blob: dc0d85c91c557fc5095ebc83b029fdda1841fc7c [file] [log] [blame]
#include "config.h"
#include "sensorhandler.hpp"
#include "fruread.hpp"
#include <systemd/sd-bus.h>
#include <ipmid/api.hpp>
#include <ipmid/entity_map_json.hpp>
#include <ipmid/types.hpp>
#include <ipmid/utils.hpp>
#include <phosphor-logging/elog-errors.hpp>
#include <phosphor-logging/lg2.hpp>
#include <sdbusplus/message/types.hpp>
#include <xyz/openbmc_project/Common/error.hpp>
#include <xyz/openbmc_project/Sensor/Value/server.hpp>
#include <bitset>
#include <cmath>
#include <cstring>
#include <set>
static constexpr uint8_t fruInventoryDevice = 0x10;
static constexpr uint8_t IPMIFruInventory = 0x02;
static constexpr uint8_t BMCTargetAddress = 0x20;
extern int updateSensorRecordFromSSRAESC(const void*);
extern sd_bus* bus;
namespace ipmi
{
namespace sensor
{
extern const IdInfoMap sensors;
} // namespace sensor
} // namespace ipmi
extern const FruMap frus;
using namespace phosphor::logging;
using InternalFailure =
sdbusplus::error::xyz::openbmc_project::common::InternalFailure;
void register_netfn_sen_functions() __attribute__((constructor));
struct sensorTypemap_t
{
uint8_t number;
uint8_t typecode;
char dbusname[32];
};
sensorTypemap_t g_SensorTypeMap[] = {
{0x01, 0x6F, "Temp"},
{0x0C, 0x6F, "DIMM"},
{0x0C, 0x6F, "MEMORY_BUFFER"},
{0x07, 0x6F, "PROC"},
{0x07, 0x6F, "CORE"},
{0x07, 0x6F, "CPU"},
{0x0F, 0x6F, "BootProgress"},
{0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor
// type code os 0x09
{0xC3, 0x6F, "BootCount"},
{0x1F, 0x6F, "OperatingSystemStatus"},
{0x12, 0x6F, "SYSTEM_EVENT"},
{0xC7, 0x03, "SYSTEM"},
{0xC7, 0x03, "MAIN_PLANAR"},
{0xC2, 0x6F, "PowerCap"},
{0x0b, 0xCA, "PowerSupplyRedundancy"},
{0xDA, 0x03, "TurboAllowed"},
{0xD8, 0xC8, "PowerSupplyDerating"},
{0xFF, 0x00, ""},
};
struct sensor_data_t
{
uint8_t sennum;
} __attribute__((packed));
using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>;
SDRCacheMap sdrCacheMap __attribute__((init_priority(101)));
using SensorThresholdMap =
std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>;
SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101)));
#ifdef FEATURE_SENSORS_CACHE
std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorAddedMatches
__attribute__((init_priority(101)));
std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorUpdatedMatches
__attribute__((init_priority(101)));
std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorRemovedMatches
__attribute__((init_priority(101)));
std::unique_ptr<sdbusplus::bus::match_t> sensorsOwnerMatch
__attribute__((init_priority(101)));
ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101)));
// It is needed to know which objects belong to which service, so that when a
// service exits without interfacesRemoved signal, we could invaildate the cache
// that is related to the service. It uses below two variables:
// - idToServiceMap records which sensors are known to have a related service;
// - serviceToIdMap maps a service to the sensors.
using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>;
sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101)));
using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>;
sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101)));
static void fillSensorIdServiceMap(const std::string&,
const std::string& /*intf*/, uint8_t id,
const std::string& service)
{
if (idToServiceMap.find(id) != idToServiceMap.end())
{
return;
}
idToServiceMap[id] = service;
serviceToIdMap[service].insert(id);
}
static void fillSensorIdServiceMap(const std::string& obj,
const std::string& intf, uint8_t id)
{
if (idToServiceMap.find(id) != idToServiceMap.end())
{
return;
}
try
{
sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
auto service = ipmi::getService(bus, intf, obj);
idToServiceMap[id] = service;
serviceToIdMap[service].insert(id);
}
catch (...)
{
// Ignore
}
}
void initSensorMatches()
{
using namespace sdbusplus::bus::match::rules;
sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
for (const auto& s : ipmi::sensor::sensors)
{
sensorAddedMatches.emplace(
s.first,
std::make_unique<sdbusplus::bus::match_t>(
bus, interfacesAdded() + argNpath(0, s.second.sensorPath),
[id = s.first, obj = s.second.sensorPath,
intf = s.second.propertyInterfaces.begin()->first](
auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); }));
sensorRemovedMatches.emplace(
s.first,
std::make_unique<sdbusplus::bus::match_t>(
bus, interfacesRemoved() + argNpath(0, s.second.sensorPath),
[id = s.first](auto& /*msg*/) {
// Ideally this should work.
