blob: 1842a80333d88794c86b2d05cffe7c77a7cea602 [file] [log] [blame]
/**
* Copyright © 2019 IBM Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "elog_entry.hpp"
#include "extensions/openpower-pels/generic.hpp"
#include "extensions/openpower-pels/pel.hpp"
#include "mocks.hpp"
#include "pel_utils.hpp"
#include <filesystem>
#include <fstream>
#include <gtest/gtest.h>
namespace fs = std::filesystem;
using namespace openpower::pels;
using ::testing::_;
using ::testing::NiceMock;
using ::testing::Return;
using ::testing::SetArgReferee;
class PELTest : public CleanLogID
{
};
fs::path makeTempDir()
{
char path[] = "/tmp/tempdirXXXXXX";
std::filesystem::path dir = mkdtemp(path);
return dir;
}
int writeFileAndGetFD(const fs::path& dir, const std::vector<uint8_t>& data)
{
static size_t count = 0;
fs::path path = dir / (std::string{"file"} + std::to_string(count));
std::ofstream stream{path};
count++;
stream.write(reinterpret_cast<const char*>(data.data()), data.size());
stream.close();
FILE* fp = fopen(path.c_str(), "r");
return fileno(fp);
}
TEST_F(PELTest, FlattenTest)
{
auto data = pelDataFactory(TestPELType::pelSimple);
auto pel = std::make_unique<PEL>(data);
// Check a few fields
EXPECT_TRUE(pel->valid());
EXPECT_EQ(pel->id(), 0x80818283);
EXPECT_EQ(pel->plid(), 0x50515253);
EXPECT_EQ(pel->userHeader().subsystem(), 0x10);
EXPECT_EQ(pel->userHeader().actionFlags(), 0x80C0);
// Test that data in == data out
auto flattenedData = pel->data();
EXPECT_EQ(data, flattenedData);
EXPECT_EQ(flattenedData.size(), pel->size());
}
TEST_F(PELTest, CommitTimeTest)
{
auto data = pelDataFactory(TestPELType::pelSimple);
auto pel = std::make_unique<PEL>(data);
auto origTime = pel->commitTime();
pel->setCommitTime();
auto newTime = pel->commitTime();
EXPECT_NE(origTime, newTime);
// Make a new PEL and check new value is still there
auto newData = pel->data();
auto newPel = std::make_unique<PEL>(newData);
EXPECT_EQ(newTime, newPel->commitTime());
}
TEST_F(PELTest, AssignIDTest)
{
auto data = pelDataFactory(TestPELType::pelSimple);
auto pel = std::make_unique<PEL>(data);
auto origID = pel->id();
pel->assignID();
auto newID = pel->id();
EXPECT_NE(origID, newID);
// Make a new PEL and check new value is still there
auto newData = pel->data();
auto newPel = std::make_unique<PEL>(newData);
EXPECT_EQ(newID, newPel->id());
}
TEST_F(PELTest, WithLogIDTest)
{
auto data = pelDataFactory(TestPELType::pelSimple);
auto pel = std::make_unique<PEL>(data, 0x42);
EXPECT_TRUE(pel->valid());
EXPECT_EQ(pel->obmcLogID(), 0x42);
}
TEST_F(PELTest, InvalidPELTest)
{
auto data = pelDataFactory(TestPELType::pelSimple);
// Too small
data.resize(PrivateHeader::flattenedSize());
auto pel = std::make_unique<PEL>(data);
EXPECT_TRUE(pel->privateHeader().valid());
EXPECT_FALSE(pel->userHeader().valid());
EXPECT_FALSE(pel->valid());
// Now corrupt the private header
data = pelDataFactory(TestPELType::pelSimple);
data.at(0) = 0;
pel = std::make_unique<PEL>(data);
EXPECT_FALSE(pel->privateHeader().valid());
