| #include "config.h" |
| |
| #include "sensorhandler.hpp" |
| |
| #include "fruread.hpp" |
| |
| #include <systemd/sd-bus.h> |
| |
| #include <ipmid/api.hpp> |
| #include <ipmid/entity_map_json.hpp> |
| #include <ipmid/types.hpp> |
| #include <ipmid/utils.hpp> |
| #include <phosphor-logging/elog-errors.hpp> |
| #include <phosphor-logging/lg2.hpp> |
| #include <sdbusplus/message/types.hpp> |
| #include <xyz/openbmc_project/Common/error.hpp> |
| #include <xyz/openbmc_project/Sensor/Value/server.hpp> |
| |
| #include <bitset> |
| #include <cmath> |
| #include <cstring> |
| #include <set> |
| |
| static constexpr uint8_t fruInventoryDevice = 0x10; |
| static constexpr uint8_t IPMIFruInventory = 0x02; |
| static constexpr uint8_t BMCTargetAddress = 0x20; |
| |
| extern int updateSensorRecordFromSSRAESC(const void*); |
| extern sd_bus* bus; |
| |
| namespace ipmi |
| { |
| namespace sensor |
| { |
| extern const IdInfoMap sensors; |
| } // namespace sensor |
| } // namespace ipmi |
| |
| extern const FruMap frus; |
| |
| using namespace phosphor::logging; |
| using InternalFailure = |
| sdbusplus::error::xyz::openbmc_project::common::InternalFailure; |
| |
| void register_netfn_sen_functions() __attribute__((constructor)); |
| |
| struct sensorTypemap_t |
| { |
| uint8_t number; |
| uint8_t typecode; |
| char dbusname[32]; |
| }; |
| |
| sensorTypemap_t g_SensorTypeMap[] = { |
| |
| {0x01, 0x6F, "Temp"}, |
| {0x0C, 0x6F, "DIMM"}, |
| {0x0C, 0x6F, "MEMORY_BUFFER"}, |
| {0x07, 0x6F, "PROC"}, |
| {0x07, 0x6F, "CORE"}, |
| {0x07, 0x6F, "CPU"}, |
| {0x0F, 0x6F, "BootProgress"}, |
| {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor |
| // type code os 0x09 |
| {0xC3, 0x6F, "BootCount"}, |
| {0x1F, 0x6F, "OperatingSystemStatus"}, |
| {0x12, 0x6F, "SYSTEM_EVENT"}, |
| {0xC7, 0x03, "SYSTEM"}, |
| {0xC7, 0x03, "MAIN_PLANAR"}, |
| {0xC2, 0x6F, "PowerCap"}, |
| {0x0b, 0xCA, "PowerSupplyRedundancy"}, |
| {0xDA, 0x03, "TurboAllowed"}, |
| {0xD8, 0xC8, "PowerSupplyDerating"}, |
| {0xFF, 0x00, ""}, |
| }; |
| |
| struct sensor_data_t |
| { |
| uint8_t sennum; |
| } __attribute__((packed)); |
| |
| using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>; |
| SDRCacheMap sdrCacheMap __attribute__((init_priority(101))); |
| |
| using SensorThresholdMap = |
| std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>; |
| SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101))); |
| |
| #ifdef FEATURE_SENSORS_CACHE |
| std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorAddedMatches |
| __attribute__((init_priority(101))); |
| std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorUpdatedMatches |
| __attribute__((init_priority(101))); |
| std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorRemovedMatches |
| __attribute__((init_priority(101))); |
| std::unique_ptr<sdbusplus::bus::match_t> sensorsOwnerMatch |
| __attribute__((init_priority(101))); |
| |
| ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101))); |
| |
| // It is needed to know which objects belong to which service, so that when a |
| // service exits without interfacesRemoved signal, we could invaildate the cache |
| // that is related to the service. It uses below two variables: |
| // - idToServiceMap records which sensors are known to have a related service; |
| // - serviceToIdMap maps a service to the sensors. |
| using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>; |
| sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101))); |
| |
| using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>; |
| sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101))); |
| |
| static void fillSensorIdServiceMap(const std::string&, |
| const std::string& /*intf*/, uint8_t id, |
| const std::string& service) |
| { |
| if (idToServiceMap.find(id) != idToServiceMap.end()) |
| { |
| return; |
| } |
| idToServiceMap[id] = service; |
| serviceToIdMap[service].insert(id); |
| } |
| |
| static void fillSensorIdServiceMap(const std::string& obj, |
| const std::string& intf, uint8_t id) |
| { |
| if (idToServiceMap.find(id) != idToServiceMap.end()) |
| { |
| return; |
| } |
| try |
| { |
| sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; |
| auto service = ipmi::getService(bus, intf, obj); |
| idToServiceMap[id] = service; |
| serviceToIdMap[service].insert(id); |
| } |
| catch (...) |
| { |
| // Ignore |
| } |
| } |
| |
| void initSensorMatches() |
| { |
| using namespace sdbusplus::bus::match::rules; |
| sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; |
| for (const auto& s : ipmi::sensor::sensors) |
| { |
| sensorAddedMatches.emplace( |
| s.first, |
| std::make_unique<sdbusplus::bus::match_t>( |
| bus, interfacesAdded() + argNpath(0, s.second.sensorPath), |
| [id = s.first, obj = s.second.sensorPath, |
| intf = s.second.propertyInterfaces.begin()->first]( |
| auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); })); |
| sensorRemovedMatches.emplace( |
| s.first, |
| std::make_unique<sdbusplus::bus::match_t>( |
| bus, interfacesRemoved() + argNpath(0, s.second.sensorPath), |
| [id = s.first](auto& /*msg*/) { |
| // Ideally this should work. |
| // But when a service is terminated or crashed, it does not |
| // emit interfacesRemoved signal. In that case it's handled |
| // by sensorsOwnerMatch |
| sensorCacheMap[id].reset(); |
| })); |
| sensorUpdatedMatches.emplace( |
| s.first, |
| std::make_unique<sdbusplus::bus::match_t>( |
| bus, |
| type::signal() + path(s.second.sensorPath) + |
| member("PropertiesChanged"s) + |
| interface("org.freedesktop.DBus.Properties"s), |
| [&s](auto& msg) { |
| fillSensorIdServiceMap( |
| s.second.sensorPath, |
| s.second.propertyInterfaces.begin()->first, s.first); |
| try |
| { |
| // This is signal callback |
| std::string interfaceName; |
| msg.read(interfaceName); |
| ipmi::PropertyMap props; |
| msg.read(props); |
| s.second.getFunc(s.first, s.second, props); |
| } |
| catch (const std::exception& e) |
| { |
