blob: 52c3c64a25e016beed24d2beefdbb4cdb377b102 [file] [log] [blame]
/**
* Copyright © 2016 IBM Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "config.h"
#include "mainloop.hpp"
#include "env.hpp"
#include "fan_pwm.hpp"
#include "fan_speed.hpp"
#include "hwmon.hpp"
#include "hwmonio.hpp"
#include "sensor.hpp"
#include "sensorset.hpp"
#include "sysfs.hpp"
#include "targets.hpp"
#include "thresholds.hpp"
#include "util.hpp"
#include <phosphor-logging/elog-errors.hpp>
#include <xyz/openbmc_project/Sensor/Device/error.hpp>
#include <cassert>
#include <cstdlib>
#include <format>
#include <functional>
#include <future>
#include <iostream>
#include <memory>
#include <sstream>
#include <string>
#include <unordered_set>
using namespace phosphor::logging;
// Initialization for Warning Objects
decltype(Thresholds<WarningObject>::setLo) Thresholds<WarningObject>::setLo =
&WarningObject::warningLow;
decltype(Thresholds<WarningObject>::setHi) Thresholds<WarningObject>::setHi =
&WarningObject::warningHigh;
decltype(Thresholds<WarningObject>::getLo) Thresholds<WarningObject>::getLo =
&WarningObject::warningLow;
decltype(Thresholds<WarningObject>::getHi) Thresholds<WarningObject>::getHi =
&WarningObject::warningHigh;
decltype(Thresholds<WarningObject>::alarmLo)
Thresholds<WarningObject>::alarmLo = &WarningObject::warningAlarmLow;
decltype(Thresholds<WarningObject>::alarmHi)
Thresholds<WarningObject>::alarmHi = &WarningObject::warningAlarmHigh;
decltype(Thresholds<WarningObject>::getAlarmLow)
Thresholds<WarningObject>::getAlarmLow = &WarningObject::warningAlarmLow;
decltype(Thresholds<WarningObject>::getAlarmHigh)
Thresholds<WarningObject>::getAlarmHigh = &WarningObject::warningAlarmHigh;
decltype(Thresholds<WarningObject>::assertLowSignal)
Thresholds<WarningObject>::assertLowSignal =
&WarningObject::warningLowAlarmAsserted;
decltype(Thresholds<WarningObject>::assertHighSignal)
Thresholds<WarningObject>::assertHighSignal =
&WarningObject::warningHighAlarmAsserted;
decltype(Thresholds<WarningObject>::deassertLowSignal)
Thresholds<WarningObject>::deassertLowSignal =
&WarningObject::warningLowAlarmDeasserted;
decltype(Thresholds<WarningObject>::deassertHighSignal)
Thresholds<WarningObject>::deassertHighSignal =
&WarningObject::warningHighAlarmDeasserted;
// Initialization for Critical Objects
decltype(Thresholds<CriticalObject>::setLo) Thresholds<CriticalObject>::setLo =
&CriticalObject::criticalLow;
decltype(Thresholds<CriticalObject>::setHi) Thresholds<CriticalObject>::setHi =
&CriticalObject::criticalHigh;
decltype(Thresholds<CriticalObject>::getLo) Thresholds<CriticalObject>::getLo =
&CriticalObject::criticalLow;
decltype(Thresholds<CriticalObject>::getHi) Thresholds<CriticalObject>::getHi =
&CriticalObject::criticalHigh;
decltype(Thresholds<CriticalObject>::alarmLo)
Thresholds<CriticalObject>::alarmLo = &CriticalObject::criticalAlarmLow;
decltype(Thresholds<CriticalObject>::alarmHi)
Thresholds<CriticalObject>::alarmHi = &CriticalObject::criticalAlarmHigh;
decltype(Thresholds<CriticalObject>::getAlarmLow)
Thresholds<CriticalObject>::getAlarmLow = &CriticalObject::criticalAlarmLow;
decltype(Thresholds<CriticalObject>::getAlarmHigh)
Thresholds<CriticalObject>::getAlarmHigh =
&CriticalObject::criticalAlarmHigh;
decltype(Thresholds<CriticalObject>::assertLowSignal)
Thresholds<CriticalObject>::assertLowSignal =
&CriticalObject::criticalLowAlarmAsserted;
decltype(Thresholds<CriticalObject>::assertHighSignal)
Thresholds<CriticalObject>::assertHighSignal =
&CriticalObject::criticalHighAlarmAsserted;
decltype(Thresholds<CriticalObject>::deassertLowSignal)
Thresholds<CriticalObject>::deassertLowSignal =
&CriticalObject::criticalLowAlarmDeasserted;
decltype(Thresholds<CriticalObject>::deassertHighSignal)
Thresholds<CriticalObject>::deassertHighSignal =