EXPECT_TRUE(pel->userHeader().valid());
EXPECT_FALSE(pel->valid());
}
TEST_F(PELTest, EmptyDataTest)
{
std::vector<uint8_t> data;
auto pel = std::make_unique<PEL>(data);
EXPECT_FALSE(pel->privateHeader().valid());
EXPECT_FALSE(pel->userHeader().valid());
EXPECT_FALSE(pel->valid());
}
TEST_F(PELTest, CreateFromRegistryTest)
{
message::Entry regEntry;
uint64_t timestamp = 5;
regEntry.name = "test";
regEntry.subsystem = 5;
regEntry.actionFlags = 0xC000;
regEntry.src.type = 0xBD;
regEntry.src.reasonCode = 0x1234;
std::vector<std::string> data{"KEY1=VALUE1"};
AdditionalData ad{data};
NiceMock<MockDataInterface> dataIface;
PelFFDC ffdc;
PEL pel{regEntry, 42, timestamp, phosphor::logging::Entry::Level::Error,
ad, ffdc, dataIface};
EXPECT_TRUE(pel.valid());
EXPECT_EQ(pel.privateHeader().obmcLogID(), 42);
EXPECT_EQ(pel.userHeader().severity(), 0x40);
EXPECT_EQ(pel.primarySRC().value()->asciiString(),
"BD051234 ");
// Check that certain optional sections have been created
size_t mtmsCount = 0;
size_t euhCount = 0;
size_t udCount = 0;
for (const auto& section : pel.optionalSections())
{
if (section->header().id ==
static_cast<uint16_t>(SectionID::failingMTMS))
{
mtmsCount++;
}
else if (section->header().id ==
static_cast<uint16_t>(SectionID::extendedUserHeader))
{
euhCount++;
}
else if (section->header().id ==
static_cast<uint16_t>(SectionID::userData))
{
udCount++;
}
}
EXPECT_EQ(mtmsCount, 1);
EXPECT_EQ(euhCount, 1);
EXPECT_EQ(udCount, 2); // AD section and sysInfo section
ASSERT_FALSE(pel.isCalloutPresent());
{
// The same thing, but without the action flags specified
// in the registry, so the constructor should set them.
regEntry.actionFlags = std::nullopt;
PEL pel2{
regEntry, 42, timestamp, phosphor::logging::Entry::Level::Error,
ad, ffdc, dataIface};
EXPECT_EQ(pel2.userHeader().actionFlags(), 0xA800);
}
}
// Test that when the AdditionalData size is over 16KB that
// the PEL that's created is exactly 16KB since the UserData
// section that contains all that data was pruned.
TEST_F(PELTest, CreateTooBigADTest)
{
message::Entry regEntry;
uint64_t timestamp = 5;
regEntry.name = "test";
regEntry.subsystem = 5;
regEntry.actionFlags = 0xC000;
regEntry.src.type = 0xBD;
regEntry.src.reasonCode = 0x1234;
PelFFDC ffdc;
// Over the 16KB max PEL size
std::string bigAD{"KEY1="};
bigAD += std::string(17000, 'G');
std::vector<std::string> data{bigAD};
AdditionalData ad{data};
NiceMock<MockDataInterface> dataIface;
PEL pel{regEntry, 42, timestamp, phosphor::logging::Entry::Level::Error,
ad, ffdc, dataIface};
EXPECT_TRUE(pel.valid());
EXPECT_EQ(pel.size(), 16384);
// Make sure that there are still 2 UD sections.
size_t udCount = 0;
for (const auto& section : pel.optionalSections())
{
if (section->header().id == static_cast<uint16_t>(SectionID::userData))
{
udCount++;
}
}
EXPECT_EQ(udCount, 2); // AD section and sysInfo section
}
// Test that we'll create Generic optional sections for sections that
// there aren't explicit classes for.
