blob: 1cd5db6a788c298dfbdc82c4dd77faef924cd39e [file] [log] [blame]
/**
* Copyright © 2016 IBM Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <functional>
#include <iostream>
#include <memory>
#include <cstdlib>
#include <string>
#include <phosphor-logging/elog-errors.hpp>
#include "config.h"
#include "sensorset.hpp"
#include "hwmon.hpp"
#include "sysfs.hpp"
#include "mainloop.hpp"
#include "env.hpp"
#include "thresholds.hpp"
#include "targets.hpp"
#include "fan_speed.hpp"
#include "fan_pwm.hpp"
#include <xyz/openbmc_project/Sensor/Device/error.hpp>
using namespace phosphor::logging;
// Initialization for Warning Objects
decltype(Thresholds<WarningObject>::setLo) Thresholds<WarningObject>::setLo =
&WarningObject::warningLow;
decltype(Thresholds<WarningObject>::setHi) Thresholds<WarningObject>::setHi =
&WarningObject::warningHigh;
decltype(Thresholds<WarningObject>::getLo) Thresholds<WarningObject>::getLo =
&WarningObject::warningLow;
decltype(Thresholds<WarningObject>::getHi) Thresholds<WarningObject>::getHi =
&WarningObject::warningHigh;
decltype(Thresholds<WarningObject>::alarmLo) Thresholds<WarningObject>::alarmLo =
&WarningObject::warningAlarmLow;
decltype(Thresholds<WarningObject>::alarmHi) Thresholds<WarningObject>::alarmHi =
&WarningObject::warningAlarmHigh;
// Initialization for Critical Objects
decltype(Thresholds<CriticalObject>::setLo) Thresholds<CriticalObject>::setLo =
&CriticalObject::criticalLow;
decltype(Thresholds<CriticalObject>::setHi) Thresholds<CriticalObject>::setHi =
&CriticalObject::criticalHigh;
decltype(Thresholds<CriticalObject>::getLo) Thresholds<CriticalObject>::getLo =
&CriticalObject::criticalLow;
decltype(Thresholds<CriticalObject>::getHi) Thresholds<CriticalObject>::getHi =
&CriticalObject::criticalHigh;
decltype(Thresholds<CriticalObject>::alarmLo) Thresholds<CriticalObject>::alarmLo =
&CriticalObject::criticalAlarmLow;
decltype(Thresholds<CriticalObject>::alarmHi) Thresholds<CriticalObject>::alarmHi =
&CriticalObject::criticalAlarmHigh;
// The gain and offset to adjust a value
struct valueAdjust
{
double gain = 1.0;
int offset = 0;
};
// Store the valueAdjust for sensors
std::map<SensorSet::key_type, valueAdjust> sensorAdjusts;
static constexpr auto typeAttrMap =
{
// 1 - hwmon class
// 2 - unit
// 3 - sysfs scaling factor
std::make_tuple(
hwmon::type::ctemp,
ValueInterface::Unit::DegreesC,
-3,
"temperature"),
std::make_tuple(
hwmon::type::cfan,
ValueInterface::Unit::RPMS,
0,
"fan_tach"),
std::make_tuple(
hwmon::type::cvolt,
ValueInterface::Unit::Volts,
-3,
"voltage"),
std::make_tuple(
hwmon::type::ccurr,
ValueInterface::Unit::Amperes,
-3,
"current"),
std::make_tuple(
hwmon::type::cenergy,
ValueInterface::Unit::Joules,
-6,
"energy"),
std::make_tuple(
hwmon::type::cpower,
ValueInterface::Unit::Watts,
-6,
"power"),
};
auto getHwmonType(decltype(typeAttrMap)::const_reference attrs)
{
return std::get<0>(attrs);
}
auto getUnit(decltype(typeAttrMap)::const_reference attrs)
{
return std::get<1>(attrs);
}
auto getScale(decltype(typeAttrMap)::const_reference attrs)
{
return std::get<2>(attrs);
}
auto getNamespace(decltype(typeAttrMap)::const_reference attrs)
{
return std::get<3>(attrs);
}
using AttributeIterator = decltype(*typeAttrMap.begin());
using Attributes
= std::remove_cv<std::remove_reference<AttributeIterator>::type>::type;
auto getAttributes(const std::string& type, Attributes& attributes)
{
// *INDENT-OFF*
auto a = std::find_if(
typeAttrMap.begin(),
typeAttrMap.end(),
[&](const auto & e)
{
return type == getHwmonType(e);
});
// *INDENT-ON*
if (a == typeAttrMap.end())
{
return false;
}
attributes = *a;
return true;
}
int64_t adjustValue(const SensorSet::key_type& sensor, int64_t value)
{
const auto& it = sensorAdjusts.find(sensor);
if (it != sensorAdjusts.end())
{
// Adjust based on gain and offset
value = static_cast<decltype(value)>(
static_cast<double>(value) * it->second.gain
+ it->second.offset);
}
return value;
}
auto addValue(const SensorSet::key_type& sensor,
const std::string& devPath,
sysfs::hwmonio::HwmonIO& ioAccess,
ObjectInfo& info)
{
static constexpr bool deferSignals = true;
// Get the initial value for the value interface.