| sensorCacheMap[s.first].reset(); |
| } |
| })); |
| } |
| sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match_t>( |
| bus, nameOwnerChanged(), [](auto& msg) { |
| std::string name; |
| std::string oldOwner; |
| std::string newOwner; |
| msg.read(name, oldOwner, newOwner); |
| |
| if (!name.empty() && newOwner.empty()) |
| { |
| // The service exits |
| const auto it = serviceToIdMap.find(name); |
| if (it == serviceToIdMap.end()) |
| { |
| return; |
| } |
| for (const auto& id : it->second) |
| { |
| // Invalidate cache |
| sensorCacheMap[id].reset(); |
| } |
| } |
| }); |
| } |
| #endif |
| |
| // Use a lookup table to find the interface name of a specific sensor |
| // This will be used until an alternative is found. this is the first |
| // step for mapping IPMI |
| int find_openbmc_path(uint8_t num, dbus_interface_t* interface) |
| { |
| const auto& sensor_it = ipmi::sensor::sensors.find(num); |
| if (sensor_it == ipmi::sensor::sensors.end()) |
| { |
| // The sensor map does not contain the sensor requested |
| return -EINVAL; |
| } |
| |
| const auto& info = sensor_it->second; |
| |
| std::string serviceName{}; |
| try |
| { |
| sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; |
| serviceName = |
| ipmi::getService(bus, info.sensorInterface, info.sensorPath); |
| } |
| catch (const sdbusplus::exception_t&) |
| { |
| std::fprintf(stderr, "Failed to get %s busname: %s\n", |
| info.sensorPath.c_str(), serviceName.c_str()); |
| return -EINVAL; |
| } |
| |
| interface->sensortype = info.sensorType; |
| strcpy(interface->bus, serviceName.c_str()); |
| strcpy(interface->path, info.sensorPath.c_str()); |
| // Take the interface name from the beginning of the DbusInterfaceMap. This |
| // works for the Value interface but may not suffice for more complex |
| // sensors. |
| // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103 |
| strcpy(interface->interface, |
| info.propertyInterfaces.begin()->first.c_str()); |
| interface->sensornumber = num; |
| |
| return 0; |
| } |
| |
| ///////////////////////////////////////////////////////////////////// |
| // |
| // Routines used by ipmi commands wanting to interact on the dbus |
| // |
| ///////////////////////////////////////////////////////////////////// |
| int set_sensor_dbus_state_s(uint8_t number, const char* method, |
| const char* value) |
| { |
| dbus_interface_t a; |
| int r; |
| sd_bus_error error = SD_BUS_ERROR_NULL; |
| sd_bus_message* m = NULL; |
| |
| r = find_openbmc_path(number, &a); |
| |
| if (r < 0) |
| { |
| std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); |
| return 0; |
| } |
| |
| r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, |
| method); |
| if (r < 0) |
| { |
| std::fprintf(stderr, "Failed to create a method call: %s", |
| strerror(-r)); |
| goto final; |
| } |
| |
| r = sd_bus_message_append(m, "v", "s", value); |
| if (r < 0) |
| { |
| std::fprintf(stderr, "Failed to create a input parameter: %s", |
| strerror(-r)); |
| goto final; |
| } |
| |
| r = sd_bus_call(bus, m, 0, &error, NULL); |
| if (r < 0) |
| { |
| std::fprintf(stderr, "Failed to call the method: %s", strerror(-r)); |
| } |
| |
| final: |
| sd_bus_error_free(&error); |
| m = sd_bus_message_unref(m); |
| |
| return 0; |
| } |
| int set_sensor_dbus_state_y(uint8_t number, const char* method, |
| const uint8_t value) |
| { |
| dbus_interface_t a; |
| int r; |
| sd_bus_error error = SD_BUS_ERROR_NULL; |
| sd_bus_message* m = NULL; |
| |
| r = find_openbmc_path(number, &a); |
| |
| if (r < 0) |
| { |
| std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); |
| return 0; |
| } |
| |
| r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, |
| method); |
| if (r < 0) |
| { |
| std::fprintf(stderr, "Failed to create a method call: %s", |
| strerror(-r)); |
| goto final; |
| } |
| |
| r = sd_bus_message_append(m, "v", "i", value); |
| if (r < 0) |
| { |
| std::fprintf(stderr, "Failed to create a input parameter: %s", |
| strerror(-r)); |
| goto final; |
| } |
| |
| r = sd_bus_call(bus, m, 0, &error, NULL); |
| if (r < 0) |
| { |
| std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r)); |
| } |
| |
| final: |
| sd_bus_error_free(&error); |
| m = sd_bus_message_unref(m); |
| |
| return 0; |
| } |
| |
| uint8_t dbus_to_sensor_type(char* p) |
| { |
| sensorTypemap_t* s = g_SensorTypeMap; |
| char r = 0; |
| while (s->number != 0xFF) |
| { |
| if (!strcmp(s->dbusname, p)) |
| { |
| r = s->typecode; |
| break; |
| } |
| s++; |
| } |
| |
| if (s->number == 0xFF) |
| printf("Failed to find Sensor Type %s\n", p); |
| |
| return r; |
| } |
| |
| uint8_t get_type_from_interface(dbus_interface_t dbus_if) |
| { |
| uint8_t type; |
| |
| // This is where sensors that do not exist in dbus but do |
| // exist in the host code stop. This should indicate it |
| // is not a supported sensor |
| if (dbus_if.interface[0] == 0) |
| { |
| return 0; |
| } |
| |
| // Fetch type from interface itself. |
| if (dbus_if.sensortype != 0) |
| { |
| type = dbus_if.sensortype; |
| } |
| else |
| { |
| // Non InventoryItems |
| char* p = strrchr(dbus_if.path, '/'); |
| type = dbus_to_sensor_type(p + 1); |
| } |
| |
| return type; |
| } |
| |
| // Replaces find_sensor |
| uint8_t find_type_for_sensor_number(uint8_t num) |
| { |
| int r; |
| dbus_interface_t dbus_if; |
| r = find_openbmc_path(num, &dbus_if); |
| if (r < 0) |
| { |
| std::fprintf(stderr, "Could not find sensor %d\n", num); |
| return 0; |
| } |
| return get_type_from_interface(dbus_if); |
| } |
| |
| /** |
| * @brief implements the get sensor type command. |
| * @param - sensorNumber |
| * |
| * @return IPMI completion code plus response data on success. |
| * - sensorType |
| * - eventType |
| **/ |
| |
| ipmi::RspType<uint8_t, // sensorType |
| uint8_t // eventType |
| > |
| ipmiGetSensorType(uint8_t sensorNumber) |
| { |
| const auto it = ipmi::sensor::sensors.find(sensorNumber); |
| if (it == ipmi::sensor::sensors.end()) |
| { |
| // The sensor map does not contain the sensor requested |
