blob: 9944e094ca312739ac44ac480abe13404b66a182 [file] [log] [blame]
/**
* Copyright © 2016 IBM Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <functional>
#include <iostream>
#include <memory>
#include <cstdlib>
#include <cstring>
#include <string>
#include <unordered_set>
#include <phosphor-logging/elog-errors.hpp>
#include "config.h"
#include "env.hpp"
#include "fan_pwm.hpp"
#include "fan_speed.hpp"
#include "hwmon.hpp"
#include "hwmonio.hpp"
#include "sensorset.hpp"
#include "sysfs.hpp"
#include "mainloop.hpp"
#include "targets.hpp"
#include "thresholds.hpp"
#include "sensor.hpp"
#include <xyz/openbmc_project/Sensor/Device/error.hpp>
using namespace phosphor::logging;
// Initialization for Warning Objects
decltype(Thresholds<WarningObject>::setLo) Thresholds<WarningObject>::setLo =
&WarningObject::warningLow;
decltype(Thresholds<WarningObject>::setHi) Thresholds<WarningObject>::setHi =
&WarningObject::warningHigh;
decltype(Thresholds<WarningObject>::getLo) Thresholds<WarningObject>::getLo =
&WarningObject::warningLow;
decltype(Thresholds<WarningObject>::getHi) Thresholds<WarningObject>::getHi =
&WarningObject::warningHigh;
decltype(Thresholds<WarningObject>::alarmLo) Thresholds<WarningObject>::alarmLo =
&WarningObject::warningAlarmLow;
decltype(Thresholds<WarningObject>::alarmHi) Thresholds<WarningObject>::alarmHi =
&WarningObject::warningAlarmHigh;
// Initialization for Critical Objects
decltype(Thresholds<CriticalObject>::setLo) Thresholds<CriticalObject>::setLo =
&CriticalObject::criticalLow;
decltype(Thresholds<CriticalObject>::setHi) Thresholds<CriticalObject>::setHi =
&CriticalObject::criticalHigh;
decltype(Thresholds<CriticalObject>::getLo) Thresholds<CriticalObject>::getLo =
&CriticalObject::criticalLow;
decltype(Thresholds<CriticalObject>::getHi) Thresholds<CriticalObject>::getHi =
&CriticalObject::criticalHigh;
decltype(Thresholds<CriticalObject>::alarmLo) Thresholds<CriticalObject>::alarmLo =
&CriticalObject::criticalAlarmLow;
decltype(Thresholds<CriticalObject>::alarmHi) Thresholds<CriticalObject>::alarmHi =
&CriticalObject::criticalAlarmHigh;
// The gain and offset to adjust a value
struct valueAdjust
{
double gain = 1.0;
int offset = 0;
std::unordered_set<int> rmRCs;
};
// Store the valueAdjust for sensors
std::map<SensorSet::key_type, valueAdjust> sensorAdjusts;
void addRemoveRCs(const SensorSet::key_type& sensor,
const std::string& rcList)
{
if (rcList.empty())
{
return;
}
// Convert to a char* for strtok
std::vector<char> rmRCs(rcList.c_str(),
rcList.c_str() + rcList.size() + 1);
auto rmRC = std::strtok(&rmRCs[0], ", ");
while (rmRC != nullptr)
{
try
{
sensorAdjusts[sensor].rmRCs.insert(std::stoi(rmRC));
}
catch (const std::logic_error& le)
{
// Unable to convert to int, continue to next token
std::string name = sensor.first + "_" + sensor.second;
log<level::INFO>("Unable to convert sensor removal return code",
entry("SENSOR=%s", name.c_str()),
entry("RC=%s", rmRC),
entry("EXCEPTION=%s", le.what()));
}
rmRC = std::strtok(nullptr, ", ");
}
}
int64_t adjustValue(const SensorSet::key_type& sensor, int64_t value)
{
// Because read doesn't have an out pointer to store errors.