TEST_F(PELTest, GenericSectionTest)
{
auto data = pelDataFactory(TestPELType::pelSimple);
std::vector<uint8_t> section1{0x58, 0x58, // ID 'XX'
0x00, 0x18, // Size
0x01, 0x02, // version, subtype
0x03, 0x04, // comp ID
// some data
0x20, 0x30, 0x05, 0x09, 0x11, 0x1E, 0x1, 0x63,
0x20, 0x31, 0x06, 0x0F, 0x09, 0x22, 0x3A,
0x00};
std::vector<uint8_t> section2{
0x59, 0x59, // ID 'YY'
0x00, 0x20, // Size
0x01, 0x02, // version, subtype
0x03, 0x04, // comp ID
// some data
0x20, 0x30, 0x05, 0x09, 0x11, 0x1E, 0x1, 0x63, 0x20, 0x31, 0x06, 0x0F,
0x09, 0x22, 0x3A, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};
// Add the new sections at the end
data.insert(data.end(), section1.begin(), section1.end());
data.insert(data.end(), section2.begin(), section2.end());
// Increment the section count
data.at(27) += 2;
auto origData = data;
PEL pel{data};
const auto& sections = pel.optionalSections();
bool foundXX = false;
bool foundYY = false;
// Check that we can find these 2 Generic sections
for (const auto& section : sections)
{
if (section->header().id == 0x5858)
{
foundXX = true;
EXPECT_NE(dynamic_cast<Generic*>(section.get()), nullptr);
}
else if (section->header().id == 0x5959)
{
foundYY = true;
EXPECT_NE(dynamic_cast<Generic*>(section.get()), nullptr);
}
}
EXPECT_TRUE(foundXX);
EXPECT_TRUE(foundYY);
// Now flatten and check
auto newData = pel.data();
EXPECT_EQ(origData, newData);
}
// Test that an invalid section will still get a Generic object
TEST_F(PELTest, InvalidGenericTest)
{
auto data = pelDataFactory(TestPELType::pelSimple);
// Not a valid section
std::vector<uint8_t> section1{0x01, 0x02, 0x03};
data.insert(data.end(), section1.begin(), section1.end());
// Increment the section count
data.at(27) += 1;
PEL pel{data};
EXPECT_FALSE(pel.valid());
const auto& sections = pel.optionalSections();
bool foundGeneric = false;
for (const auto& section : sections)
{
if (dynamic_cast<Generic*>(section.get()) != nullptr)
{
foundGeneric = true;
EXPECT_EQ(section->valid(), false);
break;
}
}
EXPECT_TRUE(foundGeneric);
}
// Create a UserData section out of AdditionalData
TEST_F(PELTest, MakeUDSectionTest)
{
std::vector<std::string> ad{"KEY1=VALUE1", "KEY2=VALUE2", "KEY3=VALUE3",
"ESEL=TEST"};
AdditionalData additionalData{ad};
auto ud = util::makeADUserDataSection(additionalData);
EXPECT_TRUE(ud->valid());
EXPECT_EQ(ud->header().id, 0x5544);
EXPECT_EQ(ud->header().version, 0x01);
EXPECT_EQ(ud->header().subType, 0x01);
EXPECT_EQ(ud->header().componentID, 0x2000);
const auto& d = ud->data();
std::string jsonString{d.begin(), d.end()};
std::string expectedJSON =
R"({"KEY1":"VALUE1","KEY2":"VALUE2","KEY3":"VALUE3"})";
// The actual data is null padded to a 4B boundary.
std::vector<uint8_t> expectedData;
expectedData.resize(52, '\0');
memcpy(expectedData.data(), expectedJSON.data(), expectedJSON.size());
EXPECT_EQ(d, expectedData);
// Ensure we can read this as JSON
auto newJSON = nlohmann::json::parse(jsonString);
EXPECT_EQ(newJSON["KEY1"], "VALUE1");
EXPECT_EQ(newJSON["KEY2"], "VALUE2");
EXPECT_EQ(newJSON["KEY3"], "VALUE3");
}
// Create the UserData section that contains system info
TEST_F(PELTest, SysInfoSectionTest)
{
MockDataInterface dataIface;
EXPECT_CALL(dataIface, getBMCFWVersionID()).WillOnce(Return("ABCD1234"));
EXPECT_CALL(dataIface, getBMCState()).WillOnce(Return("State.Ready"));
EXPECT_CALL(dataIface, getChassisState()).WillOnce(Return("State.On"));
EXPECT_CALL(dataIface, getHostState()).WillOnce(Return("State.Off"));
std::string pid = "_PID=" + std::to_string(getpid());
std::vector<std::string> ad{pid};
AdditionalData additionalData{ad};
auto ud = util::makeSysInfoUserDataSection(additionalData, dataIface);
EXPECT_TRUE(ud->valid());
EXPECT_EQ(ud->header().id, 0x5544);
EXPECT_EQ(ud->header().version, 0x01);
EXPECT_EQ(ud->header().subType, 0x01);
EXPECT_EQ(ud->header().componentID, 0x2000);
// Pull out the JSON data and check it.