| return ipmi::responseSensorInvalid(); |
| } |
| |
| const auto& info = it->second; |
| uint8_t sensorType = info.sensorType; |
| uint8_t eventType = info.sensorReadingType; |
| |
| return ipmi::responseSuccess(sensorType, eventType); |
| } |
| |
| const std::set<std::string> analogSensorInterfaces = { |
| "xyz.openbmc_project.Sensor.Value", |
| "xyz.openbmc_project.Control.FanPwm", |
| }; |
| |
| bool isAnalogSensor(const std::string& interface) |
| { |
| return (analogSensorInterfaces.count(interface)); |
| } |
| |
| /** |
| @brief This command is used to set sensorReading. |
| |
| @param |
| - sensorNumber |
| - operation |
| - reading |
| - assertOffset0_7 |
| - assertOffset8_14 |
| - deassertOffset0_7 |
| - deassertOffset8_14 |
| - eventData1 |
| - eventData2 |
| - eventData3 |
| |
| @return completion code on success. |
| **/ |
| |
| ipmi::RspType<> ipmiSetSensorReading( |
| uint8_t sensorNumber, uint8_t operation, uint8_t reading, |
| uint8_t assertOffset0_7, uint8_t assertOffset8_14, |
| uint8_t deassertOffset0_7, uint8_t deassertOffset8_14, uint8_t eventData1, |
| uint8_t eventData2, uint8_t eventData3) |
| { |
| lg2::debug("IPMI SET_SENSOR, sensorNumber: {SENSOR_NUM}", "SENSOR_NUM", |
| lg2::hex, sensorNumber); |
| |
| if (sensorNumber == 0xFF) |
| { |
| return ipmi::responseInvalidFieldRequest(); |
| } |
| ipmi::sensor::SetSensorReadingReq cmdData; |
| |
| cmdData.number = sensorNumber; |
| cmdData.operation = operation; |
| cmdData.reading = reading; |
| cmdData.assertOffset0_7 = assertOffset0_7; |
| cmdData.assertOffset8_14 = assertOffset8_14; |
| cmdData.deassertOffset0_7 = deassertOffset0_7; |
| cmdData.deassertOffset8_14 = deassertOffset8_14; |
| cmdData.eventData1 = eventData1; |
| cmdData.eventData2 = eventData2; |
| cmdData.eventData3 = eventData3; |
| |
| // Check if the Sensor Number is present |
| const auto iter = ipmi::sensor::sensors.find(sensorNumber); |
| if (iter == ipmi::sensor::sensors.end()) |
| { |
| updateSensorRecordFromSSRAESC(&sensorNumber); |
| return ipmi::responseSuccess(); |
| } |
| |
| try |
| { |
| if (ipmi::sensor::Mutability::Write != |
| (iter->second.mutability & ipmi::sensor::Mutability::Write)) |
| { |
| lg2::error("Sensor Set operation is not allowed, " |
| "sensorNumber: {SENSOR_NUM}", |
| "SENSOR_NUM", lg2::hex, sensorNumber); |
| return ipmi::responseIllegalCommand(); |
| } |
| auto ipmiRC = iter->second.updateFunc(cmdData, iter->second); |
| return ipmi::response(ipmiRC); |
| } |
| catch (const InternalFailure& e) |
| { |
| lg2::error("Set sensor failed, sensorNumber: {SENSOR_NUM}", |
| "SENSOR_NUM", lg2::hex, sensorNumber); |
| commit<InternalFailure>(); |
| return ipmi::responseUnspecifiedError(); |
| } |
| catch (const std::runtime_error& e) |
| { |
| lg2::error("runtime error: {ERROR}", "ERROR", e); |
| return ipmi::responseUnspecifiedError(); |
| } |
| } |
| |
| /** @brief implements the get sensor reading command |
| * @param sensorNum - sensor number |
| * |
| * @returns IPMI completion code plus response data |
| * - senReading - sensor reading |
| * - reserved |
| * - readState - sensor reading state enabled |
| * - senScanState - sensor scan state disabled |
| * - allEventMessageState - all Event message state disabled |
| * - assertionStatesLsb - threshold levels states |
| * - assertionStatesMsb - discrete reading sensor states |
| */ |
| ipmi::RspType<uint8_t, // sensor reading |
| |
| uint5_t, // reserved |
| bool, // reading state |
| bool, // 0 = sensor scanning state disabled |
| bool, // 0 = all event messages disabled |
| |
| uint8_t, // threshold levels states |
| uint8_t // discrete reading sensor states |
| > |
| ipmiSensorGetSensorReading([[maybe_unused]] ipmi::Context::ptr& ctx, |
| uint8_t sensorNum) |
| { |
| if (sensorNum == 0xFF) |
| { |
| return ipmi::responseInvalidFieldRequest(); |
| } |
| |
| const auto iter = ipmi::sensor::sensors.find(sensorNum); |
| if (iter == ipmi::sensor::sensors.end()) |
| { |
| return ipmi::responseSensorInvalid(); |
| } |
| if (ipmi::sensor::Mutability::Read != |
| (iter->second.mutability & ipmi::sensor::Mutability::Read)) |
| { |
| return ipmi::responseIllegalCommand(); |
| } |
| |
| try |
| { |
| #ifdef FEATURE_SENSORS_CACHE |
| auto& sensorData = sensorCacheMap[sensorNum]; |
| if (!sensorData.has_value()) |
| { |
| // No cached value, try read it |
| std::string service; |
| boost::system::error_code ec; |
| const auto& sensorInfo = iter->second; |
| ec = ipmi::getService(ctx, sensorInfo.sensorInterface, |
| sensorInfo.sensorPath, service); |
| if (ec) |
| { |
| return ipmi::responseUnspecifiedError(); |
| } |
| fillSensorIdServiceMap(sensorInfo.sensorPath, |
| sensorInfo.propertyInterfaces.begin()->first, |
| iter->first, service); |
| |
| ipmi::PropertyMap props; |
| ec = ipmi::getAllDbusProperties( |
| ctx, service, sensorInfo.sensorPath, |
| sensorInfo.propertyInterfaces.begin()->first, props); |
| if (ec) |
| { |
| fprintf(stderr, "Failed to get sensor %s, %d: %s\n", |
| sensorInfo.sensorPath.c_str(), ec.value(), |
| ec.message().c_str()); |
| // Intitilizing with default values |
| constexpr uint8_t senReading = 0; |
| constexpr uint5_t reserved{0}; |
| constexpr bool readState = true; |
| constexpr bool senScanState = false; |
| constexpr bool allEventMessageState = false; |
| constexpr uint8_t assertionStatesLsb = 0; |
| constexpr uint8_t assertionStatesMsb = 0; |
| |
| return ipmi::responseSuccess( |
| senReading, reserved, readState, senScanState, |
| allEventMessageState, assertionStatesLsb, |
| assertionStatesMsb); |
| } |
| sensorInfo.getFunc(sensorNum, sensorInfo, props); |
| } |
| return ipmi::responseSuccess( |
| sensorData->response.reading, uint5_t(0), |
| sensorData->response.readingOrStateUnavailable, |
| sensorData->response.scanningEnabled, |
| sensorData->response.allEventMessagesEnabled, |
| sensorData->response.thresholdLevelsStates, |
| sensorData->response.discreteReadingSensorStates); |