&CriticalObject::criticalHighAlarmDeasserted;
void updateSensorInterfaces(InterfaceMap& ifaces, SensorValueType value)
{
for (auto& iface : ifaces)
{
switch (iface.first)
{
// clang-format off
case InterfaceType::VALUE:
{
auto& valueIface =
std::any_cast<std::shared_ptr<ValueObject>&>(iface.second);
valueIface->value(value);
}
break;
// clang-format on
case InterfaceType::WARN:
checkThresholds<WarningObject>(iface.second, value);
break;
case InterfaceType::CRIT:
checkThresholds<CriticalObject>(iface.second, value);
break;
default:
break;
}
}
}
std::string MainLoop::getID(SensorSet::container_t::const_reference sensor)
{
std::string id;
/*
* Check if the value of the MODE_<item><X> env variable for the sensor
* is set. If it is, then read the from the <item><X>_<mode>
* file. The name of the DBUS object would be the value of the env
* variable LABEL_<item><mode value>. If the MODE_<item><X> env variable
* doesn't exist, then the name of DBUS object is the value of the env
* variable LABEL_<item><X>.
*
* For example, if MODE_temp1 = "label", then code reads the temp1_label
* file. If it has a 5 in it, then it will use the following entry to
* name the object: LABEL_temp5 = "My DBus object name".
*
*/
auto mode = env::getEnv("MODE", sensor.first);
if (!mode.empty())
{
id = env::getIndirectID(_hwmonRoot + '/' + _instance + '/', mode,
sensor.first);
if (id.empty())
{
return id;
}
}
// Use the ID we looked up above if there was one,
// otherwise use the standard one.
id = (id.empty()) ? sensor.first.second : id;
return id;
}
SensorIdentifiers
MainLoop::getIdentifiers(SensorSet::container_t::const_reference sensor)
{
std::string id = getID(sensor);
std::string label;
std::string accuracy;
std::string priority;
if (!id.empty())
{
// Ignore inputs without a label.
label = env::getEnv("LABEL", sensor.first.first, id);
accuracy = env::getEnv("ACCURACY", sensor.first.first, id);
priority = env::getEnv("PRIORITY", sensor.first.first, id);
}
return std::make_tuple(std::move(id), std::move(label), std::move(accuracy),
std::move(priority));
}
/**
* Reads the environment parameters of a sensor and creates an object with
* atleast the `Value` interface, otherwise returns without creating the object.
* If the `Value` interface is successfully created, by reading the sensor's
* corresponding sysfs file's value, the additional interfaces for the sensor
* are created and the InterfacesAdded signal is emitted. The object's state
* data is then returned for sensor state monitoring within the main loop.
*/
std::optional<ObjectStateData>
MainLoop::getObject(SensorSet::container_t::const_reference sensor)
{
auto properties = getIdentifiers(sensor);
if (std::get<sensorID>(properties).empty() ||
std::get<sensorLabel>(properties).empty())
{
return {};
}
hwmon::Attributes attrs;
if (!hwmon::getAttributes(sensor.first.first, attrs))
{
return {};
}
const auto& [sensorSetKey, sensorAttrs] = sensor;
const auto& [sensorSysfsType, sensorSysfsNum] = sensorSetKey;
/* Note: The sensor objects all share the same ioAccess object. */
auto sensorObj =
std::make_unique<sensor::Sensor>(sensorSetKey, _ioAccess, _devPath);
// Get list of return codes for removing sensors on device
auto devRmRCs = env::getEnv("REMOVERCS");
// Add sensor removal return codes defined at the device level
sensorObj->addRemoveRCs(devRmRCs);
std::string objectPath{_root};
objectPath.append(1, '/');
objectPath.append(hwmon::getNamespace(attrs));
objectPath.append(1, '/');
objectPath.append(std::get<sensorLabel>(properties));
ObjectInfo info(&_bus, std::move(objectPath), InterfaceMap());
RetryIO retryIO(hwmonio::retries, hwmonio::delay);
if (_rmSensors.find(sensorSetKey) != _rmSensors.end())
{
// When adding a sensor that was purposely removed,
// don't retry on errors when reading its value
std::get<size_t>(retryIO) = 0;
}
