blob: 0272e6c06031a804494a8b43000995c358142f0e [file] [log] [blame]
#include <sys/ioctl.h>
#include <systemd/sd-daemon.h>
#include <phosphor-logging/log.hpp>
#include "main.hpp"
#include "message_handler.hpp"
#include "sd_event_loop.hpp"
namespace eventloop
{
using namespace phosphor::logging;
static int udp623Handler(sd_event_source* es, int fd, uint32_t revents,
void* userdata)
{
std::shared_ptr<udpsocket::Channel> channelPtr;
struct timeval timeout;
timeout.tv_sec = SELECT_CALL_TIMEOUT;
timeout.tv_usec = 0;
try
{
channelPtr.reset(new udpsocket::Channel(fd, timeout));
// Initialize the Message Handler with the socket channel
message::Handler msgHandler(channelPtr);
std::unique_ptr<message::Message> inMessage;
// Read the incoming IPMI packet
inMessage = msgHandler.receive();
if (inMessage == nullptr)
{
return 0;
}
// Execute the Command
auto outMessage = msgHandler.executeCommand(*(inMessage.get()));
if (outMessage == nullptr)
{
return 0;
}
// Send the response IPMI Message
msgHandler.send(*(outMessage.get()));
}
catch (std::exception& e)
{
log<level::ERR>("Executing the IPMI message failed");
log<level::ERR>(e.what());
}
return 0;
}
static int consoleInputHandler(sd_event_source* es, int fd, uint32_t revents,
void* userdata)
{
try
{
int readSize = 0;
if (ioctl(fd, FIONREAD, &readSize) < 0)
{
log<level::ERR>("ioctl failed for FIONREAD:",
entry("errno = %d", errno));
return 0;
}
std::vector<uint8_t> buffer(readSize);
auto bufferSize = buffer.size();
ssize_t readDataLen = 0;
readDataLen = read(fd, buffer.data(), bufferSize);
// Update the Console buffer with data read from the socket
if (readDataLen > 0)
{
buffer.resize(readDataLen);
std::get<sol::Manager&>(singletonPool).dataBuffer.write(buffer);
}
else if (readDataLen == 0)
{
log<level::ERR>("Connection Closed for host console socket");
}
else if (readDataLen < 0) // Error
{
log<level::ERR>("Reading from host console socket failed:",
entry("ERRNO=%d", errno));
}
}
catch (std::exception& e)
{
log<level::ERR>(e.what());
}
return 0;
}
static int charAccTimerHandler(sd_event_source* s, uint64_t usec,
void *userdata)
{
// The instance is hardcoded to 1, in the case of supporting multiple
// payload instances we would need to populate it from userdata
uint8_t instance = 1;
auto bufferSize = std::get<sol::Manager&>(singletonPool).dataBuffer.size();
try
{
if(bufferSize > 0)
{
// Send the SOL payload
}
std::get<eventloop::EventLoop&>(singletonPool).switchTimer(
instance, Timers::ACCUMULATE, true);
}
catch (std::exception& e)
{
log<level::ERR>(e.what());
}
return 0;
}
static int retryTimerHandler(sd_event_source* s, uint64_t usec,
void *userdata)
{
// The instance is hardcoded to 1, in the case of supporting multiple
// payload instances we would need to populate it from userdata
uint8_t instance = 1;
try
{
auto& context = std::get<sol::Manager&>(singletonPool).getContext
(instance);
if (context.retryCounter)
{
--context.retryCounter;
std::get<eventloop::EventLoop&>(singletonPool).switchTimer
(instance, Timers::RETRY, true);
// Resend the SOL payload
}
else
{
context.retryCounter = context.maxRetryCount;
// Resend the SOL payload
std::get<eventloop::EventLoop&>(singletonPool).switchTimer
(instance, Timers::RETRY, false);
std::get<eventloop::EventLoop&>(singletonPool).switchTimer
(instance, Timers::ACCUMULATE, true);
}
}
catch (std::exception& e)
{
log<level::ERR>(e.what());
}
return 0;
}
int EventLoop::startEventLoop()
{
int fd = -1;
int r = 0;
sigset_t ss;
sd_event_source* source = nullptr;
r = sd_event_default(&event);
if (r < 0)
{
goto finish;
}
if (sigemptyset(&ss) < 0 || sigaddset(&ss, SIGTERM) < 0 ||
sigaddset(&ss, SIGINT) < 0)
{
r = -errno;
goto finish;
}
/* Block SIGTERM first, so that the event loop can handle it */
if (sigprocmask(SIG_BLOCK, &ss, nullptr) < 0)
{
r = -errno;
goto finish;
}
/* Let's make use of the default handler and "floating" reference features
* of sd_event_add_signal() */
r = sd_event_add_signal(event, nullptr, SIGTERM, nullptr, nullptr);
if (r < 0)
{
goto finish;
}
r = sd_event_add_signal(event, nullptr, SIGINT, nullptr, nullptr);
if (r < 0)
{
goto finish;
}
if (sd_listen_fds(0) != 1)
{
log<level::ERR>("No or too many file descriptors received");
goto finish;
}
fd = SD_LISTEN_FDS_START;
r = sd_event_add_io(event, &source, fd, EPOLLIN, udp623Handler, nullptr);
if (r < 0)
{
goto finish;
}
udpIPMI.reset(source);
source = nullptr;
r = sd_event_loop(event);
finish:
event = sd_event_unref(event);
if (fd >= 0)
{
(void) close(fd);
}
if (r < 0)
{
log<level::ERR>("Event Loop Failure:",
