Willy Tu | de54f48 | 2021-01-26 15:59:09 -0800 | [diff] [blame] | 1 | /* |
| 2 | // Copyright (c) 2017 2018 Intel Corporation |
| 3 | // |
| 4 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | // you may not use this file except in compliance with the License. |
| 6 | // You may obtain a copy of the License at |
| 7 | // |
| 8 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | // |
| 10 | // Unless required by applicable law or agreed to in writing, software |
| 11 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | // See the License for the specific language governing permissions and |
| 14 | // limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include "dbus-sdr/sensorutils.hpp" |
| 18 | |
| 19 | #include <algorithm> |
| 20 | #include <cmath> |
| 21 | #include <iostream> |
| 22 | |
| 23 | namespace ipmi |
| 24 | { |
| 25 | |
| 26 | // Helper function to avoid repeated complicated expression |
| 27 | static bool baseInRange(double base) |
| 28 | { |
| 29 | auto min10 = static_cast<double>(minInt10); |
| 30 | auto max10 = static_cast<double>(maxInt10); |
| 31 | |
| 32 | return ((base >= min10) && (base <= max10)); |
| 33 | } |
| 34 | |
| 35 | // Helper function for internal use by getSensorAttributes() |
| 36 | // Ensures floating-point "base" is within bounds, |
| 37 | // and adjusts integer exponent "expShift" accordingly. |
| 38 | // To minimize data loss when later truncating to integer, |
| 39 | // the floating-point "base" will be as large as possible, |
| 40 | // but still within the bounds (minInt10,maxInt10). |
| 41 | // The bounds of "expShift" are (minInt4,maxInt4). |
| 42 | // Consider this equation: n = base * (10.0 ** expShift) |
| 43 | // This function will try to maximize "base", |
| 44 | // adjusting "expShift" to keep the value "n" unchanged, |
| 45 | // while keeping base and expShift within bounds. |
| 46 | // Returns true if successful, modifies values in-place |
| 47 | static bool scaleFloatExp(double& base, int8_t& expShift) |
| 48 | { |
| 49 | // Comparing with zero should be OK, zero is special in floating-point |
| 50 | // If base is exactly zero, no adjustment of the exponent is necessary |
| 51 | if (base == 0.0) |
| 52 | { |
| 53 | return true; |
| 54 | } |
| 55 | |
| 56 | // As long as base value is within allowed range, expand precision |
| 57 | // This will help to avoid loss when later rounding to integer |
| 58 | while (baseInRange(base)) |
| 59 | { |
| 60 | if (expShift <= minInt4) |
| 61 | { |
| 62 | // Already at the minimum expShift, can not decrement it more |
| 63 | break; |
| 64 | } |
| 65 | |
| 66 | // Multiply by 10, but shift decimal point to the left, no net change |
| 67 | base *= 10.0; |
| 68 | --expShift; |
| 69 | } |
| 70 | |
| 71 | // As long as base value is *not* within range, shrink precision |
| 72 | // This will pull base value closer to zero, thus within range |
| 73 | while (!(baseInRange(base))) |
| 74 | { |
| 75 | if (expShift >= maxInt4) |
| 76 | { |
| 77 | // Already at the maximum expShift, can not increment it more |
| 78 | break; |
| 79 | } |
| 80 | |
| 81 | // Divide by 10, but shift decimal point to the right, no net change |
| 82 | base /= 10.0; |
| 83 | ++expShift; |
| 84 | } |
| 85 | |
| 86 | // If the above loop was not able to pull it back within range, |
| 87 | // the base value is beyond what expShift can represent, return false. |
