| #include "crypt_algo.hpp" |
| |
| #include "message_parsers.hpp" |
| |
| #include <openssl/evp.h> |
| #include <openssl/hmac.h> |
| #include <openssl/rand.h> |
| |
| #include <algorithm> |
| #include <numeric> |
| |
| namespace cipher |
| { |
| |
| namespace crypt |
| { |
| |
| constexpr std::array<uint8_t, AlgoAES128::AESCBC128BlockSize - 1> |
| AlgoAES128::confPadBytes; |
| |
| std::vector<uint8_t> AlgoAES128::decryptPayload( |
| const std::vector<uint8_t>& packet, const size_t sessHeaderLen, |
| const size_t payloadLen) const |
| { |
| // verify packet size minimal: sessHeaderLen + payloadLen |
| // and payloadLen is more than AESCBC128ConfHeader |
| if (packet.size() < (sessHeaderLen + payloadLen) || |
| payloadLen < AESCBC128ConfHeader) |
| { |
| throw std::runtime_error("Invalid data length"); |
| } |
| |
| auto plainPayload = |
| decryptData(packet.data() + sessHeaderLen, |
| packet.data() + sessHeaderLen + AESCBC128ConfHeader, |
| payloadLen - AESCBC128ConfHeader); |
| |
| /* |
| * The confidentiality pad length is the last byte in the payload, it would |
| * tell the number of pad bytes in the payload. We added a condition, so |
| * that buffer overrun doesn't happen. |
| */ |
| size_t confPadLength = plainPayload.back(); |
| auto padLength = std::min(plainPayload.size() - 1, confPadLength); |
| |
| auto plainPayloadLen = plainPayload.size() - padLength - 1; |
| |
| // Additional check if the confidentiality pad bytes are as expected |
| if (!std::equal(plainPayload.begin() + plainPayloadLen, |
| plainPayload.begin() + plainPayloadLen + padLength, |
| confPadBytes.begin())) |
| { |
| throw std::runtime_error("Confidentiality pad bytes check failed"); |
| } |
| |
| plainPayload.resize(plainPayloadLen); |
| |
| return plainPayload; |
| } |
| |
| std::vector<uint8_t> |
| AlgoAES128::encryptPayload(std::vector<uint8_t>& payload) const |
| { |
| auto payloadLen = payload.size(); |
| |
| /* |
| * The following logic calculates the number of padding bytes to be added to |
| * the payload data. This would ensure that the length is a multiple of the |
| * block size of algorithm being used. For the AES algorithm, the block size |
| * is 16 bytes. |
| */ |
| auto paddingLen = AESCBC128BlockSize - ((payloadLen + 1) & 0xF); |
| |
| /* |
| * The additional field is for the Confidentiality Pad Length field. For the |
| * AES algorithm, this number will range from 0 to 15 bytes. This field is |
| * mandatory. |
| */ |
| payload.resize(payloadLen + paddingLen + 1); |
| |
| /* |
| * If no Confidentiality Pad bytes are required, the Confidentiality Pad |
| * Length field is set to 00h. If present, the value of the first byte of |
| * Confidentiality Pad shall be one (01h) and all subsequent bytes shall |
| * have a monotonically increasing value (e.g., 02h, 03h, 04h, etc). |
| */ |
| if (0 != paddingLen) |
| { |
| std::iota(payload.begin() + payloadLen, |
| payload.begin() + payloadLen + paddingLen, 1); |
| } |
| |
| payload.back() = paddingLen; |
| |
| return encryptData(payload.data(), payload.size()); |
| } |
| |
| std::vector<uint8_t> AlgoAES128::decryptData( |
| const uint8_t* iv, const uint8_t* input, const int inputLen) const |
| { |
| // Initializes Cipher context |
| EVP_CIPHER_CTX* ctx = EVP_CIPHER_CTX_new(); |
| |
| auto cleanupFunc = [](EVP_CIPHER_CTX* ctx) { EVP_CIPHER_CTX_free(ctx); }; |
| |
| std::unique_ptr<EVP_CIPHER_CTX, decltype(cleanupFunc)> ctxPtr( |
| ctx, cleanupFunc); |
| |
| /* |
