Vernon Mauery | ebe8e90 | 2018-12-12 09:39:22 -0800 | [diff] [blame] | 1 | /** |
| 2 | * Copyright © 2018 Intel Corporation |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | #include <ipmid/api.hpp> |
| 17 | #include <ipmid/message.hpp> |
| 18 | |
| 19 | #include <gtest/gtest.h> |
| 20 | |
| 21 | // TODO: Add testing of Payload response API |
| 22 | |
| 23 | TEST(PackBasics, Uint8) |
| 24 | { |
| 25 | ipmi::message::Payload p; |
| 26 | uint8_t v = 4; |
| 27 | p.pack(v); |
| 28 | // check that the number of bytes matches |
| 29 | ASSERT_EQ(p.size(), sizeof(v)); |
| 30 | // check that the bytes were correctly packed (LSB first) |
| 31 | std::vector<uint8_t> k = {0x04}; |
| 32 | ASSERT_EQ(p.raw, k); |
| 33 | } |
| 34 | |
| 35 | TEST(PackBasics, Uint16) |
| 36 | { |
| 37 | ipmi::message::Payload p; |
| 38 | uint16_t v = 0x8604; |
| 39 | p.pack(v); |
| 40 | // check that the number of bytes matches |
| 41 | ASSERT_EQ(p.size(), sizeof(v)); |
| 42 | // check that the bytes were correctly packed (LSB first) |
| 43 | std::vector<uint8_t> k = {0x04, 0x86}; |
| 44 | ASSERT_EQ(p.raw, k); |
| 45 | } |
| 46 | |
| 47 | TEST(PackBasics, Uint32) |
| 48 | { |
| 49 | ipmi::message::Payload p; |
| 50 | uint32_t v = 0x02008604; |
| 51 | p.pack(v); |
| 52 | // check that the number of bytes matches |
| 53 | ASSERT_EQ(p.size(), sizeof(v)); |
| 54 | // check that the bytes were correctly packed (LSB first) |
| 55 | std::vector<uint8_t> k = {0x04, 0x86, 0x00, 0x02}; |
| 56 | ASSERT_EQ(p.raw, k); |
| 57 | } |
| 58 | |
| 59 | TEST(PackBasics, Uint64) |
| 60 | { |
| 61 | ipmi::message::Payload p; |
| 62 | uint64_t v = 0x1122334402008604ull; |
| 63 | p.pack(v); |
| 64 | // check that the number of bytes matches |
| 65 | ASSERT_EQ(p.size(), sizeof(v)); |
| 66 | // check that the bytes were correctly packed (LSB first) |
| 67 | std::vector<uint8_t> k = {0x04, 0x86, 0x00, 0x02, 0x44, 0x33, 0x22, 0x11}; |
| 68 | ASSERT_EQ(p.raw, k); |
| 69 | } |
| 70 | |
| 71 | TEST(PackBasics, Uint24) |
| 72 | { |
| 73 | ipmi::message::Payload p; |
| 74 | uint24_t v = 0x112358; |
| 75 | p.pack(v); |
| 76 | // check that the number of bytes matches |
| 77 | ASSERT_EQ(p.size(), types::nrFixedBits<decltype(v)> / CHAR_BIT); |
| 78 | // check that the bytes were correctly packed (LSB first) |
| 79 | std::vector<uint8_t> k = {0x58, 0x23, 0x11}; |
| 80 | ASSERT_EQ(p.raw, k); |
| 81 | } |
| 82 | |
| 83 | TEST(PackBasics, Uint3Uint5) |
| 84 | { |
| 85 | // individual bytes are packed low-order-bits first |
| 86 | // v1 will occupy [2:0], v2 will occupy [7:3] |
| 87 | ipmi::message::Payload p; |
| 88 | uint3_t v1 = 0x1; |
| 89 | uint5_t v2 = 0x19; |
| 90 | p.pack(v1, v2); |
| 91 | // check that the number of bytes matches |
| 92 | ASSERT_EQ(p.size(), (types::nrFixedBits<decltype(v1)> + |
| 93 | types::nrFixedBits<decltype(v2)>) / |
| 94 | CHAR_BIT); |
| 95 | // check that the bytes were correctly packed (LSB first) |
| 96 | std::vector<uint8_t> k = {0xc9}; |
| 97 | ASSERT_EQ(p.raw, k); |
| 98 | } |
| 99 | |
| 100 | TEST(PackBasics, Boolx8) |
| 101 | { |
| 102 | // individual bytes are packed low-order-bits first |
| 103 | // [v8, v7, v6, v5, v4, v3, v2, v1] |
| 104 | ipmi::message::Payload p; |
| 105 | bool v8 = true, v7 = true, v6 = false, v5 = false; |
| 106 | bool v4 = true, v3 = false, v2 = false, v1 = true; |
