| /* |
| * Copyright 2018 Google Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "firmware_handler.hpp" |
| |
| #include "image_handler.hpp" |
| #include "util.hpp" |
| |
| #include <algorithm> |
| #include <cstdint> |
| #include <cstring> |
| #include <fstream> |
| #include <memory> |
| #include <phosphor-logging/log.hpp> |
| #include <string> |
| #include <vector> |
| |
| using namespace phosphor::logging; |
| |
| namespace blobs |
| { |
| |
| std::unique_ptr<GenericBlobInterface> |
| FirmwareBlobHandler::CreateFirmwareBlobHandler( |
| const std::vector<HandlerPack>& firmwares, |
| const std::vector<DataHandlerPack>& transports, |
| std::unique_ptr<VerificationInterface> verification) |
| { |
| /* There must be at least one. */ |
| if (!firmwares.size()) |
| { |
| log<level::ERR>("Must provide at least one firmware handler."); |
| return nullptr; |
| } |
| if (!transports.size()) |
| { |
| return nullptr; |
| } |
| |
| std::vector<std::string> blobs; |
| for (const auto& item : firmwares) |
| { |
| blobs.push_back(item.blobName); |
| } |
| blobs.push_back(verifyBlobId); /* Add blob_id to always exist. */ |
| |
| if (0 == std::count(blobs.begin(), blobs.end(), hashBlobId)) |
| { |
| return nullptr; |
| } |
| |
| std::uint16_t bitmask = 0; |
| for (const auto& item : transports) |
| { |
| /* TODO: can use std::accumulate() unless I'm mistaken. :D */ |
| bitmask |= item.bitmask; |
| } |
| |
| return std::make_unique<FirmwareBlobHandler>( |
| firmwares, blobs, transports, bitmask, std::move(verification)); |
| } |
| |
| /* Check if the path is in our supported list (or active list). */ |
| bool FirmwareBlobHandler::canHandleBlob(const std::string& path) |
| { |
| return (std::count(blobIDs.begin(), blobIDs.end(), path) > 0); |
| } |
| |
| /* |
| * Grab the list of supported firmware. |
| * |
| * If there's an open firmware session, it'll already be present in the |
| * list as "/flash/active/image", and if the hash has started, |
| * "/flash/active/hash" regardless of mechanism. This is done in the open |
| * comamnd, no extra work is required here. |
| */ |
| std::vector<std::string> FirmwareBlobHandler::getBlobIds() |
| { |
| return blobIDs; |
| } |
| |
| /* |
| * Per the design, this mean abort, and this will trigger whatever |
| * appropriate actions are required to abort the process. |
| * |
| * You cannot delete a blob that has an open handle in the system, therefore |
| * this is never called if there's an open session. Guaranteed by the blob |
| * manager. |
| */ |
| bool FirmwareBlobHandler::deleteBlob(const std::string& path) |
| { |
| const std::string* toDelete; |
| |
| /* You cannot delete the verify blob -- trying to delete it, currently has |
| * no impact. |
| * TODO: Should trying to delete this cause an abort? |
| */ |
| if (path == verifyBlobId) |
| { |
| return false; |
| } |
| |
| if (path == hashBlobId || path == activeHashBlobId) |
| { |
| /* They're deleting the hash. */ |
| toDelete = &activeHashBlobId; |
| } |
| else |
| { |
| /* They're deleting the image. */ |
| toDelete = &activeImageBlobId; |
| } |
| |
| auto it = std::find_if( |
| blobIDs.begin(), blobIDs.end(), |
| [toDelete](const auto& iter) { return (iter == *toDelete); }); |
| if (it == blobIDs.end()) |
| { |
| /* Somehow they've asked to delete something we didn't say we could |
| * handle. |
| */ |
| return false; |
| } |
| |
| blobIDs.erase(it); |
| |
| /* TODO: Handle aborting the process and fixing up the state. */ |
| |
| return true; |
| } |
| |
| /* |
| * Stat on the files will return information such as what supported |
| * transport mechanisms are available. |
| * |
| * Stat on an active file or hash will return information such as the size |
| * of the data cached, and any additional pertinent information. The |
| * blob_state on the active files will return the state of the update. |
| */ |
| bool FirmwareBlobHandler::stat(const std::string& path, struct BlobMeta* meta) |
| { |
| /* We know we support this path because canHandle is called ahead */ |
| if (path == verifyBlobId) |
| { |
| /* TODO: We need to return information for the verify state -- did they |
| * call commit() did things start? |
| */ |
| } |
| else if (path == activeImageBlobId) |
| { |
| /* TODO: We need to return information for the image that's staged. */ |
| } |
| else if (path == activeHashBlobId) |
| { |
| /* TODO: We need to return information for the hash that's staged. */ |
| } |
| else |
| { |
| /* They are requesting information about the generic blob_id. */ |
| meta->blobState = bitmask; |
| meta->size = 0; |
| |
| /* The generic blob_ids state is only the bits related to the transport |
| * mechanisms. |