| |
| #else |
| ipmi::sensor::GetSensorResponse getResponse = |
| iter->second.getFunc(iter->second); |
| |
| return ipmi::responseSuccess( |
| getResponse.reading, uint5_t(0), |
| getResponse.readingOrStateUnavailable, getResponse.scanningEnabled, |
| getResponse.allEventMessagesEnabled, |
| getResponse.thresholdLevelsStates, |
| getResponse.discreteReadingSensorStates); |
| #endif |
| } |
| #ifdef UPDATE_FUNCTIONAL_ON_FAIL |
| catch (const SensorFunctionalError& e) |
| { |
| return ipmi::responseResponseError(); |
| } |
| #endif |
| catch (const std::exception& e) |
| { |
| // Intitilizing with default values |
| constexpr uint8_t senReading = 0; |
| constexpr uint5_t reserved{0}; |
| constexpr bool readState = true; |
| constexpr bool senScanState = false; |
| constexpr bool allEventMessageState = false; |
| constexpr uint8_t assertionStatesLsb = 0; |
| constexpr uint8_t assertionStatesMsb = 0; |
| |
| return ipmi::responseSuccess(senReading, reserved, readState, |
| senScanState, allEventMessageState, |
| assertionStatesLsb, assertionStatesMsb); |
| } |
| } |
| |
| get_sdr::GetSensorThresholdsResponse |
| getSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) |
| { |
| get_sdr::GetSensorThresholdsResponse resp{}; |
| constexpr auto warningThreshIntf = |
| "xyz.openbmc_project.Sensor.Threshold.Warning"; |
| constexpr auto criticalThreshIntf = |
| "xyz.openbmc_project.Sensor.Threshold.Critical"; |
| |
| const auto iter = ipmi::sensor::sensors.find(sensorNum); |
| const auto info = iter->second; |
| |
| std::string service; |
| boost::system::error_code ec; |
| ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service); |
| if (ec) |
| { |
| return resp; |
| } |
| |
| ipmi::PropertyMap warnThresholds; |
| ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, |
| warningThreshIntf, warnThresholds); |
| int32_t minClamp; |
| int32_t maxClamp; |
| int32_t rawData; |
| constexpr uint8_t sensorUnitsSignedBits = 2 << 6; |
| constexpr uint8_t signedDataFormat = 0x80; |
| if ((info.sensorUnits1 & sensorUnitsSignedBits) == signedDataFormat) |
| { |
| minClamp = std::numeric_limits<int8_t>::lowest(); |
| maxClamp = std::numeric_limits<int8_t>::max(); |
| } |
| else |
| { |
| minClamp = std::numeric_limits<uint8_t>::lowest(); |
| maxClamp = std::numeric_limits<uint8_t>::max(); |
| } |
| if (!ec) |
| { |
| double warnLow = ipmi::mappedVariant<double>( |
| warnThresholds, "WarningLow", |
| std::numeric_limits<double>::quiet_NaN()); |
| double warnHigh = ipmi::mappedVariant<double>( |
| warnThresholds, "WarningHigh", |
| std::numeric_limits<double>::quiet_NaN()); |
| |
| if (std::isfinite(warnLow)) |
| { |
| warnLow *= std::pow(10, info.scale - info.exponentR); |
| rawData = round((warnLow - info.scaledOffset) / info.coefficientM); |
| resp.lowerNonCritical = |
| static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); |
| resp.validMask |= static_cast<uint8_t>( |
| ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK); |
| } |
| |
| if (std::isfinite(warnHigh)) |
| { |
| warnHigh *= std::pow(10, info.scale - info.exponentR); |
| rawData = round((warnHigh - info.scaledOffset) / info.coefficientM); |
| resp.upperNonCritical = |
| static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); |
| resp.validMask |= static_cast<uint8_t>( |
| ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK); |
| } |
| } |
| |
| ipmi::PropertyMap critThresholds; |
| ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, |
| criticalThreshIntf, critThresholds); |
| if (!ec) |
| { |
| double critLow = ipmi::mappedVariant<double>( |
| critThresholds, "CriticalLow", |
| std::numeric_limits<double>::quiet_NaN()); |
| double critHigh = ipmi::mappedVariant<double>( |
| critThresholds, "CriticalHigh", |
| std::numeric_limits<double>::quiet_NaN()); |
| |
| if (std::isfinite(critLow)) |
| { |
| critLow *= std::pow(10, info.scale - info.exponentR); |
| rawData = round((critLow - info.scaledOffset) / info.coefficientM); |
| resp.lowerCritical = |
| static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); |
| resp.validMask |= static_cast<uint8_t>( |
| ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK); |
| } |
| |
| if (std::isfinite(critHigh)) |
| { |
| critHigh *= std::pow(10, info.scale - info.exponentR); |
| rawData = round((critHigh - info.scaledOffset) / info.coefficientM); |
| resp.upperCritical = |
| static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); |
| resp.validMask |= static_cast<uint8_t>( |
| ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK); |
| } |
| } |
| |
| return resp; |
| } |
| |
| /** @brief implements the get sensor thresholds command |
| * @param ctx - IPMI context pointer |
| * @param sensorNum - sensor number |
| * |
| * @returns IPMI completion code plus response data |
| * - validMask - threshold mask |
| * - lower non-critical threshold - IPMI messaging state |
| * - lower critical threshold - link authentication state |
| * - lower non-recoverable threshold - callback state |
| * - upper non-critical threshold |
| * - upper critical |
| * - upper non-recoverable |
| */ |
| ipmi::RspType<uint8_t, // validMask |
| uint8_t, // lowerNonCritical |
| uint8_t, // lowerCritical |
| uint8_t, // lowerNonRecoverable |
| uint8_t, // upperNonCritical |
| uint8_t, // upperCritical |
| uint8_t // upperNonRecoverable |
| > |
| ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) |
| { |
| constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; |
| |
| const auto iter = ipmi::sensor::sensors.find(sensorNum); |
| if (iter == ipmi::sensor::sensors.end()) |
| { |
| return ipmi::responseSensorInvalid(); |
| } |
| |
| const auto info = iter->second; |
| |
| // Proceed only if the sensor value interface is implemented. |
| if (info.propertyInterfaces.find(valueInterface) == |
| info.propertyInterfaces.end()) |
| { |
| // return with valid mask as 0 |
| return ipmi::responseSuccess(); |
| } |
| |
| auto it = sensorThresholdMap.find(sensorNum); |