// But when a service is terminated or crashed, it does not
// emit interfacesRemoved signal. In that case it's handled
// by sensorsOwnerMatch
sensorCacheMap[id].reset();
}));
sensorUpdatedMatches.emplace(
s.first,
std::make_unique<sdbusplus::bus::match_t>(
bus,
type::signal() + path(s.second.sensorPath) +
member("PropertiesChanged"s) +
interface("org.freedesktop.DBus.Properties"s),
[&s](auto& msg) {
fillSensorIdServiceMap(
s.second.sensorPath,
s.second.propertyInterfaces.begin()->first, s.first);
try
{
// This is signal callback
std::string interfaceName;
msg.read(interfaceName);
ipmi::PropertyMap props;
msg.read(props);
s.second.getFunc(s.first, s.second, props);
}
catch (const std::exception& e)
{
sensorCacheMap[s.first].reset();
}
}));
}
sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match_t>(
bus, nameOwnerChanged(), [](auto& msg) {
std::string name;
std::string oldOwner;
std::string newOwner;
msg.read(name, oldOwner, newOwner);
if (!name.empty() && newOwner.empty())
{
// The service exits
const auto it = serviceToIdMap.find(name);
if (it == serviceToIdMap.end())
{
return;
}
for (const auto& id : it->second)
{
// Invalidate cache
sensorCacheMap[id].reset();
}
}
});
}
#endif
// Use a lookup table to find the interface name of a specific sensor
// This will be used until an alternative is found. this is the first
// step for mapping IPMI
int find_openbmc_path(uint8_t num, dbus_interface_t* interface)
{
const auto& sensor_it = ipmi::sensor::sensors.find(num);
if (sensor_it == ipmi::sensor::sensors.end())
{
// The sensor map does not contain the sensor requested
return -EINVAL;
}
const auto& info = sensor_it->second;
std::string serviceName{};
try
{
sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
serviceName =
ipmi::getService(bus, info.sensorInterface, info.sensorPath);
}
catch (const sdbusplus::exception_t&)
{
std::fprintf(stderr, "Failed to get %s busname: %s\n",
info.sensorPath.c_str(), serviceName.c_str());
return -EINVAL;
}
interface->sensortype = info.sensorType;
strcpy(interface->bus, serviceName.c_str());
strcpy(interface->path, info.sensorPath.c_str());
// Take the interface name from the beginning of the DbusInterfaceMap. This
// works for the Value interface but may not suffice for more complex
// sensors.
// tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103
strcpy(interface->interface,
info.propertyInterfaces.begin()->first.c_str());
interface->sensornumber = num;
return 0;
}
/////////////////////////////////////////////////////////////////////
//
// Routines used by ipmi commands wanting to interact on the dbus
//
/////////////////////////////////////////////////////////////////////
int set_sensor_dbus_state_s(uint8_t number, const char* method,
const char* value)
{
dbus_interface_t a;
int r;
sd_bus_error error = SD_BUS_ERROR_NULL;
sd_bus_message* m = NULL;
r = find_openbmc_path(number, &a);
if (r < 0)
{
std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
return 0;
}
r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
method);
if (r < 0)
{
std::fprintf(stderr, "Failed to create a method call: %s",
strerror(-r));
goto final;
}
r = sd_bus_message_append(m, "v", "s", value);
if (r < 0)
{
std::fprintf(stderr, "Failed to create a input parameter: %s",
strerror(-r));
goto final;
}
r = sd_bus_call(bus, m, 0, &error, NULL);
if (r < 0)
{
std::fprintf(stderr, "Failed to call the method: %s", strerror(-r));
}
final:
sd_bus_error_free(&error);
m = sd_bus_message_unref(m);
return 0;
}
int set_sensor_dbus_state_y(uint8_t number, const char* method,
const uint8_t value)
{
dbus_interface_t a;
int r;
sd_bus_error error = SD_BUS_ERROR_NULL;
sd_bus_message* m = NULL;
r = find_openbmc_path(number, &a);
if (r < 0)
{
std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
return 0;
}
r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
method);
if (r < 0)
{
std::fprintf(stderr, "Failed to create a method call: %s",
strerror(-r));
goto final;
}
r = sd_bus_message_append(m, "v", "i", value);
if (r < 0)
{
std::fprintf(stderr, "Failed to create a input parameter: %s",
strerror(-r));
goto final;
}
r = sd_bus_call(bus, m, 0, &error, NULL);
if (r < 0)
{
std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r));
}
final:
sd_bus_error_free(&error);
m = sd_bus_message_unref(m);
return 0;
}
uint8_t dbus_to_sensor_type(char* p)
{
sensorTypemap_t* s = g_SensorTypeMap;
char r = 0;
while (s->number != 0xFF)
{
if (!strcmp(s->dbusname, p))
{
r = s->typecode;
break;
}
s++;
}
if (s->number == 0xFF)
printf("Failed to find Sensor Type %s\n", p);
return r;
}
uint8_t get_type_from_interface(dbus_interface_t dbus_if)
{
uint8_t type;
// This is where sensors that do not exist in dbus but do
// exist in the host code stop. This should indicate it
// is not a supported sensor
if (dbus_if.interface[0] == 0)
{
return 0;
}
// Fetch type from interface itself.
if (dbus_if.sensortype != 0)
{
type = dbus_if.sensortype;
}
else
{
// Non InventoryItems
char* p = strrchr(dbus_if.path, '/');
type = dbus_to_sensor_type(p + 1);
}
return type;
}
// Replaces find_sensor
uint8_t find_type_for_sensor_number(uint8_t num)
{
int r;
dbus_interface_t dbus_if;
r = find_openbmc_path(num, &dbus_if);
if (r < 0)
{
std::fprintf(stderr, "Could not find sensor %d\n", num);
return 0;
}
return get_type_from_interface(dbus_if);
}
/**
* @brief implements the get sensor type command.
* @param - sensorNumber
*
* @return IPMI completion code plus response data on success.
