupy k[7][7:4]
ipmi::message::Payload p;
uint2_t v1 = 2; // binary 0b10
uint8_t v2 = 0xa5; // binary 0b10100101
bool v3 = false; // binary 0b0
uint16_t v4 = 0xa55a; // binary 0b1010010101011010
bool v5 = true; // binary 0b1
uint32_t v6 = 0xdbc3bd3c; // binary 0b11011011110000111011110100111100
uint4_t v7 = 9; // binary 0b1001
// concat binary:
// 0b1001110110111100001110111101001111001101001010101101001010010110
// -> 0x9dbc3bd3cd2ad296 -> 0x96 0xd2 0x2a 0xcd 0xd3 0x3b 0xbc 0x9d
p.pack(v1, v2, v3, v4, v5, v6, v7);
// check that the number of bytes matches
ASSERT_EQ(p.size(), sizeof(uint64_t));
// check that the bytes were correctly packed (LSB first)
std::vector<uint8_t> k = {0x96, 0xd2, 0x2a, 0xcd, 0xd3, 0x3b, 0xbc, 0x9d};
ASSERT_EQ(p.raw, k);
}
TEST(PackAdvanced, ComplexOptionalTuple)
{
constexpr size_t macSize = 6;
// inspired from a real-world case of Get Session Info
constexpr uint8_t handle = 0x23; // handle for active session
constexpr uint8_t maxSessions = 15; // number of possible active sessions
constexpr uint8_t currentSessions = 4; // number of current active sessions
std::optional< // only returned for active session
std::tuple<uint8_t, // user ID
uint8_t, // privilege
uint4_t, // channel number
uint4_t // protocol (RMCP+)
>>
activeSession;
std::optional< // only returned for channel type LAN
std::tuple<uint32_t, // IPv4 address
std::array<uint8_t, macSize>, // MAC address
uint16_t // port
>>
lanSession;
constexpr uint8_t userID = 7;
constexpr uint8_t priv = 4;
constexpr uint4_t channel = 2;
constexpr uint4_t protocol = 1;
activeSession.emplace(userID, priv, channel, protocol);
constexpr std::array<uint8_t, macSize> macAddr{0};
lanSession.emplace(0x0a010105, macAddr, 55327);
ipmi::message::Payload p;
p.pack(handle, maxSessions, currentSessions, activeSession, lanSession);
ASSERT_EQ(p.size(), sizeof(handle) + sizeof(maxSessions) +
sizeof(currentSessions) + 3 * sizeof(uint8_t) +
sizeof(uint32_t) + sizeof(uint8_t) * macSize +
sizeof(uint16_t));
uint8_t protocol_channel =
(static_cast<uint8_t>(protocol) << 4) | static_cast<uint8_t>(channel);
std::vector<uint8_t> k = {handle, maxSessions, currentSessions, userID,
priv, protocol_channel,
// ip addr
0x05, 0x01, 0x01, 0x0a,
// mac addr
0, 0, 0, 0, 0, 0,
// port
0x1f, 0xd8};
ASSERT_EQ(p.raw, k);
}