// let's assume negative values are errors if they have this
// set.
#ifdef NEGATIVE_ERRNO_ON_FAIL
if (value < 0)
{
return value;
}
#endif
const auto& it = sensorAdjusts.find(sensor);
if (it != sensorAdjusts.end())
{
// Adjust based on gain and offset
value = static_cast<decltype(value)>(
static_cast<double>(value) * it->second.gain
+ it->second.offset);
}
return value;
}
auto addValue(const SensorSet::key_type& sensor,
const RetryIO& retryIO,
hwmonio::HwmonIO& ioAccess,
ObjectInfo& info,
bool isOCC = false)
{
static constexpr bool deferSignals = true;
// Get the initial value for the value interface.
auto& bus = *std::get<sdbusplus::bus::bus*>(info);
auto& obj = std::get<Object>(info);
auto& objPath = std::get<std::string>(info);
auto senRmRCs = env::getEnv("REMOVERCS", sensor);
// Add sensor removal return codes defined per sensor
addRemoveRCs(sensor, senRmRCs);
auto gain = env::getEnv("GAIN", sensor);
if (!gain.empty())
{
sensorAdjusts[sensor].gain = std::stod(gain);
}
auto offset = env::getEnv("OFFSET", sensor);
if (!offset.empty())
{
sensorAdjusts[sensor].offset = std::stoi(offset);
}
int64_t val = 0;
std::shared_ptr<StatusObject> statusIface = nullptr;
auto it = obj.find(InterfaceType::STATUS);
if (it != obj.end())
{
statusIface = std::experimental::any_cast<
std::shared_ptr<StatusObject>>(it->second);
}
// If there's no fault file or the sensor has a fault file and
// its status is functional, read the input value.
if (!statusIface || (statusIface && statusIface->functional()))
{
// Retry for up to a second if device is busy
// or has a transient error.
val = ioAccess.read(
sensor.first,
sensor.second,
hwmon::entry::cinput,
std::get<size_t>(retryIO),
std::get<std::chrono::milliseconds>(retryIO),
isOCC);
val = adjustValue(sensor, val);
}
auto iface = std::make_shared<ValueObject>(bus, objPath.c_str(), deferSignals);
iface->value(val);
hwmon::Attributes attrs;
if (hwmon::getAttributes(sensor.first, attrs))
{
iface->unit(hwmon::getUnit(attrs));
iface->scale(hwmon::getScale(attrs));
}
auto maxValue = env::getEnv("MAXVALUE", sensor);
if(!maxValue.empty())
{
iface->maxValue(std::stoll(maxValue));
}
auto minValue = env::getEnv("MINVALUE", sensor);
if(!minValue.empty())
{
iface->minValue(std::stoll(minValue));
}
obj[InterfaceType::VALUE] = iface;
return iface;
}
std::string MainLoop::getID(SensorSet::container_t::const_reference sensor)
{
std::string id;
/*
* Check if the value of the MODE_<item><X> env variable for the sensor
* is "label", then read the sensor number from the <item><X>_label
* file. The name of the DBUS object would be the value of the env
* variable LABEL_<item><sensorNum>. If the MODE_<item><X> env variable
* doesn't exist, then the name of DBUS object is the value of the env
* variable LABEL_<item><X>.
*/
auto mode = env::getEnv("MODE", sensor.first);
if (!mode.compare(hwmon::entry::label))
{
id = env::getIndirectID(
_hwmonRoot + '/' + _instance + '/', sensor.first);
if (id.empty())
{
return id;
}
}
// Use the ID we looked up above if there was one,
// otherwise use the standard one.
id = (id.empty()) ? sensor.first.second : id;
return id;
}
SensorIdentifiers MainLoop::getIdentifiers(
SensorSet::container_t::const_reference sensor)
{
std::string id = getID(sensor);
std::string label;
if (!id.empty())
{
// Ignore inputs without a label.
label = env::getEnv("LABEL", sensor.first.first, id);
}
return std::make_tuple(std::move(id),
std::move(label));
}
/**
* Reads the environment parameters of a sensor and creates an object with
* atleast the `Value` interface, otherwise returns without creating the object.