| if (it == sensorThresholdMap.end()) |
| { |
| sensorThresholdMap[sensorNum] = getSensorThresholds(ctx, sensorNum); |
| } |
| |
| const auto& resp = sensorThresholdMap[sensorNum]; |
| |
| return ipmi::responseSuccess( |
| resp.validMask, resp.lowerNonCritical, resp.lowerCritical, |
| resp.lowerNonRecoverable, resp.upperNonCritical, resp.upperCritical, |
| resp.upperNonRecoverable); |
| } |
| |
| /** @brief implements the Set Sensor threshold command |
| * @param sensorNumber - sensor number |
| * @param lowerNonCriticalThreshMask |
| * @param lowerCriticalThreshMask |
| * @param lowerNonRecovThreshMask |
| * @param upperNonCriticalThreshMask |
| * @param upperCriticalThreshMask |
| * @param upperNonRecovThreshMask |
| * @param reserved |
| * @param lowerNonCritical - lower non-critical threshold |
| * @param lowerCritical - Lower critical threshold |
| * @param lowerNonRecoverable - Lower non recovarable threshold |
| * @param upperNonCritical - Upper non-critical threshold |
| * @param upperCritical - Upper critical |
| * @param upperNonRecoverable - Upper Non-recoverable |
| * |
| * @returns IPMI completion code |
| */ |
| ipmi::RspType<> ipmiSenSetSensorThresholds( |
| ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask, |
| bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask, |
| bool upperNonCriticalThreshMask, bool upperCriticalThreshMask, |
| bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical, |
| uint8_t lowerCritical, uint8_t, uint8_t upperNonCritical, |
| uint8_t upperCritical, uint8_t) |
| { |
| if (reserved) |
| { |
| return ipmi::responseInvalidFieldRequest(); |
| } |
| |
| // lower nc and upper nc not suppported on any sensor |
| if (lowerNonRecovThreshMask || upperNonRecovThreshMask) |
| { |
| return ipmi::responseInvalidFieldRequest(); |
| } |
| |
| // if none of the threshold mask are set, nothing to do |
| if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask | |
| lowerNonRecovThreshMask | upperNonCriticalThreshMask | |
| upperCriticalThreshMask | upperNonRecovThreshMask)) |
| { |
| return ipmi::responseSuccess(); |
| } |
| |
| constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; |
| |
| const auto iter = ipmi::sensor::sensors.find(sensorNum); |
| if (iter == ipmi::sensor::sensors.end()) |
| { |
| return ipmi::responseSensorInvalid(); |
| } |
| |
| const auto& info = iter->second; |
| |
| // Proceed only if the sensor value interface is implemented. |
| if (info.propertyInterfaces.find(valueInterface) == |
| info.propertyInterfaces.end()) |
| { |
| // return with valid mask as 0 |
| return ipmi::responseSuccess(); |
| } |
| |
| constexpr auto warningThreshIntf = |
| "xyz.openbmc_project.Sensor.Threshold.Warning"; |
| constexpr auto criticalThreshIntf = |
| "xyz.openbmc_project.Sensor.Threshold.Critical"; |
| |
| std::string service; |
| boost::system::error_code ec; |
| ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service); |
| if (ec) |
| { |
| return ipmi::responseResponseError(); |
| } |
| // store a vector of property name, value to set, and interface |
| std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet; |
| |
| // define the indexes of the tuple |
| constexpr uint8_t propertyName = 0; |
| constexpr uint8_t thresholdValue = 1; |
| constexpr uint8_t interface = 2; |
| // verifiy all needed fields are present |
| if (lowerCriticalThreshMask || upperCriticalThreshMask) |
| { |
| ipmi::PropertyMap findThreshold; |
| ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, |
| criticalThreshIntf, findThreshold); |
| |
| if (!ec) |
| { |
| if (lowerCriticalThreshMask) |
| { |
| auto findLower = findThreshold.find("CriticalLow"); |
| if (findLower == findThreshold.end()) |
| { |
| return ipmi::responseInvalidFieldRequest(); |
| } |
| thresholdsToSet.emplace_back("CriticalLow", lowerCritical, |
| criticalThreshIntf); |
| } |
| if (upperCriticalThreshMask) |
| { |
| auto findUpper = findThreshold.find("CriticalHigh"); |
| if (findUpper == findThreshold.end()) |
| { |
| return ipmi::responseInvalidFieldRequest(); |
| } |
| thresholdsToSet.emplace_back("CriticalHigh", upperCritical, |
| criticalThreshIntf); |
| } |
| } |
| } |
| if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask) |
| { |
| ipmi::PropertyMap findThreshold; |
| ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, |
| warningThreshIntf, findThreshold); |
| |
| if (!ec) |
| { |
| if (lowerNonCriticalThreshMask) |
| { |
| auto findLower = findThreshold.find("WarningLow"); |
| if (findLower == findThreshold.end()) |
| { |
| return ipmi::responseInvalidFieldRequest(); |
| } |
| thresholdsToSet.emplace_back("WarningLow", lowerNonCritical, |
| warningThreshIntf); |
| } |
| if (upperNonCriticalThreshMask) |
| { |
| auto findUpper = findThreshold.find("WarningHigh"); |
| if (findUpper == findThreshold.end()) |
| { |
| return ipmi::responseInvalidFieldRequest(); |
| } |
| thresholdsToSet.emplace_back("WarningHigh", upperNonCritical, |
| warningThreshIntf); |
| } |
| } |
| } |
| for (const auto& property : thresholdsToSet) |
| { |
| // from section 36.3 in the IPMI Spec, assume all linear |
| double valueToSet = |
| ((info.coefficientM * std::get<thresholdValue>(property)) + |
| (info.scaledOffset * std::pow(10.0, info.scale))) * |
| std::pow(10.0, info.exponentR); |
| ipmi::setDbusProperty( |
| ctx, service, info.sensorPath, std::get<interface>(property), |
| std::get<propertyName>(property), ipmi::Value(valueToSet)); |
| } |
| |
| // Invalidate the cache |
| sensorThresholdMap.erase(sensorNum); |
| return ipmi::responseSuccess(); |
| } |
| |
| /** @brief implements the get SDR Info command |
| * @param count - Operation |
| * |
| * @returns IPMI completion code plus response data |
| * - sdrCount - sensor/SDR count |
| * - lunsAndDynamicPopulation - static/Dynamic sensor population flag |
| */ |
| ipmi::RspType<uint8_t, // respcount |
| uint8_t // dynamic population flags |
| > |
| ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count) |