const auto& d = ud->data();
std::string jsonString{d.begin(), d.end()};
auto json = nlohmann::json::parse(jsonString);
// Ensure the 'Process Name' entry contains the name of this test
// executable.
auto name = json["Process Name"].get<std::string>();
auto found = (name.find("pel_test") != std::string::npos) ||
(name.find("test-openpower-pels-pel") != std::string::npos);
EXPECT_TRUE(found);
// @TODO(stwcx): remove 'pel_test' when removing autotools.
auto version = json["FW Version ID"].get<std::string>();
EXPECT_EQ(version, "ABCD1234");
auto state = json["BMCState"].get<std::string>();
EXPECT_EQ(state, "Ready");
state = json["ChassisState"].get<std::string>();
EXPECT_EQ(state, "On");
state = json["HostState"].get<std::string>();
EXPECT_EQ(state, "Off");
}
// Test that the sections that override
// virtual std::optional<std::string> Section::getJSON() const
// return valid JSON.
TEST_F(PELTest, SectionJSONTest)
{
auto data = pelDataFactory(TestPELType::pelSimple);
PEL pel{data};
// Check that all JSON returned from the sections is
// parseable by nlohmann::json, which will throw an
// exception and fail the test if there is a problem.
// The getJSON() response needs to be wrapped in a { } to make
// actual valid JSON (PEL::toJSON() usually handles that).
auto jsonString = pel.privateHeader().getJSON();
// PrivateHeader always prints JSON
ASSERT_TRUE(jsonString);
*jsonString = '{' + *jsonString + '}';
auto json = nlohmann::json::parse(*jsonString);
jsonString = pel.userHeader().getJSON();
// UserHeader always prints JSON
ASSERT_TRUE(jsonString);
*jsonString = '{' + *jsonString + '}';
json = nlohmann::json::parse(*jsonString);
for (const auto& section : pel.optionalSections())
{
// The optional sections may or may not have implemented getJSON().
jsonString = section->getJSON();
if (jsonString)
{
*jsonString = '{' + *jsonString + '}';
auto json = nlohmann::json::parse(*jsonString);
}
}
}
PelFFDCfile getJSONFFDC(const fs::path& dir)
{
PelFFDCfile ffdc;
ffdc.format = UserDataFormat::json;
ffdc.subType = 5;
ffdc.version = 42;
auto inputJSON = R"({
"key1": "value1",
"key2": 42,
"key3" : [1, 2, 3, 4, 5],
"key4": {"key5": "value5"}
})"_json;
// Write the JSON to a file and get its descriptor.