* - sensorType
* - eventType
**/
ipmi::RspType<uint8_t, // sensorType
uint8_t // eventType
>
ipmiGetSensorType(uint8_t sensorNumber)
{
const auto it = ipmi::sensor::sensors.find(sensorNumber);
if (it == ipmi::sensor::sensors.end())
{
// The sensor map does not contain the sensor requested
return ipmi::responseSensorInvalid();
}
const auto& info = it->second;
uint8_t sensorType = info.sensorType;
uint8_t eventType = info.sensorReadingType;
return ipmi::responseSuccess(sensorType, eventType);
}
const std::set<std::string> analogSensorInterfaces = {
"xyz.openbmc_project.Sensor.Value",
"xyz.openbmc_project.Control.FanPwm",
};
bool isAnalogSensor(const std::string& interface)
{
return (analogSensorInterfaces.count(interface));
}
/**
@brief This command is used to set sensorReading.
@param
- sensorNumber
- operation
- reading
- assertOffset0_7
- assertOffset8_14
- deassertOffset0_7
- deassertOffset8_14
- eventData1
- eventData2
- eventData3
@return completion code on success.
**/
ipmi::RspType<> ipmiSetSensorReading(
uint8_t sensorNumber, uint8_t operation, uint8_t reading,
uint8_t assertOffset0_7, uint8_t assertOffset8_14,
uint8_t deassertOffset0_7, uint8_t deassertOffset8_14, uint8_t eventData1,
uint8_t eventData2, uint8_t eventData3)
{
lg2::debug("IPMI SET_SENSOR, sensorNumber: {SENSOR_NUM}", "SENSOR_NUM",
lg2::hex, sensorNumber);
if (sensorNumber == 0xFF)
{
return ipmi::responseInvalidFieldRequest();
}
ipmi::sensor::SetSensorReadingReq cmdData;
cmdData.number = sensorNumber;
cmdData.operation = operation;
cmdData.reading = reading;
cmdData.assertOffset0_7 = assertOffset0_7;
cmdData.assertOffset8_14 = assertOffset8_14;
cmdData.deassertOffset0_7 = deassertOffset0_7;
cmdData.deassertOffset8_14 = deassertOffset8_14;
cmdData.eventData1 = eventData1;
cmdData.eventData2 = eventData2;
cmdData.eventData3 = eventData3;
// Check if the Sensor Number is present
const auto iter = ipmi::sensor::sensors.find(sensorNumber);
if (iter == ipmi::sensor::sensors.end())
{
updateSensorRecordFromSSRAESC(&sensorNumber);
return ipmi::responseSuccess();
}
try
{
if (ipmi::sensor::Mutability::Write !=
(iter->second.mutability & ipmi::sensor::Mutability::Write))
{
lg2::error("Sensor Set operation is not allowed, "
"sensorNumber: {SENSOR_NUM}",
"SENSOR_NUM", lg2::hex, sensorNumber);
return ipmi::responseIllegalCommand();
}
auto ipmiRC = iter->second.updateFunc(cmdData, iter->second);
return ipmi::response(ipmiRC);
}
catch (const InternalFailure& e)
{
lg2::error("Set sensor failed, sensorNumber: {SENSOR_NUM}",
"SENSOR_NUM", lg2::hex, sensorNumber);
commit<InternalFailure>();
return ipmi::responseUnspecifiedError();
}
catch (const std::runtime_error& e)
{
lg2::error("runtime error: {ERROR}", "ERROR", e);
return ipmi::responseUnspecifiedError();
}
}
/** @brief implements the get sensor reading command
* @param sensorNum - sensor number
*
* @returns IPMI completion code plus response data
* - senReading - sensor reading
* - reserved
* - readState - sensor reading state enabled
* - senScanState - sensor scan state disabled
* - allEventMessageState - all Event message state disabled
* - assertionStatesLsb - threshold levels states
* - assertionStatesMsb - discrete reading sensor states
*/
ipmi::RspType<uint8_t, // sensor reading
uint5_t, // reserved
bool, // reading state
bool, // 0 = sensor scanning state disabled
bool, // 0 = all event messages disabled
uint8_t, // threshold levels states
uint8_t // discrete reading sensor states
>
ipmiSensorGetSensorReading([[maybe_unused]] ipmi::Context::ptr& ctx,
uint8_t sensorNum)
{
if (sensorNum == 0xFF)
{
return ipmi::responseInvalidFieldRequest();
}
const auto iter = ipmi::sensor::sensors.find(sensorNum);
if (iter == ipmi::sensor::sensors.end())
{
return ipmi::responseSensorInvalid();
}
if (ipmi::sensor::Mutability::Read !=
(iter->second.mutability & ipmi::sensor::Mutability::Read))
{
return ipmi::responseIllegalCommand();
}
try
{
#ifdef FEATURE_SENSORS_CACHE
auto& sensorData = sensorCacheMap[sensorNum];
if (!sensorData.has_value())
{
// No cached value, try read it
std::string service;
boost::system::error_code ec;
const auto& sensorInfo = iter->second;
ec = ipmi::getService(ctx, sensorInfo.sensorInterface,
sensorInfo.sensorPath, service);
if (ec)
{
return ipmi::responseUnspecifiedError();
}
fillSensorIdServiceMap(sensorInfo.sensorPath,
sensorInfo.propertyInterfaces.begin()->first,
iter->first, service);
ipmi::PropertyMap props;
ec = ipmi::getAllDbusProperties(
ctx, service, sensorInfo.sensorPath,
sensorInfo.propertyInterfaces.begin()->first, props);
if (ec)
{
fprintf(stderr, "Failed to get sensor %s, %d: %s\n",
sensorInfo.sensorPath.c_str(), ec.value(),
ec.message().c_str());
// Intitilizing with default values
constexpr uint8_t senReading = 0;
constexpr uint5_t reserved{0};
constexpr bool readState = true;
constexpr bool senScanState = false;
constexpr bool allEventMessageState = false;
constexpr uint8_t assertionStatesLsb = 0;
constexpr uint8_t assertionStatesMsb = 0;
return ipmi::responseSuccess(
senReading, reserved, readState, senScanState,
allEventMessageState, assertionStatesLsb,
assertionStatesMsb);
}
sensorInfo.getFunc(sensorNum, sensorInfo, props);
}
return ipmi::responseSuccess(
sensorData->response.reading, uint5_t(0),