| { |
| uint8_t sdrCount; |
| // multiple LUNs not supported. |
| constexpr uint8_t lunsAndDynamicPopulation = 1; |
| constexpr uint8_t getSdrCount = 0x01; |
| constexpr uint8_t getSensorCount = 0x00; |
| |
| if (count.value_or(0) == getSdrCount) |
| { |
| // Get SDR count. This returns the total number of SDRs in the device. |
| const auto& entityRecords = |
| ipmi::sensor::EntityInfoMapContainer::getContainer() |
| ->getIpmiEntityRecords(); |
| sdrCount = ipmi::sensor::sensors.size() + frus.size() + |
| entityRecords.size(); |
| } |
| else if (count.value_or(0) == getSensorCount) |
| { |
| // Get Sensor count. This returns the number of sensors |
| sdrCount = ipmi::sensor::sensors.size(); |
| } |
| else |
| { |
| return ipmi::responseInvalidCommandOnLun(); |
| } |
| |
| return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation); |
| } |
| |
| /** @brief implements the reserve SDR command |
| * @returns IPMI completion code plus response data |
| * - reservationID - reservation ID |
| */ |
| ipmi::RspType<uint16_t> ipmiSensorReserveSdr() |
| { |
| // A constant reservation ID is okay until we implement add/remove SDR. |
| constexpr uint16_t reservationID = 1; |
| |
| return ipmi::responseSuccess(reservationID); |
| } |
| |
| void setUnitFieldsForObject(const ipmi::sensor::Info* info, |
| get_sdr::SensorDataFullRecordBody* body) |
| { |
| namespace server = sdbusplus::server::xyz::openbmc_project::sensor; |
| try |
| { |
| auto unit = server::Value::convertUnitFromString(info->unit); |
| // Unit strings defined in |
| // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml |
| switch (unit) |
| { |
| case server::Value::Unit::DegreesC: |
| body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C; |
| break; |
| case server::Value::Unit::RPMS: |
| body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM; |
| break; |
| case server::Value::Unit::Volts: |
| body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS; |
| break; |
| case server::Value::Unit::Meters: |
| body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS; |
| break; |
| case server::Value::Unit::Amperes: |
| body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES; |
| break; |
| case server::Value::Unit::Joules: |
| body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES; |
| break; |
| case server::Value::Unit::Watts: |
| body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS; |
| break; |
| default: |
| // Cannot be hit. |
| std::fprintf(stderr, "Unknown value unit type: = %s\n", |
| info->unit.c_str()); |
| } |
| } |
| catch (const sdbusplus::exception::InvalidEnumString& e) |
| { |
| lg2::warning("Warning: no unit provided for sensor!"); |
| } |
| } |
| |
| ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body, |
| const ipmi::sensor::Info* info, |
| ipmi_data_len_t) |
| { |
| /* Functional sensor case */ |
| if (isAnalogSensor(info->propertyInterfaces.begin()->first)) |
| { |
| body->sensor_units_1 = info->sensorUnits1; // default is 0. unsigned, no |
| // rate, no modifier, not a % |
| /* Unit info */ |
| setUnitFieldsForObject(info, body); |
| |
| get_sdr::body::set_b(info->coefficientB, body); |
| get_sdr::body::set_m(info->coefficientM, body); |
| get_sdr::body::set_b_exp(info->exponentB, body); |
| get_sdr::body::set_r_exp(info->exponentR, body); |
| } |
| |
| /* ID string */ |
| auto id_string = info->sensorName; |
| |
| if (id_string.empty()) |
| { |
| id_string = info->sensorNameFunc(*info); |
| } |
| |
| if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH) |
| { |
| get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body); |
| } |
| else |
| { |
| get_sdr::body::set_id_strlen(id_string.length(), body); |
| } |
| get_sdr::body::set_id_type(3, body); // "8-bit ASCII + Latin 1" |
| strncpy(body->id_string, id_string.c_str(), |
| get_sdr::body::get_id_strlen(body)); |
| |
| return IPMI_CC_OK; |
| }; |
| |
| ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response, |
| ipmi_data_len_t data_len) |
| { |
| auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); |
| auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); |
| get_sdr::SensorDataFruRecord record{}; |
| auto dataLength = 0; |
| |
| auto fru = frus.begin(); |
| uint8_t fruID{}; |
| auto recordID = get_sdr::request::get_record_id(req); |
| |
| fruID = recordID - FRU_RECORD_ID_START; |
| fru = frus.find(fruID); |
| if (fru == frus.end()) |
| { |
| return IPMI_CC_SENSOR_INVALID; |
| } |
| |
| /* Header */ |
| get_sdr::header::set_record_id(recordID, &(record.header)); |
| record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 |
| record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD; |
| record.header.record_length = sizeof(record.key) + sizeof(record.body); |
| |
| /* Key */ |
| record.key.fruID = fruID; |
| record.key.accessLun |= IPMI_LOGICAL_FRU; |
| record.key.deviceAddress = BMCTargetAddress; |
| |
| /* Body */ |
| record.body.entityID = fru->second[0].entityID; |
| record.body.entityInstance = fru->second[0].entityInstance; |
| record.body.deviceType = fruInventoryDevice; |
| record.body.deviceTypeModifier = IPMIFruInventory; |
| |
| /* Device ID string */ |
| auto deviceID = |
| fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1, |
| fru->second[0].path.length()); |
| |
| if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH) |
| { |
| get_sdr::body::set_device_id_strlen( |
| get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body)); |
| } |
| else |
| { |
| get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body)); |
| } |
| |
| strncpy(record.body.deviceID, deviceID.c_str(), |
| get_sdr::body::get_device_id_strlen(&(record.body))); |
| |
| if (++fru == frus.end()) |
| { |
| // we have reached till end of fru, so assign the next record id to |
| // 512(Max fru ID = 511) + Entity Record ID(may start with 0). |
| const auto& entityRecords = |
| ipmi::sensor::EntityInfoMapContainer::getContainer() |