auto valueInterface = static_cast<std::shared_ptr<ValueObject>>(nullptr);
try
{
// Add accuracy interface
auto accuracyStr = std::get<sensorAccuracy>(properties);
try
{
if (!accuracyStr.empty())
{
auto accuracy = stod(accuracyStr);
sensorObj->addAccuracy(info, accuracy);
}
}
catch (const std::invalid_argument&)
{}
// Add priority interface
auto priorityStr = std::get<sensorPriority>(properties);
try
{
if (!priorityStr.empty())
{
auto priority = std::stoul(priorityStr);
sensorObj->addPriority(info, priority);
}
}
catch (const std::invalid_argument&)
{}
// Add status interface based on _fault file being present
sensorObj->addStatus(info);
valueInterface = sensorObj->addValue(retryIO, info, _timedoutMap);
}
catch (const std::system_error& e)
{
auto file =
sysfs::make_sysfs_path(_ioAccess->path(), sensorSysfsType,
sensorSysfsNum, hwmon::entry::cinput);
// Check sensorAdjusts for sensor removal RCs
auto& sAdjusts = sensorObj->getAdjusts();
if (sAdjusts.rmRCs.count(e.code().value()) > 0)
{
// Return code found in sensor return code removal list
if (_rmSensors.find(sensorSetKey) == _rmSensors.end())
{
// Trace for sensor not already removed from dbus
log<level::INFO>("Sensor not added to dbus for read fail",
entry("FILE=%s", file.c_str()),
entry("RC=%d", e.code().value()));
_rmSensors[std::move(sensorSetKey)] = std::move(sensorAttrs);
}
return {};
}
using namespace sdbusplus::xyz::openbmc_project::Sensor::Device::Error;
report<ReadFailure>(
xyz::openbmc_project::Sensor::Device::ReadFailure::CALLOUT_ERRNO(
e.code().value()),
xyz::openbmc_project::Sensor::Device::ReadFailure::
CALLOUT_DEVICE_PATH(_devPath.c_str()));
log<level::INFO>(std::format("Failing sysfs file: {} errno: {}", file,
e.code().value())
.c_str());
exit(EXIT_FAILURE);
}
auto sensorValue = valueInterface->value();
int64_t scale = sensorObj->getScale();
addThreshold<WarningObject>(sensorSysfsType, std::get<sensorID>(properties),
sensorValue, info, scale);
addThreshold<CriticalObject>(sensorSysfsType,
std::get<sensorID>(properties), sensorValue,
info, scale);
auto target =
addTarget<hwmon::FanSpeed>(sensorSetKey, _ioAccess, _devPath, info);
if (target)
{
target->enable();
}
addTarget<hwmon::FanPwm>(sensorSetKey, _ioAccess, _devPath, info);
// All the interfaces have been created. Go ahead
// and emit InterfacesAdded.
valueInterface->emit_object_added();
// Save sensor object specifications
_sensorObjects[sensorSetKey] = std::move(sensorObj);
return std::make_pair(std::move(std::get<sensorLabel>(properties)),
std::move(info));
}
MainLoop::MainLoop(sdbusplus::bus_t&& bus, const std::string& param,
const std::string& path, const std::string& devPath,
const char* prefix, const char* root,
const std::string& instanceId,
const hwmonio::HwmonIOInterface* ioIntf) :
_bus(std::move(bus)), _manager(_bus, root), _pathParam(param), _hwmonRoot(),
_instance(), _devPath(devPath), _prefix(prefix), _root(root), _state(),
_instanceId(instanceId), _ioAccess(ioIntf),
_event(sdeventplus::Event::get_default()),
_timer(_event, std::bind(&MainLoop::read, this))
{
// Strip off any trailing slashes.
std::string p = path;
while (!p.empty() && p.back() == '/')
{
p.pop_back();
}
// Given the furthest right /, set instance to
// the basename, and hwmonRoot to the leading path.
auto n = p.rfind('/');
if (n != std::string::npos)
{
_instance.assign(p.substr(n + 1));
_hwmonRoot.assign(p.substr(0, n));
}
assert(!_instance.empty());
assert(!_hwmonRoot.empty());
}
void MainLoop::shutdown() noexcept
{
_event.exit(0);
}
void MainLoop::run()
{
init();
std::function<void()> callback(std::bind(&MainLoop::read, this));
try
{
_timer.restart(std::chrono::microseconds(_interval));
// TODO: Issue#6 - Optionally look at polling interval sysfs entry.
// TODO: Issue#7 - Should probably periodically check the SensorSet
// for new entries.