sensorData->response.readingOrStateUnavailable,
sensorData->response.scanningEnabled,
sensorData->response.allEventMessagesEnabled,
sensorData->response.thresholdLevelsStates,
sensorData->response.discreteReadingSensorStates);
#else
ipmi::sensor::GetSensorResponse getResponse =
iter->second.getFunc(iter->second);
return ipmi::responseSuccess(
getResponse.reading, uint5_t(0),
getResponse.readingOrStateUnavailable, getResponse.scanningEnabled,
getResponse.allEventMessagesEnabled,
getResponse.thresholdLevelsStates,
getResponse.discreteReadingSensorStates);
#endif
}
#ifdef UPDATE_FUNCTIONAL_ON_FAIL
catch (const SensorFunctionalError& e)
{
return ipmi::responseResponseError();
}
#endif
catch (const std::exception& e)
{
// Intitilizing with default values
constexpr uint8_t senReading = 0;
constexpr uint5_t reserved{0};
constexpr bool readState = true;
constexpr bool senScanState = false;
constexpr bool allEventMessageState = false;
constexpr uint8_t assertionStatesLsb = 0;
constexpr uint8_t assertionStatesMsb = 0;
return ipmi::responseSuccess(senReading, reserved, readState,
senScanState, allEventMessageState,
assertionStatesLsb, assertionStatesMsb);
}
}
get_sdr::GetSensorThresholdsResponse
getSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum)
{
get_sdr::GetSensorThresholdsResponse resp{};
constexpr auto warningThreshIntf =
"xyz.openbmc_project.Sensor.Threshold.Warning";
constexpr auto criticalThreshIntf =
"xyz.openbmc_project.Sensor.Threshold.Critical";
const auto iter = ipmi::sensor::sensors.find(sensorNum);
const auto info = iter->second;
std::string service;
boost::system::error_code ec;
ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
if (ec)
{
return resp;
}
ipmi::PropertyMap warnThresholds;
ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
warningThreshIntf, warnThresholds);
int32_t minClamp;
int32_t maxClamp;
int32_t rawData;
constexpr uint8_t sensorUnitsSignedBits = 2 << 6;
constexpr uint8_t signedDataFormat = 0x80;
if ((info.sensorUnits1 & sensorUnitsSignedBits) == signedDataFormat)
{
minClamp = std::numeric_limits<int8_t>::lowest();
maxClamp = std::numeric_limits<int8_t>::max();
}
else
{
minClamp = std::numeric_limits<uint8_t>::lowest();
maxClamp = std::numeric_limits<uint8_t>::max();
}
if (!ec)
{
double warnLow = ipmi::mappedVariant<double>(
warnThresholds, "WarningLow",
std::numeric_limits<double>::quiet_NaN());
double warnHigh = ipmi::mappedVariant<double>(
warnThresholds, "WarningHigh",
std::numeric_limits<double>::quiet_NaN());
if (std::isfinite(warnLow))
{
warnLow *= std::pow(10, info.scale - info.exponentR);
rawData = round((warnLow - info.scaledOffset) / info.coefficientM);
resp.lowerNonCritical =
static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
resp.validMask |= static_cast<uint8_t>(
ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK);
}
if (std::isfinite(warnHigh))
{
warnHigh *= std::pow(10, info.scale - info.exponentR);
rawData = round((warnHigh - info.scaledOffset) / info.coefficientM);
resp.upperNonCritical =
static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
resp.validMask |= static_cast<uint8_t>(
ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK);
}
}
ipmi::PropertyMap critThresholds;
ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
criticalThreshIntf, critThresholds);
if (!ec)
{
double critLow = ipmi::mappedVariant<double>(
critThresholds, "CriticalLow",
std::numeric_limits<double>::quiet_NaN());
double critHigh = ipmi::mappedVariant<double>(
critThresholds, "CriticalHigh",
std::numeric_limits<double>::quiet_NaN());
if (std::isfinite(critLow))
{
critLow *= std::pow(10, info.scale - info.exponentR);
rawData = round((critLow - info.scaledOffset) / info.coefficientM);
resp.lowerCritical =
static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
resp.validMask |= static_cast<uint8_t>(
ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK);
}
if (std::isfinite(critHigh))
{
critHigh *= std::pow(10, info.scale - info.exponentR);
rawData = round((critHigh - info.scaledOffset) / info.coefficientM);
resp.upperCritical =
static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
resp.validMask |= static_cast<uint8_t>(
ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK);
}
}
return resp;
}
/** @brief implements the get sensor thresholds command
* @param ctx - IPMI context pointer
* @param sensorNum - sensor number
*
* @returns IPMI completion code plus response data
* - validMask - threshold mask
* - lower non-critical threshold - IPMI messaging state
* - lower critical threshold - link authentication state
* - lower non-recoverable threshold - callback state
* - upper non-critical threshold
* - upper critical
* - upper non-recoverable
*/
ipmi::RspType<uint8_t, // validMask
uint8_t, // lowerNonCritical
uint8_t, // lowerCritical
uint8_t, // lowerNonRecoverable
uint8_t, // upperNonCritical
uint8_t, // upperCritical
uint8_t // upperNonRecoverable
>
ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum)
{
constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
const auto iter = ipmi::sensor::sensors.find(sensorNum);
if (iter == ipmi::sensor::sensors.end())
{
return ipmi::responseSensorInvalid();
}
const auto info = iter->second;
// Proceed only if the sensor value interface is implemented.