* If the `Value` interface is successfully created, by reading the sensor's
* corresponding sysfs file's value, the additional interfaces for the sensor
* are created and the InterfacesAdded signal is emitted. The object's state
* data is then returned for sensor state monitoring within the main loop.
*/
optional_ns::optional<ObjectStateData> MainLoop::getObject(
SensorSet::container_t::const_reference sensor)
{
auto properties = getIdentifiers(sensor);
if (std::get<sensorID>(properties).empty() ||
std::get<sensorLabel>(properties).empty())
{
return {};
}
hwmon::Attributes attrs;
if (!hwmon::getAttributes(sensor.first.first, attrs))
{
return {};
}
// Get list of return codes for removing sensors on device
auto devRmRCs = env::getEnv("REMOVERCS");
// Add sensor removal return codes defined at the device level
addRemoveRCs(sensor.first, devRmRCs);
std::string objectPath{_root};
objectPath.append(1, '/');
objectPath.append(hwmon::getNamespace(attrs));
objectPath.append(1, '/');
objectPath.append(std::get<sensorLabel>(properties));
ObjectInfo info(&_bus, std::move(objectPath), Object());
RetryIO retryIO(hwmonio::retries, hwmonio::delay);
if (rmSensors.find(sensor.first) != rmSensors.end())
{
// When adding a sensor that was purposely removed,
// don't retry on errors when reading its value
std::get<size_t>(retryIO) = 0;
}
auto valueInterface = static_cast<
std::shared_ptr<ValueObject>>(nullptr);
try
{
// Add status interface based on _fault file being present
sensor::addStatus(sensor.first, ioAccess, _devPath, info);
valueInterface = addValue(sensor.first, retryIO, ioAccess, info,
_isOCC);
}
catch (const std::system_error& e)
{
auto file = sysfs::make_sysfs_path(
ioAccess.path(),
sensor.first.first,
sensor.first.second,
hwmon::entry::cinput);
#ifndef REMOVE_ON_FAIL
// Check sensorAdjusts for sensor removal RCs
const auto& it = sensorAdjusts.find(sensor.first);
if (it != sensorAdjusts.end())
{
auto rmRCit = it->second.rmRCs.find(e.code().value());
if (rmRCit != std::end(it->second.rmRCs))
{
// Return code found in sensor return code removal list
if (rmSensors.find(sensor.first) == rmSensors.end())
{
// Trace for sensor not already removed from dbus
log<level::INFO>("Sensor not added to dbus for read fail",
entry("FILE=%s", file.c_str()),
entry("RC=%d", e.code().value()));
rmSensors[std::move(sensor.first)] =
std::move(sensor.second);
}
return {};
}
}
#endif
using namespace sdbusplus::xyz::openbmc_project::
Sensor::Device::Error;
report<ReadFailure>(
xyz::openbmc_project::Sensor::Device::
ReadFailure::CALLOUT_ERRNO(e.code().value()),
xyz::openbmc_project::Sensor::Device::
ReadFailure::CALLOUT_DEVICE_PATH(_devPath.c_str()));
log<level::INFO>("Logging failing sysfs file",
entry("FILE=%s", file.c_str()));
#ifdef REMOVE_ON_FAIL
return {}; /* skip adding this sensor for now. */
#else
exit(EXIT_FAILURE);
#endif
}
auto sensorValue = valueInterface->value();
addThreshold<WarningObject>(sensor.first.first,
std::get<sensorID>(properties),
sensorValue,
info);
addThreshold<CriticalObject>(sensor.first.first,
std::get<sensorID>(properties),
sensorValue,
info);
auto target = addTarget<hwmon::FanSpeed>(
sensor.first, ioAccess, _devPath, info);
if (target)
{
target->enable();
}
addTarget<hwmon::FanPwm>(sensor.first, ioAccess, _devPath, info);
// All the interfaces have been created. Go ahead
// and emit InterfacesAdded.