| 107 | p.pack(v1, v2, v3, v4, v5, v6, v7, v8); |
| 108 | // check that the number of bytes matches |
| 109 | ASSERT_EQ(p.size(), sizeof(uint8_t)); |
| 110 | // check that the bytes were correctly packed (LSB first) |
| 111 | std::vector<uint8_t> k = {0xc9}; |
| 112 | ASSERT_EQ(p.raw, k); |
| 113 | } |
| 114 | |
| 115 | TEST(PackBasics, Bitset8) |
| 116 | { |
| 117 | // individual bytes are packed low-order-bits first |
| 118 | // a bitset for 8 bits fills the full byte |
| 119 | ipmi::message::Payload p; |
| 120 | std::bitset<8> v(0xc9); |
| 121 | p.pack(v); |
| 122 | // check that the number of bytes matches |
| 123 | ASSERT_EQ(p.size(), v.size() / CHAR_BIT); |
| 124 | // check that the bytes were correctly packed (LSB first) |
| 125 | std::vector<uint8_t> k = {0xc9}; |
| 126 | ASSERT_EQ(p.raw, k); |
| 127 | } |
| 128 | |
| 129 | TEST(PackBasics, Bitset3Bitset5) |
| 130 | { |
| 131 | // individual bytes are packed low-order-bits first |
| 132 | // v1 will occupy [2:0], v2 will occupy [7:3] |
| 133 | ipmi::message::Payload p; |
| 134 | std::bitset<3> v1(0x1); |
| 135 | std::bitset<5> v2(0x19); |
| 136 | p.pack(v1, v2); |
| 137 | // check that the number of bytes matches |
| 138 | ASSERT_EQ(p.size(), (v1.size() + v2.size()) / CHAR_BIT); |
| 139 | // check that the bytes were correctly packed (LSB first) |
| 140 | std::vector<uint8_t> k = {0xc9}; |
| 141 | ASSERT_EQ(p.raw, k); |
| 142 | } |
| 143 | |
| 144 | TEST(PackBasics, Bitset32) |
| 145 | { |
| 146 | // individual bytes are packed low-order-bits first |
| 147 | // v1 will occupy 4 bytes, but in LSByte first order |
| 148 | // v1[7:0] v1[15:9] v1[23:16] v1[31:24] |
| 149 | ipmi::message::Payload p; |
| 150 | std::bitset<32> v(0x02008604); |
| 151 | p.pack(v); |
| 152 | // check that the number of bytes matches |
| 153 | ASSERT_EQ(p.size(), v.size() / CHAR_BIT); |
| 154 | // check that the bytes were correctly packed (LSB first) |
| 155 | std::vector<uint8_t> k = {0x04, 0x86, 0x00, 0x02}; |
| 156 | ASSERT_EQ(p.raw, k); |
| 157 | } |
| 158 | |
| 159 | TEST(PackBasics, Array4xUint8) |
| 160 | { |
| 161 | // an array of bytes will be output verbatim, low-order element first |
| 162 | ipmi::message::Payload p; |
| 163 | std::array<uint8_t, 4> v = {{0x02, 0x00, 0x86, 0x04}}; |
| 164 | p.pack(v); |
| 165 | // check that the number of bytes matches |
| 166 | ASSERT_EQ(p.size(), v.size() * sizeof(v[0])); |
| 167 | // check that the bytes were correctly packed (in byte order) |
| 168 | std::vector<uint8_t> k = {0x02, 0x00, 0x86, 0x04}; |
| 169 | ASSERT_EQ(p.raw, k); |
| 170 | } |
| 171 | |
| 172 | TEST(PackBasics, Array4xUint32) |
| 173 | { |
| 174 | // an array of multi-byte values will be output in order low-order |
| 175 | // element first, each multi-byte element in LSByte order |
| 176 | // v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24] |
| 177 | // v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24] |
| 178 | // v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24] |
| 179 | // v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24] |
| 180 | ipmi::message::Payload p; |
| 181 | std::array<uint32_t, 4> v = { |
| 182 | {0x11223344, 0x22446688, 0x33557799, 0x12345678}}; |
| 183 | p.pack(v); |
| 184 | // check that the number of bytes matches |
| 185 | ASSERT_EQ(p.size(), v.size() * sizeof(v[0])); |