if (info.propertyInterfaces.find(valueInterface) ==
info.propertyInterfaces.end())
{
// return with valid mask as 0
return ipmi::responseSuccess();
}
auto it = sensorThresholdMap.find(sensorNum);
if (it == sensorThresholdMap.end())
{
sensorThresholdMap[sensorNum] = getSensorThresholds(ctx, sensorNum);
}
const auto& resp = sensorThresholdMap[sensorNum];
return ipmi::responseSuccess(
resp.validMask, resp.lowerNonCritical, resp.lowerCritical,
resp.lowerNonRecoverable, resp.upperNonCritical, resp.upperCritical,
resp.upperNonRecoverable);
}
/** @brief implements the Set Sensor threshold command
* @param sensorNumber - sensor number
* @param lowerNonCriticalThreshMask
* @param lowerCriticalThreshMask
* @param lowerNonRecovThreshMask
* @param upperNonCriticalThreshMask
* @param upperCriticalThreshMask
* @param upperNonRecovThreshMask
* @param reserved
* @param lowerNonCritical - lower non-critical threshold
* @param lowerCritical - Lower critical threshold
* @param lowerNonRecoverable - Lower non recovarable threshold
* @param upperNonCritical - Upper non-critical threshold
* @param upperCritical - Upper critical
* @param upperNonRecoverable - Upper Non-recoverable
*
* @returns IPMI completion code
*/
ipmi::RspType<> ipmiSenSetSensorThresholds(
ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask,
bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask,
bool upperNonCriticalThreshMask, bool upperCriticalThreshMask,
bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical,
uint8_t lowerCritical, uint8_t, uint8_t upperNonCritical,
uint8_t upperCritical, uint8_t)
{
if (reserved)
{
return ipmi::responseInvalidFieldRequest();
}
// lower nc and upper nc not suppported on any sensor
if (lowerNonRecovThreshMask || upperNonRecovThreshMask)
{
return ipmi::responseInvalidFieldRequest();
}
// if none of the threshold mask are set, nothing to do
if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask |
lowerNonRecovThreshMask | upperNonCriticalThreshMask |
upperCriticalThreshMask | upperNonRecovThreshMask))
{
return ipmi::responseSuccess();
}
constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
const auto iter = ipmi::sensor::sensors.find(sensorNum);
if (iter == ipmi::sensor::sensors.end())
{
return ipmi::responseSensorInvalid();
}
const auto& info = iter->second;
// Proceed only if the sensor value interface is implemented.
if (info.propertyInterfaces.find(valueInterface) ==
info.propertyInterfaces.end())
{
// return with valid mask as 0
return ipmi::responseSuccess();
}
constexpr auto warningThreshIntf =
"xyz.openbmc_project.Sensor.Threshold.Warning";
constexpr auto criticalThreshIntf =
"xyz.openbmc_project.Sensor.Threshold.Critical";
std::string service;
boost::system::error_code ec;
ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
if (ec)
{
return ipmi::responseResponseError();
}
// store a vector of property name, value to set, and interface
std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet;
// define the indexes of the tuple
constexpr uint8_t propertyName = 0;
constexpr uint8_t thresholdValue = 1;
constexpr uint8_t interface = 2;
// verifiy all needed fields are present
if (lowerCriticalThreshMask || upperCriticalThreshMask)
{
ipmi::PropertyMap findThreshold;
ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
criticalThreshIntf, findThreshold);
if (!ec)
{
if (lowerCriticalThreshMask)
{
auto findLower = findThreshold.find("CriticalLow");
if (findLower == findThreshold.end())
{
return ipmi::responseInvalidFieldRequest();
}
thresholdsToSet.emplace_back("CriticalLow", lowerCritical,
criticalThreshIntf);
}
if (upperCriticalThreshMask)
{
auto findUpper = findThreshold.find("CriticalHigh");
if (findUpper == findThreshold.end())
{
return ipmi::responseInvalidFieldRequest();
}
thresholdsToSet.emplace_back("CriticalHigh", upperCritical,
criticalThreshIntf);
}
}
}
if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask)
{
ipmi::PropertyMap findThreshold;
ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
warningThreshIntf, findThreshold);
if (!ec)
{
if (lowerNonCriticalThreshMask)
{
auto findLower = findThreshold.find("WarningLow");
if (findLower == findThreshold.end())
{
return ipmi::responseInvalidFieldRequest();
}
thresholdsToSet.emplace_back("WarningLow", lowerNonCritical,
warningThreshIntf);
}
if (upperNonCriticalThreshMask)
{
auto findUpper = findThreshold.find("WarningHigh");
if (findUpper == findThreshold.end())
{
return ipmi::responseInvalidFieldRequest();
}
thresholdsToSet.emplace_back("WarningHigh", upperNonCritical,
warningThreshIntf);
}
}
}
for (const auto& property : thresholdsToSet)
{
// from section 36.3 in the IPMI Spec, assume all linear
double valueToSet =
((info.coefficientM * std::get<thresholdValue>(property)) +
(info.scaledOffset * std::pow(10.0, info.scale))) *
std::pow(10.0, info.exponentR);
ipmi::setDbusProperty(
ctx, service, info.sensorPath, std::get<interface>(property),
std::get<propertyName>(property), ipmi::Value(valueToSet));
}
// Invalidate the cache
sensorThresholdMap.erase(sensorNum);
return ipmi::responseSuccess();
}
/** @brief implements the get SDR Info command
* @param count - Operation
*
* @returns IPMI completion code plus response data
* - sdrCount - sensor/SDR count
* - lunsAndDynamicPopulation - static/Dynamic sensor population flag
*/
ipmi::RspType<uint8_t, // respcount
uint8_t // dynamic population flags
>
ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count)
{
uint8_t sdrCount;
// multiple LUNs not supported.