| */ |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Return stat information on an open session. It therefore must be an active |
| * handle to either the active image or active hash. |
| * |
| * The stat() and sessionstat() commands will return the same information in |
| * many cases, therefore the logic will be combined. |
| * |
| * TODO: combine the logic for stat and sessionstat(). |
| */ |
| bool FirmwareBlobHandler::stat(uint16_t session, struct BlobMeta* meta) |
| { |
| auto item = lookup.find(session); |
| if (item == lookup.end()) |
| { |
| return false; |
| } |
| |
| /* The size here refers to the size of the file -- of something analagous. |
| */ |
| meta->size = (item->second->imageHandler) |
| ? item->second->imageHandler->getSize() |
| : 0; |
| |
| meta->metadata.clear(); |
| |
| /* TODO: Implement this for the verification blob, which is what we expect. |
| * Calling stat() on the verify blob without an active session should not |
| * provide insight. |
| */ |
| if (item->second->activePath == verifyBlobId) |
| { |
| auto value = verification->checkVerificationState(); |
| |
| meta->metadata.push_back(static_cast<std::uint8_t>(value)); |
| |
| /* Change the firmware handler's state and the blob's stat value |
| * depending. |
| */ |
| if (value == VerifyCheckResponses::success || |
| value == VerifyCheckResponses::failed) |
| { |
| state = UpdateState::verificationCompleted; |
| item->second->flags &= ~StateFlags::committing; |
| |
| if (value == VerifyCheckResponses::success) |
| { |
| item->second->flags |= StateFlags::committed; |
| } |
| else |
| { |
| item->second->flags |= StateFlags::commit_error; |
| } |
| } |
| } |
| |
| /* The blobState here relates to an active sesion, so we should return the |
| * flags used to open this session. |
| */ |
| meta->blobState = item->second->flags; |
| |
| /* The metadata blob returned comes from the data handler... it's used for |
| * instance, in P2A bridging to get required information about the mapping, |
| * and is the "opposite" of the lpc writemeta requirement. |
| */ |
| if (item->second->dataHandler) |
| { |
| auto bytes = item->second->dataHandler->readMeta(); |
| meta->metadata.insert(meta->metadata.begin(), bytes.begin(), |
| bytes.end()); |
| } |
| |
| return true; |
| } |
| |
| /* |
| * If you open /flash/image or /flash/tarball, or /flash/hash it will |
| * interpret the open flags and perform whatever actions are required for |
| * that update process. The session returned can be used immediately for |
| * sending data down, without requiring one to open the new active file. |
| * |
| * If you open the active flash image or active hash it will let you |
| * overwrite pieces, depending on the state. |
| * |
| * Once the verification process has started the active files cannot be |
| * opened. |
| * |
| * You can only have one open session at a time. Which means, you can only |
| * have one file open at a time. Trying to open the hash blob_id while you |
| * still have the flash image blob_id open will fail. Opening the flash |
| * blob_id when it is already open will fail. |
| */ |
| bool FirmwareBlobHandler::open(uint16_t session, uint16_t flags, |
| const std::string& path) |
| { |
| /* Check that they've opened for writing - read back not currently |
| * supported. |
| */ |
| if ((flags & OpenFlags::write) == 0) |
| { |
| return false; |
| } |
| |
| /* Is the verification process underway? */ |
| if (state == UpdateState::verificationStarted) |
| { |
| return false; |
| } |
| |
| /* Is there an open session already? We only allow one at a time. |
| * |
| * TODO: Temporarily using a simple boolean flag until there's a full |
| * session object to check. |
| * |
| * Further on this, if there's an active session to the hash we don't allow |
| * re-opening the image, and if we have the image open, we don't allow |
| * opening the hash. This design decision may be re-evaluated, and changed |
| * to only allow one session per object type (of the two types). But, |
| * consider if the hash is open, do we want to allow writing to the image? |
| * And why would we? But, really, the point of no-return is once the |
| * verification process has begun -- which is done via commit() on the hash |
| * blob_id, we no longer want to allow updating the contents. |
| */ |
| if (fileOpen) |
| { |
| return false; |
| } |
| |
| /* Handle opening the verifyBlobId --> we know the image and hash aren't |
| * open because of the fileOpen check. |
| * |
| * The file must be opened for writing, but no transport mechanism specified |
| * since it's irrelevant. |
| */ |
| if (path == verifyBlobId) |
| { |
| /* In this case, there's no image handler to use, or data handler, |