auto s = inputJSON.dump();
std::vector<uint8_t> data{s.begin(), s.end()};
ffdc.fd = writeFileAndGetFD(dir, data);
return ffdc;
}
TEST_F(PELTest, MakeJSONFileUDSectionTest)
{
auto dir = makeTempDir();
{
auto ffdc = getJSONFFDC(dir);
auto ud = util::makeFFDCuserDataSection(0x2002, ffdc);
close(ffdc.fd);
ASSERT_TRUE(ud);
ASSERT_TRUE(ud->valid());
EXPECT_EQ(ud->header().id, 0x5544);
EXPECT_EQ(ud->header().version,
static_cast<uint8_t>(UserDataFormatVersion::json));
EXPECT_EQ(ud->header().subType,
static_cast<uint8_t>(UserDataFormat::json));
EXPECT_EQ(ud->header().componentID,
static_cast<uint16_t>(ComponentID::phosphorLogging));
// Pull the JSON back out of the the UserData section
const auto& d = ud->data();
std::string js{d.begin(), d.end()};
auto json = nlohmann::json::parse(js);
EXPECT_EQ("value1", json["key1"].get<std::string>());
EXPECT_EQ(42, json["key2"].get<int>());
std::vector<int> key3Values{1, 2, 3, 4, 5};
EXPECT_EQ(key3Values, json["key3"].get<std::vector<int>>());
std::map<std::string, std::string> key4Values{{"key5", "value5"}};
auto actual = json["key4"].get<std::map<std::string, std::string>>();
EXPECT_EQ(key4Values, actual);
}
{
// A bad FD
PelFFDCfile ffdc;
ffdc.format = UserDataFormat::json;
ffdc.subType = 5;
ffdc.version = 42;
ffdc.fd = 10000;
// The section shouldn't get made
auto ud = util::makeFFDCuserDataSection(0x2002, ffdc);
ASSERT_FALSE(ud);
}
fs::remove_all(dir);
}
PelFFDCfile getCBORFFDC(const fs::path& dir)
{
PelFFDCfile ffdc;
ffdc.format = UserDataFormat::cbor;
ffdc.subType = 5;
ffdc.version = 42;
auto inputJSON = R"({
"key1": "value1",
"key2": 42,
"key3" : [1, 2, 3, 4, 5],
"key4": {"key5": "value5"}
})"_json;
// Convert the JSON to CBOR and write it to a file
auto data = nlohmann::json::to_cbor(inputJSON);
ffdc.fd = writeFileAndGetFD(dir, data);
return ffdc;
}
TEST_F(PELTest, MakeCBORFileUDSectionTest)
{
auto dir = makeTempDir();
auto ffdc = getCBORFFDC(dir);
auto ud = util::makeFFDCuserDataSection(0x2002, ffdc);
close(ffdc.fd);
ASSERT_TRUE(ud);
ASSERT_TRUE(ud->valid());
EXPECT_EQ(ud->header().id, 0x5544);
EXPECT_EQ(ud->header().version,
static_cast<uint8_t>(UserDataFormatVersion::cbor));
EXPECT_EQ(ud->header().subType, static_cast<uint8_t>(UserDataFormat::cbor));
EXPECT_EQ(ud->header().componentID,
static_cast<uint16_t>(ComponentID::phosphorLogging));
// Pull the CBOR back out of the PEL section
// The number of pad bytes to make the section be 4B aligned
// was added at the end, read it and then remove it and the
// padding before parsing it.
auto data = ud->data();
Stream stream{data};
stream.offset(data.size() - 4);
uint32_t pad;
stream >> pad;
data.resize(data.size() - 4 - pad);
auto json = nlohmann::json::from_cbor(data);
EXPECT_EQ("value1", json["key1"].get<std::string>());
EXPECT_EQ(42, json["key2"].get<int>());
std::vector<int> key3Values{1, 2, 3, 4, 5};
EXPECT_EQ(key3Values, json["key3"].get<std::vector<int>>());
std::map<std::string, std::string> key4Values{{"key5", "value5"}};
auto actual = json["key4"].get<std::map<std::string, std::string>>();
EXPECT_EQ(key4Values, actual);
fs::remove_all(dir);
}
PelFFDCfile getTextFFDC(const fs::path& dir)
{
PelFFDCfile ffdc;
ffdc.format = UserDataFormat::text;
ffdc.subType = 5;
ffdc.version = 42;
std::string text{"this is some text that will be used for FFDC"};
std::vector<uint8_t> data{text.begin(), text.end()};
ffdc.fd = writeFileAndGetFD(dir, data);
return ffdc;
}
TEST_F(PELTest, MakeTextFileUDSectionTest)
{
auto dir = makeTempDir();
auto ffdc = getTextFFDC(dir);
auto ud = util::makeFFDCuserDataSection(0x2002, ffdc);