valueInterface->emit_object_added();
return std::make_pair(std::move(std::get<sensorLabel>(properties)),
std::move(info));
}
MainLoop::MainLoop(
sdbusplus::bus::bus&& bus,
const std::string& path,
const std::string& devPath,
const char* prefix,
const char* root)
: _bus(std::move(bus)),
_manager(_bus, root),
_hwmonRoot(),
_instance(),
_devPath(devPath),
_prefix(prefix),
_root(root),
state(),
ioAccess(path)
{
if (path.find("occ") != std::string::npos)
{
_isOCC = true;
}
// Strip off any trailing slashes.
std::string p = path;
while (!p.empty() && p.back() == '/')
{
p.pop_back();
}
// Given the furthest right /, set instance to
// the basename, and hwmonRoot to the leading path.
auto n = p.rfind('/');
if (n != std::string::npos)
{
_instance.assign(p.substr(n + 1));
_hwmonRoot.assign(p.substr(0, n));
}
assert(!_instance.empty());
assert(!_hwmonRoot.empty());
}
void MainLoop::shutdown() noexcept
{
timer->state(phosphor::hwmon::timer::OFF);
sd_event_exit(loop, 0);
loop = nullptr;
}
void MainLoop::run()
{
init();
sd_event_default(&loop);
std::function<void()> callback(std::bind(
&MainLoop::read, this));
try
{
timer = std::make_unique<phosphor::hwmon::Timer>(
loop, callback,
std::chrono::microseconds(_interval),
phosphor::hwmon::timer::ON);
// TODO: Issue#6 - Optionally look at polling interval sysfs entry.
// TODO: Issue#7 - Should probably periodically check the SensorSet
// for new entries.
_bus.attach_event(loop, SD_EVENT_PRIORITY_IMPORTANT);
sd_event_loop(loop);
}
catch (const std::system_error& e)
{
log<level::ERR>("Error in sysfs polling loop",
entry("ERROR=%s", e.what()));
throw;
}
}
void MainLoop::init()
{
// Check sysfs for available sensors.
auto sensors = std::make_unique<SensorSet>(_hwmonRoot + '/' + _instance);
for (auto& i : *sensors)
{
auto object = getObject(i);
if (object)
{
// Construct the SensorSet value
// std::tuple<SensorSet::mapped_type,
// std::string(Sensor Label),
// ObjectInfo>
auto value = std::make_tuple(std::move(i.second),
std::move((*object).first),
std::move((*object).second));
state[std::move(i.first)] = std::move(value);
}
}
/* If there are no sensors specified by labels, exit. */
if (0 == state.size())
{
exit(0);
}
{
std::string busname{_prefix};
busname.append(1, '-');
busname.append(
std::to_string(std::hash<decltype(_devPath)>{}(_devPath)));
busname.append(".Hwmon1");
_bus.request_name(busname.c_str());
}
{
auto interval = env::getEnv("INTERVAL");
if (!interval.empty())
{
_interval = std::strtoull(interval.c_str(), NULL, 10);
}
}
}
void MainLoop::read()
{
// TODO: Issue#3 - Need to make calls to the dbus sensor cache here to
// ensure the objects all exist?