| 88 | return baseInRange(base); |
| 89 | } |
| 90 | |
| 91 | // Helper function for internal use by getSensorAttributes() |
| 92 | // Ensures integer "ibase" is no larger than necessary, |
| 93 | // by normalizing it so that the decimal point shift is in the exponent, |
| 94 | // whenever possible. |
| 95 | // This provides more consistent results, |
| 96 | // as many equivalent solutions are collapsed into one consistent solution. |
| 97 | // If integer "ibase" is a clean multiple of 10, |
| 98 | // divide it by 10 (this is lossless), so it is closer to zero. |
| 99 | // Also modify floating-point "dbase" at the same time, |
| 100 | // as both integer and floating-point base share the same expShift. |
| 101 | // Example: (ibase=300, expShift=2) becomes (ibase=3, expShift=4) |
| 102 | // because the underlying value is the same: 200*(10**2) == 2*(10**4) |
| 103 | // Always successful, modifies values in-place |
| 104 | static void normalizeIntExp(int16_t& ibase, int8_t& expShift, double& dbase) |
| 105 | { |
| 106 | for (;;) |
| 107 | { |
| 108 | // If zero, already normalized, ensure exponent also zero |
| 109 | if (ibase == 0) |
| 110 | { |
| 111 | expShift = 0; |
| 112 | break; |
| 113 | } |
| 114 | |
| 115 | // If not cleanly divisible by 10, already normalized |
| 116 | if ((ibase % 10) != 0) |
| 117 | { |
| 118 | break; |
| 119 | } |
| 120 | |
| 121 | // If exponent already at max, already normalized |
| 122 | if (expShift >= maxInt4) |
| 123 | { |
| 124 | break; |
| 125 | } |
| 126 | |
| 127 | // Bring values closer to zero, correspondingly shift exponent, |
| 128 | // without changing the underlying number that this all represents, |
| 129 | // similar to what is done by scaleFloatExp(). |
| 130 | // The floating-point base must be kept in sync with the integer base, |
| 131 | // as both floating-point and integer share the same exponent. |
| 132 | ibase /= 10; |
| 133 | dbase /= 10.0; |
| 134 | ++expShift; |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | // The IPMI equation: |
| 139 | // y = (Mx + (B * 10^(bExp))) * 10^(rExp) |
| 140 | // Section 36.3 of this document: |
| 141 | // https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf |
| 142 | // |
| 143 | // The goal is to exactly match the math done by the ipmitool command, |
| 144 | // at the other side of the interface: |
| 145 | // https://github.com/ipmitool/ipmitool/blob/42a023ff0726c80e8cc7d30315b987fe568a981d/lib/ipmi_sdr.c#L360 |
| 146 | // |
| 147 | // To use with Wolfram Alpha, make all variables single letters |
| 148 | // bExp becomes E, rExp becomes R |
| 149 | // https://www.wolframalpha.com/input/?i=y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29 |
| 150 | bool getSensorAttributes(const double max, const double min, int16_t& mValue, |
| 151 | int8_t& rExp, int16_t& bValue, int8_t& bExp, |
| 152 | bool& bSigned) |
| 153 | { |
| 154 | if (!(std::isfinite(min))) |
| 155 | { |
| 156 | std::cerr << "getSensorAttributes: Min value is unusable\n"; |
| 157 | return false; |
| 158 | } |
| 159 | if (!(std::isfinite(max))) |
| 160 | { |
| 161 | std::cerr << "getSensorAttributes: Max value is unusable\n"; |
| 162 | return false; |
| 163 | } |
| 164 | |
| 165 | // Because NAN has already been tested for, this comparison works |
| 166 | if (max <= min) |
| 167 | { |