constexpr uint8_t lunsAndDynamicPopulation = 1;
constexpr uint8_t getSdrCount = 0x01;
constexpr uint8_t getSensorCount = 0x00;
if (count.value_or(0) == getSdrCount)
{
// Get SDR count. This returns the total number of SDRs in the device.
const auto& entityRecords =
ipmi::sensor::EntityInfoMapContainer::getContainer()
->getIpmiEntityRecords();
sdrCount = ipmi::sensor::sensors.size() + frus.size() +
entityRecords.size();
}
else if (count.value_or(0) == getSensorCount)
{
// Get Sensor count. This returns the number of sensors
sdrCount = ipmi::sensor::sensors.size();
}
else
{
return ipmi::responseInvalidCommandOnLun();
}
return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation);
}
/** @brief implements the reserve SDR command
* @returns IPMI completion code plus response data
* - reservationID - reservation ID
*/
ipmi::RspType<uint16_t> ipmiSensorReserveSdr()
{
// A constant reservation ID is okay until we implement add/remove SDR.
constexpr uint16_t reservationID = 1;
return ipmi::responseSuccess(reservationID);
}
void setUnitFieldsForObject(const ipmi::sensor::Info* info,
get_sdr::SensorDataFullRecordBody* body)
{
namespace server = sdbusplus::server::xyz::openbmc_project::sensor;
try
{
auto unit = server::Value::convertUnitFromString(info->unit);
// Unit strings defined in
// phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml
switch (unit)
{
case server::Value::Unit::DegreesC:
body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C;
break;
case server::Value::Unit::RPMS:
body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM;
break;
case server::Value::Unit::Volts:
body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS;
break;
case server::Value::Unit::Meters:
body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS;
break;
case server::Value::Unit::Amperes:
body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES;
break;
case server::Value::Unit::Joules:
body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES;
break;
case server::Value::Unit::Watts:
body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS;
break;
default:
// Cannot be hit.
std::fprintf(stderr, "Unknown value unit type: = %s\n",
info->unit.c_str());
}
}
catch (const sdbusplus::exception::InvalidEnumString& e)
{
lg2::warning("Warning: no unit provided for sensor!");
}
}
ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body,
const ipmi::sensor::Info* info,
ipmi_data_len_t)
{
/* Functional sensor case */
if (isAnalogSensor(info->propertyInterfaces.begin()->first))
{
body->sensor_units_1 = info->sensorUnits1; // default is 0. unsigned, no
// rate, no modifier, not a %
/* Unit info */
setUnitFieldsForObject(info, body);
get_sdr::body::set_b(info->coefficientB, body);
get_sdr::body::set_m(info->coefficientM, body);
get_sdr::body::set_b_exp(info->exponentB, body);
get_sdr::body::set_r_exp(info->exponentR, body);
}
/* ID string */
auto id_string = info->sensorName;
if (id_string.empty())
{
id_string = info->sensorNameFunc(*info);
}
if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH)
{
get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body);
}
else
{
get_sdr::body::set_id_strlen(id_string.length(), body);
}
get_sdr::body::set_id_type(3, body); // "8-bit ASCII + Latin 1"
strncpy(body->id_string, id_string.c_str(),
get_sdr::body::get_id_strlen(body));
return IPMI_CC_OK;
};
ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len)
{
auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request);
auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response);
get_sdr::SensorDataFruRecord record{};
auto dataLength = 0;
auto fru = frus.begin();
uint8_t fruID{};
auto recordID = get_sdr::request::get_record_id(req);
fruID = recordID - FRU_RECORD_ID_START;
fru = frus.find(fruID);
if (fru == frus.end())
{
return IPMI_CC_SENSOR_INVALID;
}
/* Header */
get_sdr::header::set_record_id(recordID, &(record.header));
record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD;
record.header.record_length = sizeof(record.key) + sizeof(record.body);
/* Key */
record.key.fruID = fruID;
record.key.accessLun |= IPMI_LOGICAL_FRU;
record.key.deviceAddress = BMCTargetAddress;
/* Body */
record.body.entityID = fru->second[0].entityID;
record.body.entityInstance = fru->second[0].entityInstance;
record.body.deviceType = fruInventoryDevice;
record.body.deviceTypeModifier = IPMIFruInventory;
/* Device ID string */
auto deviceID =
fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1,
fru->second[0].path.length());
if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH)
{
get_sdr::body::set_device_id_strlen(
get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body));
}
else
{
get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body));
}
strncpy(record.body.deviceID, deviceID.c_str(),
get_sdr::body::get_device_id_strlen(&(record.body)));
if (++fru == frus.end())
{
// we have reached till end of fru, so assign the next record id to
// 512(Max fru ID = 511) + Entity Record ID(may start with 0).