close(ffdc.fd);
ASSERT_TRUE(ud);
ASSERT_TRUE(ud->valid());
EXPECT_EQ(ud->header().id, 0x5544);
EXPECT_EQ(ud->header().version,
static_cast<uint8_t>(UserDataFormatVersion::text));
EXPECT_EQ(ud->header().subType, static_cast<uint8_t>(UserDataFormat::text));
EXPECT_EQ(ud->header().componentID,
static_cast<uint16_t>(ComponentID::phosphorLogging));
// Get the text back out
std::string text{ud->data().begin(), ud->data().end()};
EXPECT_EQ(text, "this is some text that will be used for FFDC");
fs::remove_all(dir);
}
PelFFDCfile getCustomFFDC(const fs::path& dir, const std::vector<uint8_t>& data)
{
PelFFDCfile ffdc;
ffdc.format = UserDataFormat::custom;
ffdc.subType = 5;
ffdc.version = 42;
ffdc.fd = writeFileAndGetFD(dir, data);
return ffdc;
}
TEST_F(PELTest, MakeCustomFileUDSectionTest)
{
auto dir = makeTempDir();
{
std::vector<uint8_t> data{1, 2, 3, 4, 5, 6, 7, 8};
auto ffdc = getCustomFFDC(dir, data);
auto ud = util::makeFFDCuserDataSection(0x2002, ffdc);
close(ffdc.fd);
ASSERT_TRUE(ud);
ASSERT_TRUE(ud->valid());
EXPECT_EQ(ud->header().size, 8 + 8); // data size + header size
EXPECT_EQ(ud->header().id, 0x5544);
EXPECT_EQ(ud->header().version, 42);
EXPECT_EQ(ud->header().subType, 5);
EXPECT_EQ(ud->header().componentID, 0x2002);
// Get the data back out
std::vector<uint8_t> newData{ud->data().begin(), ud->data().end()};
EXPECT_EQ(data, newData);
}
// Do the same thing again, but make it be non 4B aligned
// so the data gets padded.
{
std::vector<uint8_t> data{1, 2, 3, 4, 5, 6, 7, 8, 9};
auto ffdc = getCustomFFDC(dir, data);
auto ud = util::makeFFDCuserDataSection(0x2002, ffdc);
close(ffdc.fd);
ASSERT_TRUE(ud);
ASSERT_TRUE(ud->valid());
EXPECT_EQ(ud->header().size, 12 + 8); // data size + header size
EXPECT_EQ(ud->header().id, 0x5544);
EXPECT_EQ(ud->header().version, 42);
EXPECT_EQ(ud->header().subType, 5);
EXPECT_EQ(ud->header().componentID, 0x2002);
// Get the data back out
std::vector<uint8_t> newData{ud->data().begin(), ud->data().end()};
// pad the original to 12B so we can compare
data.push_back(0);
data.push_back(0);
data.push_back(0);
EXPECT_EQ(data, newData);
}
fs::remove_all(dir);
}
// Test Adding FFDC from files to a PEL
TEST_F(PELTest, CreateWithFFDCTest)
{
auto dir = makeTempDir();
message::Entry regEntry;
uint64_t timestamp = 5;
regEntry.name = "test";
regEntry.subsystem = 5;
regEntry.actionFlags = 0xC000;
regEntry.src.type = 0xBD;
regEntry.src.reasonCode = 0x1234;
std::vector<std::string> additionalData{"KEY1=VALUE1"};
AdditionalData ad{additionalData};
NiceMock<MockDataInterface> dataIface;
PelFFDC ffdc;
std::vector<uint8_t> customData{1, 2, 3, 4, 5, 6, 7, 8};
// This will be trimmed when added
std::vector<uint8_t> hugeCustomData(17000, 0x42);
ffdc.emplace_back(std::move(getJSONFFDC(dir)));
ffdc.emplace_back(std::move(getCBORFFDC(dir)));
ffdc.emplace_back(std::move(getTextFFDC(dir)));
ffdc.emplace_back(std::move(getCustomFFDC(dir, customData)));
ffdc.emplace_back(std::move(getCustomFFDC(dir, hugeCustomData)));
PEL pel{regEntry, 42, timestamp, phosphor::logging::Entry::Level::Error,
ad, ffdc, dataIface};
EXPECT_TRUE(pel.valid());
// Clipped to the max
EXPECT_EQ(pel.size(), 16384);
// Check for the FFDC sections
size_t udCount = 0;
Section* ud = nullptr;
for (const auto& section : pel.optionalSections())
{
if (section->header().id == static_cast<uint16_t>(SectionID::userData))
{
udCount++;
ud = section.get();
}
}
EXPECT_EQ(udCount, 7); // AD section, sysInfo, 5 ffdc sections
// Check the last section was trimmed to
// something a bit less that 17000.