auto& bus = *std::get<sdbusplus::bus::bus*>(info);
auto& obj = std::get<Object>(info);
auto& objPath = std::get<std::string>(info);
int64_t val = 0;
try
{
// Retry for up to a second if device is busy
// or has a transient error.
val = ioAccess.read(
sensor.first,
sensor.second,
hwmon::entry::cinput,
sysfs::hwmonio::retries,
sysfs::hwmonio::delay);
}
catch (const std::system_error& e)
{
using namespace sdbusplus::xyz::openbmc_project::Sensor::Device::Error;
report<ReadFailure>(
xyz::openbmc_project::Sensor::Device::
ReadFailure::CALLOUT_ERRNO(e.code().value()),
xyz::openbmc_project::Sensor::Device::
ReadFailure::CALLOUT_DEVICE_PATH(devPath.c_str()));
auto file = sysfs::make_sysfs_path(
ioAccess.path(),
sensor.first,
sensor.second,
hwmon::entry::cinput);
log<level::INFO>("Logging failing sysfs file",
entry("FILE=%s", file.c_str()));
return static_cast<std::shared_ptr<ValueObject>>(nullptr);
}
auto gain = getEnv("GAIN", sensor);
if (!gain.empty())
{
sensorAdjusts[sensor].gain = std::stod(gain);
}
auto offset = getEnv("OFFSET", sensor);
if (!offset.empty())
{
sensorAdjusts[sensor].offset = std::stoi(offset);
}
val = adjustValue(sensor, val);
auto iface = std::make_shared<ValueObject>(bus, objPath.c_str(), deferSignals);
iface->value(val);
Attributes attrs;
if (getAttributes(sensor.first, attrs))
{
iface->unit(getUnit(attrs));
iface->scale(getScale(attrs));
}
auto maxValue = getEnv("MAXVALUE", sensor);
if(!maxValue.empty())
{
iface->maxValue(std::stoll(maxValue));
}
auto minValue = getEnv("MINVALUE", sensor);
if(!minValue.empty())
{
iface->minValue(std::stoll(minValue));
}
obj[InterfaceType::VALUE] = iface;
return iface;
}
MainLoop::MainLoop(
sdbusplus::bus::bus&& bus,
const std::string& path,
const std::string& devPath,
const char* prefix,
const char* root)
: _bus(std::move(bus)),
_manager(_bus, root),
_shutdown(false),
_hwmonRoot(),
_instance(),
_devPath(devPath),
_prefix(prefix),
_root(root),
state(),
ioAccess(path)
{
std::string p = path;
while (!p.empty() && p.back() == '/')
{
p.pop_back();
}
auto n = p.rfind('/');
if (n != std::string::npos)
{
_instance.assign(p.substr(n + 1));
_hwmonRoot.assign(p.substr(0, n));
}
assert(!_instance.empty());
assert(!_hwmonRoot.empty());
}
void MainLoop::shutdown() noexcept
{
_shutdown = true;
}
void MainLoop::run()
{
// Check sysfs for available sensors.
auto sensors = std::make_unique<SensorSet>(_hwmonRoot + '/' + _instance);
for (auto& i : *sensors)
{
std::string label;
std::string id;
/*
* Check if the value of the MODE_<item><X> env variable for the sensor
* is "label", then read the sensor number from the <item><X>_label
* file. The name of the DBUS object would be the value of the env
* variable LABEL_<item><sensorNum>. If the MODE_<item><X> env variable
* doesn't exist, then the name of DBUS object is the value of the env
* variable LABEL_<item><X>.