| 186 | // check that the bytes were correctly packed (in byte order) |
| 187 | std::vector<uint8_t> k = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22, |
| 188 | 0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34, 0x12}; |
| 189 | ASSERT_EQ(p.raw, k); |
| 190 | } |
| 191 | |
| 192 | TEST(PackBasics, VectorUint32) |
| 193 | { |
| 194 | // a vector of multi-byte values will be output in order low-order |
| 195 | // element first, each multi-byte element in LSByte order |
| 196 | // v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24] |
| 197 | // v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24] |
| 198 | // v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24] |
| 199 | // v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24] |
| 200 | ipmi::message::Payload p; |
| 201 | std::vector<uint32_t> v = { |
| 202 | {0x11223344, 0x22446688, 0x33557799, 0x12345678}}; |
| 203 | p.pack(v); |
| 204 | // check that the number of bytes matches |
| 205 | ASSERT_EQ(p.size(), v.size() * sizeof(v[0])); |
| 206 | // check that the bytes were correctly packed (in byte order) |
| 207 | std::vector<uint8_t> k = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22, |
| 208 | 0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34, 0x12}; |
| 209 | ASSERT_EQ(p.raw, k); |
| 210 | } |
| 211 | |
| 212 | TEST(PackBasics, VectorUint8) |
| 213 | { |
| 214 | // a vector of bytes will be output verbatim, low-order element first |
| 215 | ipmi::message::Payload p; |
| 216 | std::vector<uint8_t> v = {0x02, 0x00, 0x86, 0x04}; |
| 217 | p.pack(v); |
| 218 | // check that the number of bytes matches |
| 219 | ASSERT_EQ(p.size(), v.size() * sizeof(v[0])); |
| 220 | // check that the bytes were correctly packed (in byte order) |
| 221 | std::vector<uint8_t> k = {0x02, 0x00, 0x86, 0x04}; |
| 222 | ASSERT_EQ(p.raw, k); |
| 223 | } |
| 224 | |
| 225 | TEST(PackAdvanced, Uints) |
| 226 | { |
| 227 | // all elements will be processed in order, with each multi-byte |
| 228 | // element being processed LSByte first |
| 229 | // v1[7:0] v2[7:0] v2[15:8] v3[7:0] v3[15:8] v3[23:16] v3[31:24] |
| 230 | // v4[7:0] v4[15:8] v4[23:16] v4[31:24] |
| 231 | // v4[39:25] v4[47:40] v4[55:48] v4[63:56] |
| 232 | ipmi::message::Payload p; |
| 233 | uint8_t v1 = 0x02; |
| 234 | uint16_t v2 = 0x0604; |
| 235 | uint32_t v3 = 0x44332211; |
| 236 | uint64_t v4 = 0xccbbaa9988776655ull; |
| 237 | p.pack(v1, v2, v3, v4); |
| 238 | // check that the number of bytes matches |
| 239 | ASSERT_EQ(p.size(), sizeof(v1) + sizeof(v2) + sizeof(v3) + sizeof(v4)); |
| 240 | // check that the bytes were correctly packed (LSB first) |
| 241 | std::vector<uint8_t> k = {0x02, 0x04, 0x06, 0x11, 0x22, 0x33, 0x44, 0x55, |
| 242 | 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc}; |
| 243 | ASSERT_EQ(p.raw, k); |
| 244 | } |
| 245 | |
| 246 | TEST(PackAdvanced, TupleInts) |
| 247 | { |
| 248 | // all elements will be processed in order, with each multi-byte |
| 249 | // element being processed LSByte first |
| 250 | // v1[7:0] v2[7:0] v2[15:8] v3[7:0] v3[15:8] v3[23:16] v3[31:24] |
| 251 | // v4[7:0] v4[15:8] v4[23:16] v4[31:24] |
| 252 | // v4[39:25] v4[47:40] v4[55:48] v4[63:56] |
| 253 | ipmi::message::Payload p; |
| 254 | uint8_t v1 = 0x02; |
| 255 | uint16_t v2 = 0x0604; |
| 256 | uint32_t v3 = 0x44332211; |