EXPECT_GT(ud->header().size, 14000);
EXPECT_LT(ud->header().size, 16000);
fs::remove_all(dir);
}
// Create a PEL with device callouts
TEST_F(PELTest, CreateWithDevCalloutsTest)
{
message::Entry regEntry;
uint64_t timestamp = 5;
regEntry.name = "test";
regEntry.subsystem = 5;
regEntry.actionFlags = 0xC000;
regEntry.src.type = 0xBD;
regEntry.src.reasonCode = 0x1234;
NiceMock<MockDataInterface> dataIface;
PelFFDC ffdc;
const auto calloutJSON = R"(
{
"I2C":
{
"14":
{
"114":
{
"Callouts":[
{
"Name": "/chassis/motherboard/cpu0",
"LocationCode": "P1",
"Priority": "H"
}
],
"Dest": "proc 0 target"
}
}
}
})";
std::vector<std::string> names{"systemA"};
EXPECT_CALL(dataIface, getSystemNames)
.Times(2)
.WillRepeatedly(Return(names));
EXPECT_CALL(dataIface,
getLocationCode(
"/xyz/openbmc_project/inventory/chassis/motherboard/cpu0"))
.WillOnce(Return("UXXX-P1"));
EXPECT_CALL(dataIface, getInventoryFromLocCode("P1", 0, false))
.WillOnce(
Return("/xyz/openbmc_project/inventory/chassis/motherboard/cpu0"));
EXPECT_CALL(
dataIface,
getHWCalloutFields(
"/xyz/openbmc_project/inventory/chassis/motherboard/cpu0", _, _, _))
.WillOnce(DoAll(SetArgReferee<1>("1234567"), SetArgReferee<2>("CCCC"),
SetArgReferee<3>("123456789ABC")));
auto dataPath = getPELReadOnlyDataPath();
std::ofstream file{dataPath / "systemA_dev_callouts.json"};
file << calloutJSON;
file.close();
{
std::vector<std::string> data{
"CALLOUT_ERRNO=5",
"CALLOUT_DEVICE_PATH=/sys/devices/platform/ahb/ahb:apb/"
"ahb:apb:bus@1e78a000/1e78a340.i2c-bus/i2c-14/14-0072"};
AdditionalData ad{data};
PEL pel{
regEntry, 42, timestamp, phosphor::logging::Entry::Level::Error,
ad, ffdc, dataIface};
ASSERT_TRUE(pel.primarySRC().value()->callouts());
auto& callouts = pel.primarySRC().value()->callouts()->callouts();
ASSERT_EQ(callouts.size(), 1);
ASSERT_TRUE(pel.isCalloutPresent());
EXPECT_EQ(callouts[0]->priority(), 'H');
EXPECT_EQ(callouts[0]->locationCode(), "UXXX-P1");
auto& fru = callouts[0]->fruIdentity();
EXPECT_EQ(fru->getPN().value(), "1234567");
EXPECT_EQ(fru->getCCIN().value(), "CCCC");
EXPECT_EQ(fru->getSN().value(), "123456789ABC");
const auto& section = pel.optionalSections().back();
ASSERT_EQ(section->header().id, 0x5544); // UD
auto ud = static_cast<UserData*>(section.get());
// Check that there was a UserData section added that
// contains debug details about the device.
const auto& d = ud->data();
std::string jsonString{d.begin(), d.end()};
auto actualJSON = nlohmann::json::parse(jsonString);
auto expectedJSON = R"(
{
"PEL Internal Debug Data": {
"SRC": [
"I2C: bus: 14 address: 114 dest: proc 0 target"
]
}
}
)"_json;
EXPECT_EQ(actualJSON, expectedJSON);
}
{
// Device path not found (wrong i2c addr), so no callouts
std::vector<std::string> data{
"CALLOUT_ERRNO=5",
"CALLOUT_DEVICE_PATH=/sys/devices/platform/ahb/ahb:apb/"
"ahb:apb:bus@1e78a000/1e78a340.i2c-bus/i2c-14/14-0099"};
AdditionalData ad{data};
PEL pel{
regEntry, 42, timestamp, phosphor::logging::Entry::Level::Error,
ad, ffdc, dataIface};
// no callouts
EXPECT_FALSE(pel.primarySRC().value()->callouts());
// Now check that there was a UserData section
// that contains the lookup error.