_bus.attach_event(_event.get(), SD_EVENT_PRIORITY_IMPORTANT);
_event.loop();
}
catch (const std::exception& e)
{
log<level::ERR>("Error in sysfs polling loop",
entry("ERROR=%s", e.what()));
throw;
}
}
void MainLoop::init()
{
// Check sysfs for available sensors.
auto sensors = std::make_unique<SensorSet>(_hwmonRoot + '/' + _instance);
for (const auto& i : *sensors)
{
auto object = getObject(i);
if (object)
{
// Construct the SensorSet value
// std::tuple<SensorSet::mapped_type,
// std::string(Sensor Label),
// ObjectInfo>
auto value =
std::make_tuple(std::move(i.second), std::move((*object).first),
std::move((*object).second));
_state[std::move(i.first)] = std::move(value);
}
// Initialize _averageMap of sensor. e.g. <<power, 1>, <0, 0>>
if ((i.first.first == hwmon::type::power) &&
(phosphor::utility::isAverageEnvSet(i.first)))
{
_average.setAverageValue(i.first, std::make_pair(0, 0));
}
}
/* If there are no sensors specified by labels, exit. */
if (0 == _state.size())
{
exit(0);
}
{
std::stringstream ss;
std::string id = _instanceId;
if (id.empty())
{
id =
std::to_string(std::hash<std::string>{}(_devPath + _pathParam));
}
ss << _prefix << "-" << id << ".Hwmon1";
_bus.request_name(ss.str().c_str());
}
{
auto interval = env::getEnv("INTERVAL");
if (!interval.empty())
{
_interval = std::strtoull(interval.c_str(), NULL, 10);
}
}
}
void MainLoop::read()
{
// TODO: Issue#3 - Need to make calls to the dbus sensor cache here to
// ensure the objects all exist?
// Iterate through all the sensors.
for (auto& [sensorSetKey, sensorStateTuple] : _state)
{
const auto& [sensorSysfsType, sensorSysfsNum] = sensorSetKey;
auto& [attrs, unused, objInfo] = sensorStateTuple;
if (attrs.find(hwmon::entry::input) == attrs.end())
{
continue;
}
// Read value from sensor.
std::string input = hwmon::entry::input;
if (sensorSysfsType == hwmon::type::pwm)
{
input = "";
}
// If type is power and AVERAGE_power* is true in env, use average
// instead of input
else if ((sensorSysfsType == hwmon::type::power) &&
(phosphor::utility::isAverageEnvSet(sensorSetKey)))
{
input = hwmon::entry::average;
}
SensorValueType value;
auto& obj = std::get<InterfaceMap>(objInfo);
std::unique_ptr<sensor::Sensor>& sensor = _sensorObjects[sensorSetKey];
auto& statusIface = std::any_cast<std::shared_ptr<StatusObject>&>(
obj[InterfaceType::STATUS]);
// As long as addStatus is called before addValue, statusIface
// should never be nullptr.
assert(statusIface);
try
{
if (sensor->hasFaultFile())
{
auto fault = _ioAccess->read(sensorSysfsType, sensorSysfsNum,
hwmon::entry::fault,
hwmonio::retries, hwmonio::delay);
// Skip reading from a sensor with a valid fault file
// and set the functional property accordingly
if (!statusIface->functional((fault == 0) ? true : false))
{
continue;
}
}
{
// RAII object for GPIO unlock / lock
auto locker = sensor::gpioUnlock(sensor->getGpio());
// For sensors with attribute ASYNC_READ_TIMEOUT,
// spawn a thread with timeout
auto asyncReadTimeout =
env::getEnv("ASYNC_READ_TIMEOUT", sensorSetKey);
if (!asyncReadTimeout.empty())
{
std::chrono::milliseconds asyncTimeout{
std::stoi(asyncReadTimeout)};
value = sensor::asyncRead(
sensorSetKey, _ioAccess, asyncTimeout, _timedoutMap,
sensorSysfsType, sensorSysfsNum, input,
hwmonio::retries, hwmonio::delay);
}
else
{
// Retry for up to a second if device is busy
// or has a transient error.