const auto& entityRecords =
ipmi::sensor::EntityInfoMapContainer::getContainer()
->getIpmiEntityRecords();
auto next_record_id =
(entityRecords.size())
? entityRecords.begin()->first + ENTITY_RECORD_ID_START
: END_OF_RECORD;
get_sdr::response::set_next_record_id(next_record_id, resp);
}
else
{
get_sdr::response::set_next_record_id(
(FRU_RECORD_ID_START + fru->first), resp);
}
// Check for invalid offset size
if (req->offset > sizeof(record))
{
return IPMI_CC_PARM_OUT_OF_RANGE;
}
dataLength = std::min(static_cast<size_t>(req->bytes_to_read),
sizeof(record) - req->offset);
std::memcpy(resp->record_data,
reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength);
*data_len = dataLength;
*data_len += 2; // additional 2 bytes for next record ID
return IPMI_CC_OK;
}
ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len)
{
auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request);
auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response);
get_sdr::SensorDataEntityRecord record{};
auto dataLength = 0;
const auto& entityRecords =
ipmi::sensor::EntityInfoMapContainer::getContainer()
->getIpmiEntityRecords();
auto entity = entityRecords.begin();
uint8_t entityRecordID;
auto recordID = get_sdr::request::get_record_id(req);
entityRecordID = recordID - ENTITY_RECORD_ID_START;
entity = entityRecords.find(entityRecordID);
if (entity == entityRecords.end())
{
return IPMI_CC_SENSOR_INVALID;
}
/* Header */
get_sdr::header::set_record_id(recordID, &(record.header));
record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD;
record.header.record_length = sizeof(record.key) + sizeof(record.body);
/* Key */
record.key.containerEntityId = entity->second.containerEntityId;
record.key.containerEntityInstance = entity->second.containerEntityInstance;
get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked,
&(record.key));
record.key.entityId1 = entity->second.containedEntities[0].first;
record.key.entityInstance1 = entity->second.containedEntities[0].second;
/* Body */
record.body.entityId2 = entity->second.containedEntities[1].first;
record.body.entityInstance2 = entity->second.containedEntities[1].second;
record.body.entityId3 = entity->second.containedEntities[2].first;
record.body.entityInstance3 = entity->second.containedEntities[2].second;
record.body.entityId4 = entity->second.containedEntities[3].first;
record.body.entityInstance4 = entity->second.containedEntities[3].second;
if (++entity == entityRecords.end())
{
get_sdr::response::set_next_record_id(END_OF_RECORD,
resp); // last record
}
else
{
get_sdr::response::set_next_record_id(
(ENTITY_RECORD_ID_START + entity->first), resp);
}
// Check for invalid offset size
if (req->offset > sizeof(record))
{
return IPMI_CC_PARM_OUT_OF_RANGE;
}
dataLength = std::min(static_cast<size_t>(req->bytes_to_read),
sizeof(record) - req->offset);
std::memcpy(resp->record_data,
reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength);
*data_len = dataLength;
*data_len += 2; // additional 2 bytes for next record ID
return IPMI_CC_OK;
}
ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request,
ipmi_response_t response, ipmi_data_len_t data_len,
ipmi_context_t)
{
ipmi_ret_t ret = IPMI_CC_OK;
get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request;
get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response;
// Note: we use an iterator so we can provide the next ID at the end of
// the call.
auto sensor = ipmi::sensor::sensors.begin();
auto recordID = get_sdr::request::get_record_id(req);
// At the beginning of a scan, the host side will send us id=0.
if (recordID != 0)
{
// recordID 0 to 255 means it is a FULL record.
// recordID 256 to 511 means it is a FRU record.
// recordID greater then 511 means it is a Entity Association
// record. Currently we are supporting three record types: FULL
// record, FRU record and Enttiy Association record.
if (recordID >= ENTITY_RECORD_ID_START)
{
return ipmi_entity_get_sdr(request, response, data_len);
}
else if (recordID >= FRU_RECORD_ID_START &&
recordID < ENTITY_RECORD_ID_START)
{
return ipmi_fru_get_sdr(request, response, data_len);
}
else
{
sensor = ipmi::sensor::sensors.find(recordID);
if (sensor == ipmi::sensor::sensors.end())
{
return IPMI_CC_SENSOR_INVALID;
}
}
}
uint8_t sensor_id = sensor->first;
auto it = sdrCacheMap.find(sensor_id);
if (it == sdrCacheMap.end())
{
/* Header */
get_sdr::SensorDataFullRecord record = {};
get_sdr::header::set_record_id(sensor_id, &(record.header));
record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1
record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD;
record.header.record_length = sizeof(record.key) + sizeof(record.body);
/* Key */
get_sdr::key::set_owner_id_bmc(&(record.key));
record.key.sensor_number = sensor_id;
/* Body */
record.body.entity_id = sensor->second.entityType;
record.body.sensor_type = sensor->second.sensorType;
record.body.event_reading_type = sensor->second.sensorReadingType;
record.body.entity_instance = sensor->second.instance;
if (ipmi::sensor::Mutability::Write ==
(sensor->second.mutability & ipmi::sensor::Mutability::Write))
{
get_sdr::body::init_settable_state(true, &(record.body));
}
// Set the type-specific details given the DBus interface
populate_record_from_dbus(&(record.body), &(sensor->second), data_len);
sdrCacheMap[sensor_id] = std::move(record);
}
const auto& record = sdrCacheMap[sensor_id];
if (++sensor == ipmi::sensor::sensors.end())
{
// we have reached till end of sensor, so assign the next record id
// to 256(Max Sensor ID = 255) + FRU ID(may start with 0).