const auto& section = pel.optionalSections().back();
ASSERT_EQ(section->header().id, 0x5544); // UD
auto ud = static_cast<UserData*>(section.get());
const auto& d = ud->data();
std::string jsonString{d.begin(), d.end()};
auto actualJSON = nlohmann::json::parse(jsonString);
auto expectedJSON =
"{\"PEL Internal Debug Data\":{\"SRC\":"
"[\"Problem looking up I2C callouts on 14 153: "
"[json.exception.out_of_range.403] key '153' not found\"]}}"_json;
EXPECT_EQ(actualJSON, expectedJSON);
}
fs::remove_all(dataPath);
}
// Test PELs when the callouts are passed in using a JSON file.
TEST_F(PELTest, CreateWithJSONCalloutsTest)
{
PelFFDCfile ffdcFile;
ffdcFile.format = UserDataFormat::json;
ffdcFile.subType = 0xCA; // Callout JSON
ffdcFile.version = 1;
// Write these callouts to a JSON file and pass it into
// the PEL as an FFDC file.
auto inputJSON = R"([
{
"Priority": "H",
"LocationCode": "P0-C1"
},
{
"Priority": "M",
"Procedure": "PROCEDURE"
}
])"_json;
auto s = inputJSON.dump();
std::vector<uint8_t> data{s.begin(), s.end()};
auto dir = makeTempDir();
ffdcFile.fd = writeFileAndGetFD(dir, data);
PelFFDC ffdc;
ffdc.push_back(std::move(ffdcFile));
AdditionalData ad;
NiceMock<MockDataInterface> dataIface;
EXPECT_CALL(dataIface, expandLocationCode("P0-C1", 0))
.Times(1)
.WillOnce(Return("UXXX-P0-C1"));
EXPECT_CALL(dataIface, getInventoryFromLocCode("P0-C1", 0, false))
.Times(1)
.WillOnce(Return("/inv/system/chassis/motherboard/bmc"));
EXPECT_CALL(dataIface, getHWCalloutFields(
"/inv/system/chassis/motherboard/bmc", _, _, _))
.Times(1)
.WillOnce(DoAll(SetArgReferee<1>("1234567"), SetArgReferee<2>("CCCC"),
SetArgReferee<3>("123456789ABC")));
message::Entry regEntry;
regEntry.name = "test";
regEntry.subsystem = 5;
regEntry.actionFlags = 0xC000;
regEntry.src.type = 0xBD;
regEntry.src.reasonCode = 0x1234;
PEL pel{regEntry, 42, 5, phosphor::logging::Entry::Level::Error,
ad, ffdc, dataIface};
ASSERT_TRUE(pel.valid());
ASSERT_TRUE(pel.primarySRC().value()->callouts());
const auto& callouts = pel.primarySRC().value()->callouts()->callouts();
ASSERT_EQ(callouts.size(), 2);
{
EXPECT_EQ(callouts[0]->priority(), 'H');
EXPECT_EQ(callouts[0]->locationCode(), "UXXX-P0-C1");
auto& fru = callouts[0]->fruIdentity();
EXPECT_EQ(fru->getPN().value(), "1234567");
EXPECT_EQ(fru->getCCIN().value(), "CCCC");
EXPECT_EQ(fru->getSN().value(), "123456789ABC");
EXPECT_EQ(fru->failingComponentType(), src::FRUIdentity::hardwareFRU);
}
{
EXPECT_EQ(callouts[1]->priority(), 'M');
EXPECT_EQ(callouts[1]->locationCode(), "");
auto& fru = callouts[1]->fruIdentity();
EXPECT_EQ(fru->getMaintProc().value(), "PROCEDU");
EXPECT_EQ(fru->failingComponentType(),
src::FRUIdentity::maintenanceProc);
}
fs::remove_all(dir);
}