| ->getIpmiEntityRecords(); |
| auto next_record_id = |
| (entityRecords.size()) |
| ? entityRecords.begin()->first + ENTITY_RECORD_ID_START |
| : END_OF_RECORD; |
| get_sdr::response::set_next_record_id(next_record_id, resp); |
| } |
| else |
| { |
| get_sdr::response::set_next_record_id( |
| (FRU_RECORD_ID_START + fru->first), resp); |
| } |
| |
| // Check for invalid offset size |
| if (req->offset > sizeof(record)) |
| { |
| return IPMI_CC_PARM_OUT_OF_RANGE; |
| } |
| |
| dataLength = std::min(static_cast<size_t>(req->bytes_to_read), |
| sizeof(record) - req->offset); |
| |
| std::memcpy(resp->record_data, |
| reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); |
| |
| *data_len = dataLength; |
| *data_len += 2; // additional 2 bytes for next record ID |
| |
| return IPMI_CC_OK; |
| } |
| |
| ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response, |
| ipmi_data_len_t data_len) |
| { |
| auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); |
| auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); |
| get_sdr::SensorDataEntityRecord record{}; |
| auto dataLength = 0; |
| |
| const auto& entityRecords = |
| ipmi::sensor::EntityInfoMapContainer::getContainer() |
| ->getIpmiEntityRecords(); |
| auto entity = entityRecords.begin(); |
| uint8_t entityRecordID; |
| auto recordID = get_sdr::request::get_record_id(req); |
| |
| entityRecordID = recordID - ENTITY_RECORD_ID_START; |
| entity = entityRecords.find(entityRecordID); |
| if (entity == entityRecords.end()) |
| { |
| return IPMI_CC_SENSOR_INVALID; |
| } |
| |
| /* Header */ |
| get_sdr::header::set_record_id(recordID, &(record.header)); |
| record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 |
| record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD; |
| record.header.record_length = sizeof(record.key) + sizeof(record.body); |
| |
| /* Key */ |
| record.key.containerEntityId = entity->second.containerEntityId; |
| record.key.containerEntityInstance = entity->second.containerEntityInstance; |
| get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked, |
| &(record.key)); |
| record.key.entityId1 = entity->second.containedEntities[0].first; |
| record.key.entityInstance1 = entity->second.containedEntities[0].second; |
| |
| /* Body */ |
| record.body.entityId2 = entity->second.containedEntities[1].first; |
| record.body.entityInstance2 = entity->second.containedEntities[1].second; |
| record.body.entityId3 = entity->second.containedEntities[2].first; |
| record.body.entityInstance3 = entity->second.containedEntities[2].second; |
| record.body.entityId4 = entity->second.containedEntities[3].first; |
| record.body.entityInstance4 = entity->second.containedEntities[3].second; |
| |
| if (++entity == entityRecords.end()) |
| { |
| get_sdr::response::set_next_record_id(END_OF_RECORD, |
| resp); // last record |
| } |
| else |
| { |
| get_sdr::response::set_next_record_id( |
| (ENTITY_RECORD_ID_START + entity->first), resp); |
| } |
| |
| // Check for invalid offset size |
| if (req->offset > sizeof(record)) |
| { |
| return IPMI_CC_PARM_OUT_OF_RANGE; |
| } |
| |
| dataLength = std::min(static_cast<size_t>(req->bytes_to_read), |
| sizeof(record) - req->offset); |
| |
| std::memcpy(resp->record_data, |
| reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); |
| |
| *data_len = dataLength; |
| *data_len += 2; // additional 2 bytes for next record ID |
| |
| return IPMI_CC_OK; |
| } |
| |
| ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, |
| ipmi_response_t response, ipmi_data_len_t data_len, |
| ipmi_context_t) |
| { |
| ipmi_ret_t ret = IPMI_CC_OK; |
| get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request; |
| get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response; |
| |
| // Note: we use an iterator so we can provide the next ID at the end of |
| // the call. |
| auto sensor = ipmi::sensor::sensors.begin(); |
| auto recordID = get_sdr::request::get_record_id(req); |
| |
| // At the beginning of a scan, the host side will send us id=0. |
| if (recordID != 0) |
| { |
| // recordID 0 to 255 means it is a FULL record. |
| // recordID 256 to 511 means it is a FRU record. |
| // recordID greater then 511 means it is a Entity Association |
| // record. Currently we are supporting three record types: FULL |
| // record, FRU record and Enttiy Association record. |
| if (recordID >= ENTITY_RECORD_ID_START) |
| { |
| return ipmi_entity_get_sdr(request, response, data_len); |
| } |
| else if (recordID >= FRU_RECORD_ID_START && |
| recordID < ENTITY_RECORD_ID_START) |
| { |
| return ipmi_fru_get_sdr(request, response, data_len); |
| } |
| else |
| { |
| sensor = ipmi::sensor::sensors.find(recordID); |
| if (sensor == ipmi::sensor::sensors.end()) |
| { |
| return IPMI_CC_SENSOR_INVALID; |
| } |
| } |
| } |
| |
| uint8_t sensor_id = sensor->first; |
| |
| auto it = sdrCacheMap.find(sensor_id); |
| if (it == sdrCacheMap.end()) |
| { |
| /* Header */ |
| get_sdr::SensorDataFullRecord record = {}; |
| get_sdr::header::set_record_id(sensor_id, &(record.header)); |
| record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1 |
| record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD; |
| record.header.record_length = sizeof(record.key) + sizeof(record.body); |
| |
| /* Key */ |
| get_sdr::key::set_owner_id_bmc(&(record.key)); |
| record.key.sensor_number = sensor_id; |
| |
| /* Body */ |
| record.body.entity_id = sensor->second.entityType; |
| record.body.sensor_type = sensor->second.sensorType; |
| record.body.event_reading_type = sensor->second.sensorReadingType; |
| record.body.entity_instance = sensor->second.instance; |
| if (ipmi::sensor::Mutability::Write == |
| (sensor->second.mutability & ipmi::sensor::Mutability::Write)) |
| { |
| get_sdr::body::init_settable_state(true, &(record.body)); |
| } |
| |
| // Set the type-specific details given the DBus interface |
| populate_record_from_dbus(&(record.body), &(sensor->second), data_len); |