| * simply set up a session. |
| */ |
| verifyImage.flags = flags; |
| verifyImage.state = Session::State::open; |
| |
| lookup[session] = &verifyImage; |
| |
| fileOpen = true; |
| |
| return true; |
| } |
| |
| /* There are two abstractions at play, how you get the data and how you |
| * handle that data. such that, whether the data comes from the PCI bridge |
| * or LPC bridge is not connected to whether the data goes into a static |
| * layout flash update or a UBI tarball. |
| */ |
| |
| /* Check the flags for the transport mechanism: if none match we don't |
| * support what they request. |
| */ |
| if ((flags & bitmask) == 0) |
| { |
| return false; |
| } |
| |
| /* 2) there isn't, so what are they opening? */ |
| if (path == activeImageBlobId) |
| { |
| /* 2a) are they opening the active image? this can only happen if they |
| * already started one (due to canHandleBlob's behavior). |
| */ |
| return false; |
| } |
| else if (path == activeHashBlobId) |
| { |
| /* 2b) are they opening the active hash? this can only happen if they |
| * already started one (due to canHandleBlob's behavior). |
| */ |
| return false; |
| } |
| |
| /* How are they expecting to copy this data? */ |
| auto d = std::find_if( |
| transports.begin(), transports.end(), |
| [&flags](const auto& iter) { return (iter.bitmask & flags); }); |
| if (d == transports.end()) |
| { |
| return false; |
| } |
| |
| /* We found the transport handler they requested, no surprise since |
| * above we verify they selected at least one we wanted. |
| */ |
| |
| /* Elsewhere I do this check by checking "if ::ipmi" because that's the |
| * only non-external data pathway -- but this is just a more generic |
| * approach to that. |
| */ |
| if (d->handler) |
| { |
| /* If the data handler open call fails, open fails. */ |
| if (!d->handler->open()) |
| { |
| return false; |
| } |
| } |
| |
| /* Do we have a file handler for the type of file they're opening. |
| * Note: This should only fail if something is somehow crazy wrong. |
| * Since the canHandle() said yes, and that's tied into the list of explicit |
| * firmware handers (and file handlers, like this'll know where to write the |
| * tarball, etc). |
| */ |
| auto h = std::find_if( |
| handlers.begin(), handlers.end(), |
| [&path](const auto& iter) { return (iter.blobName == path); }); |
| if (h == handlers.end()) |
| { |
| return false; |
| } |
| |
| /* Ok, so we found a handler that matched, so call open() */ |
| if (!h->handler->open(path)) |
| { |
| return false; |
| } |
| |
| Session* curr; |
| const std::string* active; |
| |
| if (path == hashBlobId) |
| { |
| /* 2c) are they opening the /flash/hash ? (to start the process) */ |
| curr = &activeHash; |
| active = &activeHashBlobId; |
| } |
| else |
| { |
| curr = &activeImage; |
| active = &activeImageBlobId; |
| } |
| |
| curr->flags = flags; |
| curr->dataHandler = d->handler; |
| curr->imageHandler = h->handler; |
| curr->state = Session::State::open; |
| |
| lookup[session] = curr; |
| |
| /* This may be them re-opening a blob, so let's only push it onto the list |
| * when appropriate. |
| */ |
| auto blobIdMatch = |
| std::find_if(blobIDs.begin(), blobIDs.end(), |
| [active](const auto& iter) { return (iter == *active); }); |
| if (blobIdMatch == blobIDs.end()) |
| { |
| blobIDs.push_back(*active); |
| } |
| |
| state = UpdateState::uploadInProgress; |
| fileOpen = true; |
| |
| return true; |
| } |
| |
| /** |
| * The write command really just grabs the data from wherever it is and sends it |
| * to the image handler. It's the image handler's responsibility to deal with |
| * the data provided. |
| * |
| * This receives a session from the blob manager, therefore it is always called |
| * between open() and close(). |
| */ |
| bool FirmwareBlobHandler::write(uint16_t session, uint32_t offset, |
| const std::vector<uint8_t>& data) |
| { |
| auto item = lookup.find(session); |
| if (item == lookup.end()) |
| { |
| return false; |
| } |
| |
| /* Prevent writing during verification. */ |
| if (state == UpdateState::verificationStarted) |
| { |
| return false; |
| } |
| |
| /* Prevent writing to the verification blob before they trigger |
| * verification. |
| */ |
| if (item->second->activePath == verifyBlobId) |
| { |
| return false; |
| } |
| |
| std::vector<std::uint8_t> bytes; |
| |
| if (item->second->flags & UpdateFlags::ipmi) |
| { |
| bytes = data; |
| } |
| else |
| { |
| /* little endian required per design, and so on, but TODO: do endianness |
| * with boost. |
| */ |
| struct ExtChunkHdr header; |
| |
| if (data.size() != sizeof(header)) |
| { |
| return false; |
| } |
| |
| std::memcpy(&header, data.data(), data.size()); |