// Iterate through all the sensors.
for (auto& i : state)
{
auto& attrs = std::get<0>(i.second);
if (attrs.find(hwmon::entry::input) != attrs.end())
{
// Read value from sensor.
int64_t value;
std::string input = hwmon::entry::cinput;
if (i.first.first == "pwm") {
input = "";
}
try
{
auto& objInfo = std::get<ObjectInfo>(i.second);
auto& obj = std::get<Object>(objInfo);
auto it = obj.find(InterfaceType::STATUS);
if (it != obj.end())
{
auto statusIface = std::experimental::any_cast<
std::shared_ptr<StatusObject>>(it->second);
if (!statusIface->functional())
{
continue;
}
}
// Retry for up to a second if device is busy
// or has a transient error.
value = ioAccess.read(
i.first.first,
i.first.second,
input,
hwmonio::retries,
hwmonio::delay,
_isOCC);
value = adjustValue(i.first, value);
for (auto& iface : obj)
{
auto valueIface = std::shared_ptr<ValueObject>();
auto warnIface = std::shared_ptr<WarningObject>();
auto critIface = std::shared_ptr<CriticalObject>();
switch (iface.first)
{
case InterfaceType::VALUE:
valueIface = std::experimental::any_cast<std::shared_ptr<ValueObject>>
(iface.second);
valueIface->value(value);
break;
case InterfaceType::WARN:
checkThresholds<WarningObject>(iface.second, value);
break;
case InterfaceType::CRIT:
checkThresholds<CriticalObject>(iface.second, value);
break;
default:
break;
}
}
}
catch (const std::system_error& e)
{
auto file = sysfs::make_sysfs_path(
ioAccess.path(),
i.first.first,
i.first.second,
hwmon::entry::cinput);
#ifndef REMOVE_ON_FAIL
// Check sensorAdjusts for sensor removal RCs
const auto& it = sensorAdjusts.find(i.first);
if (it != sensorAdjusts.end())
{
auto rmRCit = it->second.rmRCs.find(e.code().value());
if (rmRCit != std::end(it->second.rmRCs))
{
// Return code found in sensor return code removal list
if (rmSensors.find(i.first) == rmSensors.end())
{
// Trace for sensor not already removed from dbus
log<level::INFO>(
"Remove sensor from dbus for read fail",
entry("FILE=%s", file.c_str()),
entry("RC=%d", e.code().value()));
// Mark this sensor to be removed from dbus
rmSensors[i.first] = std::get<0>(i.second);
}
continue;
}
}
#endif
using namespace sdbusplus::xyz::openbmc_project::
Sensor::Device::Error;
report<ReadFailure>(
xyz::openbmc_project::Sensor::Device::
ReadFailure::CALLOUT_ERRNO(e.code().value()),
xyz::openbmc_project::Sensor::Device::
ReadFailure::CALLOUT_DEVICE_PATH(
_devPath.c_str()));
log<level::INFO>("Logging failing sysfs file",
entry("FILE=%s", file.c_str()));
#ifdef REMOVE_ON_FAIL
rmSensors[i.first] = std::get<0>(i.second);
#else
exit(EXIT_FAILURE);
#endif
}
}
}
// Remove any sensors marked for removal
for (auto& i : rmSensors)
{
state.erase(i.first);
}
#ifndef REMOVE_ON_FAIL
// Attempt to add any sensors that were removed
auto it = rmSensors.begin();
while (it != rmSensors.end())
{
if (state.find(it->first) == state.end())
{
SensorSet::container_t::value_type ssValueType =
std::make_pair(it->first, it->second);
auto object = getObject(ssValueType);
if (object)
{
// Construct the SensorSet value
// std::tuple<SensorSet::mapped_type,
// std::string(Sensor Label),
// ObjectInfo>
auto value = std::make_tuple(std::move(ssValueType.second),
std::move((*object).first),
std::move((*object).second));
state[std::move(ssValueType.first)] = std::move(value);
// Sensor object added, erase entry from removal list
auto file = sysfs::make_sysfs_path(
ioAccess.path(),
it->first.first,
it->first.second,
hwmon::entry::cinput);
log<level::INFO>(
"Added sensor to dbus after successful read",
entry("FILE=%s", file.c_str()));
it = rmSensors.erase(it);
}
else
{
++it;
}
}
else
{
// Sanity check to remove sensors that were re-added
it = rmSensors.erase(it);
}
}
#endif
}
// vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4