auto next_record_id = (frus.size())
? frus.begin()->first + FRU_RECORD_ID_START
: END_OF_RECORD;
get_sdr::response::set_next_record_id(next_record_id, resp);
}
else
{
get_sdr::response::set_next_record_id(sensor->first, resp);
}
if (req->offset > sizeof(record))
{
return IPMI_CC_PARM_OUT_OF_RANGE;
}
// data_len will ultimately be the size of the record, plus
// the size of the next record ID:
*data_len = std::min(static_cast<size_t>(req->bytes_to_read),
sizeof(record) - req->offset);
std::memcpy(resp->record_data,
reinterpret_cast<const uint8_t*>(&record) + req->offset,
*data_len);
// data_len should include the LSB and MSB:
*data_len += sizeof(resp->next_record_id_lsb) +
sizeof(resp->next_record_id_msb);
return ret;
}
static bool isFromSystemChannel()
{
// TODO we could not figure out where the request is from based on IPMI
// command handler parameters. because of it, we can not differentiate
// request from SMS/SMM or IPMB channel
return true;
}
ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t, ipmi_cmd_t,
ipmi_request_t request, ipmi_response_t,
ipmi_data_len_t dataLen, ipmi_context_t)
{
uint16_t generatorID;
size_t count;
bool assert = true;
std::string sensorPath;
size_t paraLen = *dataLen;
PlatformEventRequest* req;
*dataLen = 0;
if ((paraLen < selSystemEventSizeWith1Bytes) ||
(paraLen > selSystemEventSizeWith3Bytes))
{
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
if (isFromSystemChannel())
{ // first byte for SYSTEM Interface is Generator ID
// +1 to get common struct
req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1);
// Capture the generator ID
generatorID = *reinterpret_cast<uint8_t*>(request);
// Platform Event usually comes from other firmware, like BIOS.
// Unlike BMC sensor, it does not have BMC DBUS sensor path.
sensorPath = "System";
}
else
{
req = reinterpret_cast<PlatformEventRequest*>(request);
// TODO GenratorID for IPMB is combination of RqSA and RqLUN
generatorID = 0xff;
sensorPath = "IPMB";
}
// Content of event data field depends on sensor class.
// When data0 bit[5:4] is non-zero, valid data counts is 3.
// When data0 bit[7:6] is non-zero, valid data counts is 2.
if (((req->data[0] & byte3EnableMask) != 0 &&
paraLen < selSystemEventSizeWith3Bytes) ||
((req->data[0] & byte2EnableMask) != 0 &&
paraLen < selSystemEventSizeWith2Bytes))
{
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
// Count bytes of Event Data
if ((req->data[0] & byte3EnableMask) != 0)
{
count = 3;
}
else if ((req->data[0] & byte2EnableMask) != 0)
{
count = 2;
}
else
{
count = 1;
}
assert = req->eventDirectionType & directionMask ? false : true;
std::vector<uint8_t> eventData(req->data, req->data + count);
sdbusplus::bus_t dbus(bus);
std::string service =
ipmi::getService(dbus, ipmiSELAddInterface, ipmiSELPath);
sdbusplus::message_t writeSEL = dbus.new_method_call(
service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd");
writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert,
generatorID);
try
{
dbus.call(writeSEL);
}
catch (const sdbusplus::exception_t& e)
{
lg2::error("exception message: {ERROR}", "ERROR", e);
return IPMI_CC_UNSPECIFIED_ERROR;
}
return IPMI_CC_OK;
}
void register_netfn_sen_functions()
{
// Handlers with dbus-sdr handler implementation.
// Do not register the hander if it dynamic sensors stack is used.
#ifndef FEATURE_DYNAMIC_SENSORS
#ifdef FEATURE_SENSORS_CACHE
// Initialize the sensor matches
initSensorMatches();
#endif
// <Set Sensor Reading and Event Status>
ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
ipmi::sensor_event::cmdSetSensorReadingAndEvtSts,
ipmi::Privilege::Operator, ipmiSetSensorReading);
// <Get Sensor Reading>
ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
ipmi::sensor_event::cmdGetSensorReading,
ipmi::Privilege::User, ipmiSensorGetSensorReading);
// <Reserve Device SDR Repository>
ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
ipmi::sensor_event::cmdReserveDeviceSdrRepository,
ipmi::Privilege::User, ipmiSensorReserveSdr);
// <Get Device SDR Info>
ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
ipmi::sensor_event::cmdGetDeviceSdrInfo,
ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo);
// <Get Sensor Thresholds>
ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
ipmi::sensor_event::cmdGetSensorThreshold,
ipmi::Privilege::User, ipmiSensorGetSensorThresholds);
// <Set Sensor Thresholds>
ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
ipmi::sensor_event::cmdSetSensorThreshold,
ipmi::Privilege::User, ipmiSenSetSensorThresholds);
// <Get Device SDR>
ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr,
ipmi_sen_get_sdr, PRIVILEGE_USER);
#endif
// Common Handers used by both implementation.
// <Platform Event Message>
ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr,
ipmicmdPlatformEvent, PRIVILEGE_OPERATOR);
// <Get Sensor Type>
ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
ipmi::sensor_event::cmdGetSensorType,
ipmi::Privilege::User, ipmiGetSensorType);
return;
}