| * EVP_DecryptInit_ex sets up cipher context ctx for encryption with type |
| * AES-CBC-128. ctx must be initialized before calling this function. K2 is |
| * the symmetric key used and iv is the initialization vector used. |
| */ |
| if (!EVP_DecryptInit_ex(ctxPtr.get(), EVP_aes_128_cbc(), NULL, k2.data(), |
| iv)) |
| { |
| throw std::runtime_error("EVP_DecryptInit_ex failed for type " |
| "AES-CBC-128"); |
| } |
| |
| /* |
| * EVP_CIPHER_CTX_set_padding() enables or disables padding. If the pad |
| * parameter is zero then no padding is performed. This function always |
| * returns 1. |
| */ |
| EVP_CIPHER_CTX_set_padding(ctxPtr.get(), 0); |
| |
| std::vector<uint8_t> output(inputLen + AESCBC128BlockSize); |
| |
| int outputLen = 0; |
| |
| /* |
| * If padding is disabled then EVP_DecryptFinal_ex() will not encrypt any |
| * more data and it will return an error if any data remains in a partial |
| * block: that is if the total data length is not a multiple of the block |
| * size. Since AES-CBC-128 encrypted payload format adds padding bytes and |
| * ensures that payload is a multiple of block size, we are not making the |
| * call to EVP_DecryptFinal_ex(). |
| */ |
| if (!EVP_DecryptUpdate(ctxPtr.get(), output.data(), &outputLen, input, |
| inputLen)) |
| { |
| throw std::runtime_error("EVP_DecryptUpdate failed"); |
| } |
| |
| output.resize(outputLen); |
| |
| return output; |
| } |
| |
| std::vector<uint8_t> |
| AlgoAES128::encryptData(const uint8_t* input, const int inputLen) const |
| { |
| std::vector<uint8_t> output(inputLen + AESCBC128BlockSize); |
| |
| // Generate the initialization vector |
| if (!RAND_bytes(output.data(), AESCBC128ConfHeader)) |
| { |
| throw std::runtime_error("RAND_bytes failed"); |
| } |
| |
| // Initializes Cipher context |
| EVP_CIPHER_CTX* ctx = EVP_CIPHER_CTX_new(); |
| |
| auto cleanupFunc = [](EVP_CIPHER_CTX* ctx) { EVP_CIPHER_CTX_free(ctx); }; |
| |
| std::unique_ptr<EVP_CIPHER_CTX, decltype(cleanupFunc)> ctxPtr( |
| ctx, cleanupFunc); |
| |
| /* |
| * EVP_EncryptInit_ex sets up cipher context ctx for encryption with type |
| * AES-CBC-128. ctx must be initialized before calling this function. K2 is |
| * the symmetric key used and iv is the initialization vector used. |
| */ |
| if (!EVP_EncryptInit_ex(ctxPtr.get(), EVP_aes_128_cbc(), NULL, k2.data(), |
| output.data())) |
| { |
| throw std::runtime_error("EVP_EncryptInit_ex failed for type " |
| "AES-CBC-128"); |
| } |
| |
| /* |
| * EVP_CIPHER_CTX_set_padding() enables or disables padding. If the pad |
| * parameter is zero then no padding is performed. This function always |
| * returns 1. |
| */ |
| EVP_CIPHER_CTX_set_padding(ctxPtr.get(), 0); |
| |
| int outputLen = 0; |
| |
| /* |
| * If padding is disabled then EVP_EncryptFinal_ex() will not encrypt any |
| * more data and it will return an error if any data remains in a partial |
| * block: that is if the total data length is not a multiple of the block |
| * size. Since we are adding padding bytes and ensures that payload is a |
| * multiple of block size, we are not making the call to |
| * EVP_DecryptFinal_ex() |
| */ |
| if (!EVP_EncryptUpdate(ctxPtr.get(), output.data() + AESCBC128ConfHeader, |
| &outputLen, input, inputLen)) |
| { |
| throw std::runtime_error("EVP_EncryptUpdate failed for type " |
| "AES-CBC-128"); |
| } |
| |
| output.resize(AESCBC128ConfHeader + outputLen); |
| |
| return output; |
| } |
| |
| } // namespace crypt |
| |
| } // namespace cipher |