| bytes = item->second->dataHandler->copyFrom(header.length); |
| } |
| |
| return item->second->imageHandler->write(offset, bytes); |
| } |
| |
| /* |
| * If the active session (image or hash) is over LPC, this allows |
| * configuring it. This option is only available before you start |
| * writing data for the given item (image or hash). This will return |
| * false at any other part. -- the lpc handler portion will know to return |
| * false. |
| */ |
| bool FirmwareBlobHandler::writeMeta(uint16_t session, uint32_t offset, |
| const std::vector<uint8_t>& data) |
| { |
| auto item = lookup.find(session); |
| if (item == lookup.end()) |
| { |
| return false; |
| } |
| |
| if (item->second->flags & UpdateFlags::ipmi) |
| { |
| return false; |
| } |
| |
| /* Prevent writing meta to the verification blob (it has no data handler). |
| */ |
| if (item->second->dataHandler) |
| { |
| return item->second->dataHandler->writeMeta(data); |
| } |
| |
| return false; |
| } |
| |
| /* |
| * If this command is called on the session for the verifyBlobId, it'll |
| * trigger a systemd service `verify_image.service` to attempt to verify |
| * the image. |
| * |
| * For this file to have opened, the other two must be closed, which means any |
| * out-of-band transport mechanism involved is closed. |
| */ |
| bool FirmwareBlobHandler::commit(uint16_t session, |
| const std::vector<uint8_t>& data) |
| { |
| auto item = lookup.find(session); |
| if (item == lookup.end()) |
| { |
| return false; |
| } |
| |
| /* You can only commit on the verifyBlodId */ |
| if (item->second->activePath != verifyBlobId) |
| { |
| return false; |
| } |
| |
| /* Calling repeatedly has no effect within an update process. */ |
| if (state == UpdateState::verificationStarted) |
| { |
| return true; |
| } |
| |
| /* Set state to committing. */ |
| item->second->flags |= StateFlags::committing; |
| |
| return triggerVerification(); |
| } |
| |
| /* |
| * Close must be called on the firmware image before triggering |
| * verification via commit. Once the verification is complete, you can |
| * then close the hash file. |
| * |
| * If the `verify_image.service` returned success, closing the hash file |
| * will have a specific behavior depending on the update. If it's UBI, |
| * it'll perform the install. If it's static layout, it'll do nothing. The |
| * verify_image service in the static layout case is responsible for placing |
| * the file in the correct staging position. |
| */ |
| bool FirmwareBlobHandler::close(uint16_t session) |
| { |
| auto item = lookup.find(session); |
| if (item == lookup.end()) |
| { |
| return false; |
| } |
| |
| /* Are you closing the verify blob? */ |
| if (item->second->activePath == verifyBlobId) |
| { |
| if (state == UpdateState::verificationStarted) |
| { |
| /* TODO: If they close this blob before verification finishes, |
| * that's an abort. |
| */ |
| return false; |
| } |
| else if (state == UpdateState::verificationCompleted) |
| { |
| /* TODO: Should this delete the verification artifact? */ |
| state = UpdateState::notYetStarted; |
| |
| /* A this point, delete the active blob IDs from the blob_list. */ |
| blobIDs.erase( |
| std::remove(blobIDs.begin(), blobIDs.end(), activeImageBlobId)); |
| blobIDs.erase( |
| std::remove(blobIDs.begin(), blobIDs.end(), activeHashBlobId)); |
| } |
| /* Must be verificationPending... not yet started, they may re-open and |
| * trigger verification. |
| */ |
| } |
| else |
| { |
| /* They are closing a data pathway (image, tarball, hash). */ |
| state = UpdateState::verificationPending; |
| } |
| |
| if (item->second->dataHandler) |
| { |
| item->second->dataHandler->close(); |
| } |
| if (item->second->imageHandler) |
| { |
| item->second->imageHandler->close(); |
| } |
| |
| item->second->state = Session::State::closed; |
| /* Do not delete the active blob_id from the list of blob_ids, because that |
| * blob_id indicates there is data stored. Delete will destroy it. |
| */ |
| |
| lookup.erase(item); |
| |
| fileOpen = false; |
| |
| return true; |
| } |
| |
| bool FirmwareBlobHandler::expire(uint16_t session) |
| { |
| return false; |
| } |
| |
| /* |
| * Currently, the design does not provide this with a function, however, |
| * it will likely change to support reading data back. |
| */ |
| std::vector<uint8_t> FirmwareBlobHandler::read(uint16_t session, |
| uint32_t offset, |
| uint32_t requestedSize) |
| { |
| return {}; |
| } |
| |
| bool FirmwareBlobHandler::triggerVerification() |
| { |
| bool result = verification->triggerVerification(); |
| if (result) |
| { |
| state = UpdateState::verificationStarted; |
| } |
| |
| return result; |
| } |
| |
| } // namespace blobs |