| 257 | uint64_t v4 = 0xccbbaa9988776655ull; |
| 258 | auto v = std::make_tuple(v1, v2, v3, v4); |
| 259 | p.pack(v); |
| 260 | // check that the number of bytes matches |
| 261 | ASSERT_EQ(p.size(), sizeof(v1) + sizeof(v2) + sizeof(v3) + sizeof(v4)); |
| 262 | // check that the bytes were correctly packed (LSB first) |
| 263 | std::vector<uint8_t> k = {0x02, 0x04, 0x06, 0x11, 0x22, 0x33, 0x44, 0x55, |
| 264 | 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc}; |
| 265 | ASSERT_EQ(p.raw, k); |
| 266 | } |
| 267 | |
| 268 | TEST(PackAdvanced, BoolsnBitfieldsnFixedIntsOhMy) |
| 269 | { |
| 270 | // each element will be added, filling the low-order bits first |
| 271 | // with multi-byte values getting added LSByte first |
| 272 | // v1 will occupy k[0][1:0] |
| 273 | // v2 will occupy k[0][2] |
| 274 | // v3[4:0] will occupy k[0][7:3], v3[6:5] will occupy k[1][1:0] |
| 275 | // v4 will occupy k[1][2] |
| 276 | // v5 will occupy k[1][7:3] |
| 277 | ipmi::message::Payload p; |
| 278 | uint2_t v1 = 2; // binary 0b10 |
| 279 | bool v2 = true; // binary 0b1 |
| 280 | std::bitset<7> v3(0x73); // binary 0b1110011 |
| 281 | bool v4 = false; // binary 0b0 |
| 282 | uint5_t v5 = 27; // binary 0b11011 |
| 283 | // concat binary: 0b1101101110011110 -> 0xdb9e -> 0x9e 0xdb (LSByte first) |
| 284 | p.pack(v1, v2, v3, v4, v5); |
| 285 | // check that the number of bytes matches |
| 286 | ASSERT_EQ(p.size(), sizeof(uint16_t)); |
| 287 | // check that the bytes were correctly packed (LSB first) |
| 288 | std::vector<uint8_t> k = {0x9e, 0xdb}; |
| 289 | ASSERT_EQ(p.raw, k); |
| 290 | } |
| 291 | |
| 292 | TEST(PackAdvanced, UnalignedBitPacking) |
| 293 | { |
| 294 | // unaligned multi-byte values will be packed the same as |
| 295 | // other bits, effectively building up a large value, low-order |
| 296 | // bits first, then outputting a stream of LSByte values |
| 297 | // v1 will occupy k[0][1:0] |
| 298 | // v2[5:0] will occupy k[0][7:2], v2[7:6] will occupy k[1][1:0] |
| 299 | // v3 will occupy k[1][2] |
| 300 | // v4[4:0] will occupy k[1][7:3] v4[12:5] will occupy k[2][7:0] |
| 301 | // v4[15:13] will occupy k[3][2:0] |
| 302 | // v5 will occupy k[3][3] |
| 303 | // v6[3:0] will occupy k[3][7:0] v6[11:4] will occupy k[4][7:0] |
| 304 | // v6[19:12] will occupy k[5][7:0] v6[27:20] will occupy k[6][7:0] |
| 305 | // v6[31:28] will occupy k[7][3:0] |
| 306 | // v7 will occupy k[7][7:4] |
| 307 | ipmi::message::Payload p; |
| 308 | uint2_t v1 = 2; // binary 0b10 |
| 309 | uint8_t v2 = 0xa5; // binary 0b10100101 |
| 310 | bool v3 = false; // binary 0b0 |
| 311 | uint16_t v4 = 0xa55a; // binary 0b1010010101011010 |
| 312 | bool v5 = true; // binary 0b1 |
| 313 | uint32_t v6 = 0xdbc3bd3c; // binary 0b11011011110000111011110100111100 |
| 314 | uint4_t v7 = 9; // binary 0b1001 |
| 315 | // concat binary: |
| 316 | // 0b1001110110111100001110111101001111001101001010101101001010010110 |
| 317 | // -> 0x9dbc3bd3cd2ad296 -> 0x96 0xd2 0x2a 0xcd 0xd3 0x3b 0xbc 0x9d |
| 318 | p.pack(v1, v2, v3, v4, v5, v6, v7); |
| 319 | // check that the number of bytes matches |
| 320 | ASSERT_EQ(p.size(), sizeof(uint64_t)); |
| 321 | // check that the bytes were correctly packed (LSB first) |
| 322 | std::vector<uint8_t> k = {0x96, 0xd2, 0x2a, 0xcd, 0xd3, 0x3b, 0xbc, 0x9d}; |
| 323 | ASSERT_EQ(p.raw, k); |
| 324 | } |