| sdrCacheMap[sensor_id] = std::move(record); |
| } |
| |
| const auto& record = sdrCacheMap[sensor_id]; |
| |
| if (++sensor == ipmi::sensor::sensors.end()) |
| { |
| // we have reached till end of sensor, so assign the next record id |
| // to 256(Max Sensor ID = 255) + FRU ID(may start with 0). |
| auto next_record_id = (frus.size()) |
| ? frus.begin()->first + FRU_RECORD_ID_START |
| : END_OF_RECORD; |
| |
| get_sdr::response::set_next_record_id(next_record_id, resp); |
| } |
| else |
| { |
| get_sdr::response::set_next_record_id(sensor->first, resp); |
| } |
| |
| if (req->offset > sizeof(record)) |
| { |
| return IPMI_CC_PARM_OUT_OF_RANGE; |
| } |
| |
| // data_len will ultimately be the size of the record, plus |
| // the size of the next record ID: |
| *data_len = std::min(static_cast<size_t>(req->bytes_to_read), |
| sizeof(record) - req->offset); |
| |
| std::memcpy(resp->record_data, |
| reinterpret_cast<const uint8_t*>(&record) + req->offset, |
| *data_len); |
| |
| // data_len should include the LSB and MSB: |
| *data_len += sizeof(resp->next_record_id_lsb) + |
| sizeof(resp->next_record_id_msb); |
| |
| return ret; |
| } |
| |
| static bool isFromSystemChannel() |
| { |
| // TODO we could not figure out where the request is from based on IPMI |
| // command handler parameters. because of it, we can not differentiate |
| // request from SMS/SMM or IPMB channel |
| return true; |
| } |
| |
| ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t, ipmi_cmd_t, |
| ipmi_request_t request, ipmi_response_t, |
| ipmi_data_len_t dataLen, ipmi_context_t) |
| { |
| uint16_t generatorID; |
| size_t count; |
| bool assert = true; |
| std::string sensorPath; |
| size_t paraLen = *dataLen; |
| PlatformEventRequest* req; |
| *dataLen = 0; |
| |
| if ((paraLen < selSystemEventSizeWith1Bytes) || |
| (paraLen > selSystemEventSizeWith3Bytes)) |
| { |
| return IPMI_CC_REQ_DATA_LEN_INVALID; |
| } |
| |
| if (isFromSystemChannel()) |
| { // first byte for SYSTEM Interface is Generator ID |
| // +1 to get common struct |
| req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1); |
| // Capture the generator ID |
| generatorID = *reinterpret_cast<uint8_t*>(request); |
| // Platform Event usually comes from other firmware, like BIOS. |
| // Unlike BMC sensor, it does not have BMC DBUS sensor path. |
| sensorPath = "System"; |
| } |
| else |
| { |
| req = reinterpret_cast<PlatformEventRequest*>(request); |
| // TODO GenratorID for IPMB is combination of RqSA and RqLUN |
| generatorID = 0xff; |
| sensorPath = "IPMB"; |
| } |
| // Content of event data field depends on sensor class. |
| // When data0 bit[5:4] is non-zero, valid data counts is 3. |
| // When data0 bit[7:6] is non-zero, valid data counts is 2. |
| if (((req->data[0] & byte3EnableMask) != 0 && |
| paraLen < selSystemEventSizeWith3Bytes) || |
| ((req->data[0] & byte2EnableMask) != 0 && |
| paraLen < selSystemEventSizeWith2Bytes)) |
| { |
| return IPMI_CC_REQ_DATA_LEN_INVALID; |
| } |
| |
| // Count bytes of Event Data |
| if ((req->data[0] & byte3EnableMask) != 0) |
| { |
| count = 3; |
| } |
| else if ((req->data[0] & byte2EnableMask) != 0) |
| { |
| count = 2; |
| } |
| else |
| { |
| count = 1; |
| } |
| assert = req->eventDirectionType & directionMask ? false : true; |
| std::vector<uint8_t> eventData(req->data, req->data + count); |
| |
| sdbusplus::bus_t dbus(bus); |
| std::string service = |
| ipmi::getService(dbus, ipmiSELAddInterface, ipmiSELPath); |
| sdbusplus::message_t writeSEL = dbus.new_method_call( |
| service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd"); |
| writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert, |
| generatorID); |
| try |
| { |
| dbus.call(writeSEL); |
| } |
| catch (const sdbusplus::exception_t& e) |
| { |
| lg2::error("exception message: {ERROR}", "ERROR", e); |
| return IPMI_CC_UNSPECIFIED_ERROR; |
| } |
| return IPMI_CC_OK; |
| } |
| |
| void register_netfn_sen_functions() |
| { |
| // Handlers with dbus-sdr handler implementation. |
| // Do not register the hander if it dynamic sensors stack is used. |
| |
| #ifndef FEATURE_DYNAMIC_SENSORS |
| |
| #ifdef FEATURE_SENSORS_CACHE |
| // Initialize the sensor matches |
| initSensorMatches(); |
| #endif |
| |
| // <Set Sensor Reading and Event Status> |
| ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, |
| ipmi::sensor_event::cmdSetSensorReadingAndEvtSts, |
| ipmi::Privilege::Operator, ipmiSetSensorReading); |
| // <Get Sensor Reading> |
| ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, |
| ipmi::sensor_event::cmdGetSensorReading, |
| ipmi::Privilege::User, ipmiSensorGetSensorReading); |
| |
| // <Reserve Device SDR Repository> |
| ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, |
| ipmi::sensor_event::cmdReserveDeviceSdrRepository, |
| ipmi::Privilege::User, ipmiSensorReserveSdr); |
| |
| // <Get Device SDR Info> |
| ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, |
| ipmi::sensor_event::cmdGetDeviceSdrInfo, |
| ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo); |
| |
| // <Get Sensor Thresholds> |
| ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, |
| ipmi::sensor_event::cmdGetSensorThreshold, |
| ipmi::Privilege::User, ipmiSensorGetSensorThresholds); |
| |
| // <Set Sensor Thresholds> |
| ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, |
| ipmi::sensor_event::cmdSetSensorThreshold, |
| ipmi::Privilege::User, ipmiSenSetSensorThresholds); |
| |
| // <Get Device SDR> |
| ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr, |
| ipmi_sen_get_sdr, PRIVILEGE_USER); |
| |
| #endif |
| |
| // Common Handers used by both implementation. |
| |
| // <Platform Event Message> |
| ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr, |
| ipmicmdPlatformEvent, PRIVILEGE_OPERATOR); |
| |
| // <Get Sensor Type> |
| ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, |
| ipmi::sensor_event::cmdGetSensorType, |
| ipmi::Privilege::User, ipmiGetSensorType); |
| |
| return; |
| } |