| 168 | std::cerr << "getSensorAttributes: Max must be greater than min\n"; |
| 169 | return false; |
| 170 | } |
| 171 | |
| 172 | // Given min and max, we must solve for M, B, bExp, rExp |
| 173 | // y comes in from D-Bus (the actual sensor reading) |
| 174 | // x is calculated from y by scaleIPMIValueFromDouble() below |
| 175 | // If y is min, x should equal = 0 (or -128 if signed) |
| 176 | // If y is max, x should equal 255 (or 127 if signed) |
| 177 | double fullRange = max - min; |
| 178 | double lowestX; |
| 179 | |
| 180 | rExp = 0; |
| 181 | bExp = 0; |
| 182 | |
| 183 | // TODO(): The IPMI document is ambiguous, as to whether |
| 184 | // the resulting byte should be signed or unsigned, |
| 185 | // essentially leaving it up to the caller. |
| 186 | // The document just refers to it as "raw reading", |
| 187 | // or "byte of reading", without giving further details. |
| 188 | // Previous code set it signed if min was less than zero, |
| 189 | // so I'm sticking with that, until I learn otherwise. |
| 190 | if (min < 0.0) |
| 191 | { |
| 192 | // TODO(): It would be worth experimenting with the range (-127,127), |
| 193 | // instead of the range (-128,127), because this |
| 194 | // would give good symmetry around zero, and make results look better. |
| 195 | // Divide by 254 instead of 255, and change -128 to -127 elsewhere. |
| 196 | bSigned = true; |
| 197 | lowestX = -128.0; |
| 198 | } |
| 199 | else |
| 200 | { |
| 201 | bSigned = false; |
| 202 | lowestX = 0.0; |
| 203 | } |
| 204 | |
| 205 | // Step 1: Set y to (max - min), set x to 255, set B to 0, solve for M |
| 206 | // This works, regardless of signed or unsigned, |
| 207 | // because total range is the same. |
| 208 | double dM = fullRange / 255.0; |
| 209 | |
| 210 | // Step 2: Constrain M, and set rExp accordingly |
| 211 | if (!(scaleFloatExp(dM, rExp))) |
| 212 | { |
| 213 | std::cerr << "getSensorAttributes: Multiplier range exceeds scale (M=" |
| 214 | << dM << ", rExp=" << (int)rExp << ")\n"; |
| 215 | return false; |
| 216 | } |
| 217 | |
| 218 | mValue = static_cast<int16_t>(std::round(dM)); |
| 219 | |
| 220 | normalizeIntExp(mValue, rExp, dM); |
| 221 | |
| 222 | // The multiplier can not be zero, for obvious reasons |
| 223 | if (mValue == 0) |
| 224 | { |
| 225 | std::cerr << "getSensorAttributes: Multiplier range below scale\n"; |
| 226 | return false; |
| 227 | } |
| 228 | |
| 229 | // Step 3: set y to min, set x to min, keep M and rExp, solve for B |
| 230 | // If negative, x will be -128 (the most negative possible byte), not 0 |
| 231 | |
| 232 | // Solve the IPMI equation for B, instead of y |
| 233 | // https://www.wolframalpha.com/input/?i=solve+y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29+for+B |
| 234 | // B = 10^(-rExp - bExp) (y - M 10^rExp x) |
| 235 | // TODO(): Compare with this alternative solution from SageMathCell |
| 236 | // https://sagecell.sagemath.org/?z=eJyrtC1LLNJQr1TX5KqAMCuATF8I0xfIdIIwnYDMIteKAggPxAIKJMEFkiACxfk5Zaka0ZUKtrYKGhq-CloKFZoK2goaTkCWhqGBgpaWAkilpqYmQgBklmasjoKTJgDAECTH&lang=sage&interacts=eJyLjgUAARUAuQ== |
| 237 | double dB = std::pow(10.0, ((-rExp) - bExp)) * |
| 238 | (min - ((dM * std::pow(10.0, rExp) * lowestX))); |
| 239 | |
| 240 | // Step 4: Constrain B, and set bExp accordingly |
| 241 | if (!(scaleFloatExp(dB, bExp))) |
| 242 | { |