value =
_ioAccess->read(sensorSysfsType, sensorSysfsNum, input,
hwmonio::retries, hwmonio::delay);
}
// Set functional property to true if we could read sensor
statusIface->functional(true);
value = sensor->adjustValue(value);
if (input == hwmon::entry::average)
{
// Calculate the values of averageMap based on current
// average value, current average_interval value, previous
// average value, previous average_interval value
int64_t interval =
_ioAccess->read(sensorSysfsType, sensorSysfsNum,
hwmon::entry::caverage_interval,
hwmonio::retries, hwmonio::delay);
auto ret = _average.getAverageValue(sensorSetKey);
assert(ret);
const auto& [preAverage, preInterval] = *ret;
auto calValue = Average::calcAverage(
preAverage, preInterval, value, interval);
if (calValue)
{
// Update previous values in averageMap before the
// variable value is changed next
_average.setAverageValue(
sensorSetKey, std::make_pair(value, interval));
// Update value to be calculated average
value = calValue.value();
}
else
{
// the value of
// power*_average_interval is not changed yet, use the
// previous calculated average instead. So skip dbus
// update.
continue;
}
}
}
updateSensorInterfaces(obj, value);
}
catch (const std::system_error& e)
{
#if UPDATE_FUNCTIONAL_ON_FAIL
// If UPDATE_FUNCTIONAL_ON_FAIL is defined and an exception was
// thrown, set the functional property to false.
// We cannot set this with the 'continue' in the lower block
// as the code may exit before reaching it.
statusIface->functional(false);
#endif
auto file = sysfs::make_sysfs_path(
_ioAccess->path(), sensorSysfsType, sensorSysfsNum, input);
// Check sensorAdjusts for sensor removal RCs
auto& sAdjusts = _sensorObjects[sensorSetKey]->getAdjusts();
if (sAdjusts.rmRCs.count(e.code().value()) > 0)
{
// Return code found in sensor return code removal list
if (_rmSensors.find(sensorSetKey) == _rmSensors.end())
{
// Trace for sensor not already removed from dbus
log<level::INFO>("Remove sensor from dbus for read fail",
entry("FILE=%s", file.c_str()),
entry("RC=%d", e.code().value()));
// Mark this sensor to be removed from dbus
_rmSensors[sensorSetKey] = attrs;
}
continue;
}
#if UPDATE_FUNCTIONAL_ON_FAIL
// Do not exit with failure if UPDATE_FUNCTIONAL_ON_FAIL is set
continue;
#endif
using namespace sdbusplus::xyz::openbmc_project::Sensor::Device::
Error;
report<ReadFailure>(
xyz::openbmc_project::Sensor::Device::ReadFailure::
CALLOUT_ERRNO(e.code().value()),
xyz::openbmc_project::Sensor::Device::ReadFailure::
CALLOUT_DEVICE_PATH(_devPath.c_str()));
log<level::INFO>(std::format("Failing sysfs file: {} errno: {}",
file, e.code().value())
.c_str());
exit(EXIT_FAILURE);
}
}
removeSensors();
addDroppedSensors();
}
void MainLoop::removeSensors()
{
// Remove any sensors marked for removal
for (const auto& i : _rmSensors)
{
// Remove sensor object from dbus using emit_object_removed()
auto& objInfo = std::get<ObjectInfo>(_state[i.first]);
auto& objPath = std::get<std::string>(objInfo);
_bus.emit_object_removed(objPath.c_str());
// Erase sensor object info
_state.erase(i.first);
}
}
void MainLoop::addDroppedSensors()
{
// Attempt to add any sensors that were removed
auto it = _rmSensors.begin();
while (it != _rmSensors.end())
{
if (_state.find(it->first) == _state.end())
{
SensorSet::container_t::value_type ssValueType =
std::make_pair(it->first, it->second);
auto object = getObject(ssValueType);
if (object)
{
// Construct the SensorSet value
// std::tuple<SensorSet::mapped_type,
// std::string(Sensor Label),
// ObjectInfo>
auto value = std::make_tuple(std::move(ssValueType.second),
std::move((*object).first),
std::move((*object).second));
_state[std::move(ssValueType.first)] = std::move(value);
std::string input = hwmon::entry::input;
// If type is power and AVERAGE_power* is true in env, use
// average instead of input
if ((it->first.first == hwmon::type::power) &&
(phosphor::utility::isAverageEnvSet(it->first)))
{
input = hwmon::entry::average;
}
// Sensor object added, erase entry from removal list
auto file =
sysfs::make_sysfs_path(_ioAccess->path(), it->first.first,
it->first.second, input);
log<level::INFO>("Added sensor to dbus after successful read",
entry("FILE=%s", file.c_str()));
it = _rmSensors.erase(it);
}
else
{
++it;
}
}
else
{
// Sanity check to remove sensors that were re-added
it = _rmSensors.erase(it);
}
}
}
// vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4