*/
auto mode = getEnv("MODE", i.first);
if (!mode.compare(hwmon::entry::label))
{
id = getIndirectID(
_hwmonRoot + '/' + _instance + '/', i.first);
if (id.empty())
{
continue;
}
}
//In this loop, use the ID we looked up above if
//there was one, otherwise use the standard one.
id = (id.empty()) ? i.first.second : id;
// Ignore inputs without a label.
label = getEnv("LABEL", i.first.first, id);
if (label.empty())
{
continue;
}
Attributes attrs;
if (!getAttributes(i.first.first, attrs))
{
continue;
}
std::string objectPath{_root};
objectPath.append(1, '/');
objectPath.append(getNamespace(attrs));
objectPath.append(1, '/');
objectPath.append(label);
ObjectInfo info(&_bus, std::move(objectPath), Object());
auto valueInterface = addValue(i.first, _devPath, ioAccess, info);
if (!valueInterface)
{
#ifdef REMOVE_ON_FAIL
continue; /* skip adding this sensor for now. */
#else
exit(EXIT_FAILURE);
#endif
}
auto sensorValue = valueInterface->value();
addThreshold<WarningObject>(i.first.first, id, sensorValue, info);
addThreshold<CriticalObject>(i.first.first, id, sensorValue, info);
auto target = addTarget<hwmon::FanSpeed>(
i.first, ioAccess, _devPath, info);
if (target)
{
target->enable();
}
addTarget<hwmon::FanPwm>(i.first, ioAccess, _devPath, info);
// All the interfaces have been created. Go ahead
// and emit InterfacesAdded.
valueInterface->emit_object_added();
auto value = std::make_tuple(
std::move(i.second),
std::move(label),
std::move(info));
state[std::move(i.first)] = std::move(value);
}
/* If there are no sensors specified by labels, exit. */
if (0 == state.size())
{
return;
}
{
std::string busname{_prefix};
busname.append(1, '-');
busname.append(
std::to_string(std::hash<decltype(_devPath)>{}(_devPath)));
busname.append(".Hwmon1");
_bus.request_name(busname.c_str());
}
{
auto interval = getenv("INTERVAL");
if (interval)
{
_interval = strtoull(interval, NULL, 10);
}
}
// TODO: Issue#3 - Need to make calls to the dbus sensor cache here to
// ensure the objects all exist?
// Polling loop.
while (!_shutdown)
{
#ifdef REMOVE_ON_FAIL
std::vector<SensorSet::key_type> destroy;
#endif
// Iterate through all the sensors.
for (auto& i : state)
{
auto& attrs = std::get<0>(i.second);
if (attrs.find(hwmon::entry::input) != attrs.end())
{
// Read value from sensor.
int64_t value;
std::string input = hwmon::entry::cinput;
if (i.first.first == "pwm") {
input = "";
}
try
{
// Retry for up to a second if device is busy
// or has a transient error.
value = ioAccess.read(
i.first.first,
i.first.second,
input,
sysfs::hwmonio::retries,
sysfs::hwmonio::delay);
value = adjustValue(i.first, value);
auto& objInfo = std::get<ObjectInfo>(i.second);
auto& obj = std::get<Object>(objInfo);
for (auto& iface : obj)
{
auto valueIface = std::shared_ptr<ValueObject>();
auto warnIface = std::shared_ptr<WarningObject>();
auto critIface = std::shared_ptr<CriticalObject>();
switch (iface.first)
{
case InterfaceType::VALUE:
valueIface = std::experimental::any_cast<std::shared_ptr<ValueObject>>
(iface.second);
valueIface->value(value);
break;
case InterfaceType::WARN:
checkThresholds<WarningObject>(iface.second, value);
break;
case InterfaceType::CRIT:
checkThresholds<CriticalObject>(iface.second, value);
break;
default:
break;
}
}
}
catch (const std::system_error& e)
{
using namespace sdbusplus::xyz::openbmc_project::
Sensor::Device::Error;
report<ReadFailure>(
xyz::openbmc_project::Sensor::Device::
ReadFailure::CALLOUT_ERRNO(e.code().value()),
xyz::openbmc_project::Sensor::Device::
ReadFailure::CALLOUT_DEVICE_PATH(
_devPath.c_str()));
auto file = sysfs::make_sysfs_path(
ioAccess.path(),
i.first.first,
i.first.second,
hwmon::entry::cinput);
log<level::INFO>("Logging failing sysfs file",
entry("FILE=%s", file.c_str()));
#ifdef REMOVE_ON_FAIL
destroy.push_back(i.first);
#else
exit(EXIT_FAILURE);
#endif
}
}
}
#ifdef REMOVE_ON_FAIL
for (auto& i : destroy)
{
state.erase(i);
}
#endif
// Respond to DBus
_bus.process_discard();
// Sleep until next interval.
// TODO: Issue#6 - Optionally look at polling interval sysfs entry.
_bus.wait(_interval);
// TODO: Issue#7 - Should probably periodically check the SensorSet
// for new entries.
}
}
// vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4