| 243 | std::cerr << "getSensorAttributes: Offset (B=" << dB |
| 244 | << ", bExp=" << (int)bExp |
| 245 | << ") exceeds multiplier scale (M=" << dM |
| 246 | << ", rExp=" << (int)rExp << ")\n"; |
| 247 | return false; |
| 248 | } |
| 249 | |
| 250 | bValue = static_cast<int16_t>(std::round(dB)); |
| 251 | |
| 252 | normalizeIntExp(bValue, bExp, dB); |
| 253 | |
| 254 | // Unlike the multiplier, it is perfectly OK for bValue to be zero |
| 255 | return true; |
| 256 | } |
| 257 | |
| 258 | uint8_t scaleIPMIValueFromDouble(const double value, const int16_t mValue, |
| 259 | const int8_t rExp, const int16_t bValue, |
| 260 | const int8_t bExp, const bool bSigned) |
| 261 | { |
| 262 | // Avoid division by zero below |
| 263 | if (mValue == 0) |
| 264 | { |
| 265 | throw std::out_of_range("Scaling multiplier is uninitialized"); |
| 266 | } |
| 267 | |
| 268 | auto dM = static_cast<double>(mValue); |
| 269 | auto dB = static_cast<double>(bValue); |
| 270 | |
| 271 | // Solve the IPMI equation for x, instead of y |
| 272 | // https://www.wolframalpha.com/input/?i=solve+y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29+for+x |
| 273 | // x = (10^(-rExp) (y - B 10^(rExp + bExp)))/M and M 10^rExp!=0 |
| 274 | // TODO(): Compare with this alternative solution from SageMathCell |
| 275 | // https://sagecell.sagemath.org/?z=eJyrtC1LLNJQr1TX5KqAMCuATF8I0xfIdIIwnYDMIteKAggPxAIKJMEFkiACxfk5Zaka0ZUKtrYKGhq-CloKFZoK2goaTkCWhqGBgpaWAkilpqYmQgBklmasDlAlAMB8JP0=&lang=sage&interacts=eJyLjgUAARUAuQ== |
| 276 | double dX = |
| 277 | (std::pow(10.0, -rExp) * (value - (dB * std::pow(10.0, rExp + bExp)))) / |
| 278 | dM; |
| 279 | |
| 280 | auto scaledValue = static_cast<int32_t>(std::round(dX)); |
| 281 | |
| 282 | int32_t minClamp; |
| 283 | int32_t maxClamp; |
| 284 | |
| 285 | // Because of rounding and integer truncation of scaling factors, |
| 286 | // sometimes the resulting byte is slightly out of range. |
| 287 | // Still allow this, but clamp the values to range. |
| 288 | if (bSigned) |
| 289 | { |
| 290 | minClamp = std::numeric_limits<int8_t>::lowest(); |
| 291 | maxClamp = std::numeric_limits<int8_t>::max(); |
| 292 | } |
| 293 | else |
| 294 | { |
| 295 | minClamp = std::numeric_limits<uint8_t>::lowest(); |
| 296 | maxClamp = std::numeric_limits<uint8_t>::max(); |
| 297 | } |
| 298 | |
| 299 | auto clampedValue = std::clamp(scaledValue, minClamp, maxClamp); |
| 300 | |
| 301 | // This works for both signed and unsigned, |
| 302 | // because it is the same underlying byte storage. |
| 303 | return static_cast<uint8_t>(clampedValue); |
| 304 | } |
| 305 | |
| 306 | uint8_t getScaledIPMIValue(const double value, const double max, |
| 307 | const double min) |
| 308 | { |
| 309 | int16_t mValue = 0; |
| 310 | int8_t rExp = 0; |
| 311 | int16_t bValue = 0; |
| 312 | int8_t bExp = 0; |
| 313 | bool bSigned = false; |
| 314 | |
Patrick Williams | fbc6c9d | 2023-05-10 07:50:16 -0500 | [diff] [blame] | 315 | bool result = getSensorAttributes(max, min, mValue, rExp, bValue, bExp, |
| 316 | bSigned); |
Willy Tu | de54f48 | 2021-01-26 15:59:09 -0800 | [diff] [blame] | 317 | if (!result) |
| 318 | { |
| 319 | throw std::runtime_error("Illegal sensor attributes"); |
| 320 | } |
| 321 | |
| 322 | return scaleIPMIValueFromDouble(value, mValue, rExp, bValue, bExp, bSigned); |
| 323 | } |
| 324 | |
| 325 | } // namespace ipmi |