entry("FAILURE=%s", strerror(-r)));
}
return r < 0 ? EXIT_FAILURE : EXIT_SUCCESS;
}
void EventLoop::startHostConsole(const sol::CustomFD& fd)
{
int rc = 0;
if((fd() == -1) || hostConsole.get())
{
throw std::runtime_error("Console descriptor already added");
}
sd_event_source* source = nullptr;
// Add the fd to the event loop for EPOLLIN
rc = sd_event_add_io(
event, &source, fd(), EPOLLIN, consoleInputHandler, nullptr);
if (rc < 0)
{
throw std::runtime_error("Failed to add socket descriptor");
}
hostConsole.reset(source);
source=nullptr;
}
void EventLoop::stopHostConsole()
{
int rc = 0;
if (hostConsole.get())
{
// Disable the host console payload
rc = sd_event_source_set_enabled(hostConsole.get(), SD_EVENT_OFF);
if (rc < 0)
{
log<level::ERR>("Failed to disable the host console socket",
entry("RC=%d", rc));
hostConsole.reset();
throw std::runtime_error("Failed to disable socket descriptor");
}
hostConsole.reset();
}
}
void EventLoop::startSOLPayloadInstance(uint8_t payloadInst,
IntervalType accumulateInterval,
IntervalType retryInterval)
{
auto instance = payloadInst;
sd_event_source* accTimerSource = nullptr;
sd_event_source* retryTimerSource = nullptr;
int rc = 0;
uint64_t currentTime = 0;
rc = sd_event_now(event, CLOCK_MONOTONIC, &currentTime);
if (rc < 0)
{
log<level::ERR>("Failed to get the current timestamp",
entry("RC=%d", rc));
throw std::runtime_error("Failed to get current timestamp");
}
// Create character accumulate timer
rc = sd_event_add_time(event,
&accTimerSource,
CLOCK_MONOTONIC,
currentTime + accumulateInterval.count(),
0,
charAccTimerHandler,
static_cast<void *>(&instance));
if (rc < 0)
{
log<level::ERR>("Failed to setup the accumulate timer",
entry("RC = %d", rc));
throw std::runtime_error("Failed to setup accumulate timer");
}
// Create retry interval timer and add to the event loop
rc = sd_event_add_time(event,
&retryTimerSource,
CLOCK_MONOTONIC,
currentTime + retryInterval.count(),
0,
retryTimerHandler,
static_cast<void *>(&instance));
if (rc < 0)
{
log<level::ERR>("Failed to setup the retry timer",
entry("RC = %d", rc));
throw std::runtime_error("Failed to setup retry timer");
}
// Enable the Character Accumulate Timer
rc = sd_event_source_set_enabled(accTimerSource, SD_EVENT_ONESHOT);
if (rc < 0)
{
log<level::ERR>("Failed to enable the accumulate timer",
entry("rc = %d", rc));
throw std::runtime_error("Failed to enable accumulate timer");
}
// Disable the Retry Interval Timer
rc = sd_event_source_set_enabled(retryTimerSource, SD_EVENT_OFF);
if (rc < 0)
{
log<level::ERR>("Failed to disable the retry timer",
entry("RC = %d", rc));
throw std::runtime_error("Failed to disable retry timer");
}
EventSource accEventSource(accTimerSource);
EventSource retryEventSource(retryTimerSource);
accTimerSource = nullptr;
retryTimerSource = nullptr;
TimerMap timer;
timer.emplace(Timers::ACCUMULATE, std::make_tuple(std::move(accEventSource),
accumulateInterval));
timer.emplace(Timers::RETRY, std::make_tuple(std::move(retryEventSource),
retryInterval));
payloadInfo.emplace(instance, std::move(timer));
}
void EventLoop::stopSOLPayloadInstance(uint8_t payloadInst)
{
auto iter = payloadInfo.find(payloadInst);
if (iter == payloadInfo.end())
{
log<level::ERR>("SOL Payload instance not found",
entry("payloadInst=%d", payloadInst));
throw std::runtime_error("SOL payload instance not found");
}
int rc = 0;
/* Destroy the character accumulate timer event source */
rc = sd_event_source_set_enabled(
(std::get<0>(iter->second.at(Timers::ACCUMULATE))).get(),
SD_EVENT_OFF);
if (rc < 0)
{
log<level::ERR>("Failed to disable the character accumulate timer",
entry("RC=%d", rc));
payloadInfo.erase(payloadInst);
throw std::runtime_error("Failed to disable accumulate timer");
}
/* Destroy the retry interval timer event source */
rc = sd_event_source_set_enabled(
(std::get<0>(iter->second.at(Timers::RETRY))).get(),
SD_EVENT_OFF);
if (rc < 0)
{
log<level::ERR>("Failed to disable the retry timer",
entry("RC=%d", rc));
payloadInfo.erase(payloadInst);
throw std::runtime_error("Failed to disable retry timer");
}
payloadInfo.erase(payloadInst);
}
void EventLoop::switchTimer(uint8_t payloadInst,
Timers type,
bool status)
{
auto iter = payloadInfo.find(payloadInst);
if (iter == payloadInfo.end())
{
log<level::ERR>("SOL Payload instance not found",
entry("payloadInst=%d", payloadInst));
throw std::runtime_error("SOL Payload instance not found");
}
int rc = 0;
auto source = (std::get<0>(iter->second.at(type))).get();
auto interval = std::get<1>(iter->second.at(type));
// Turn OFF the timer
if (!status)
{
rc = sd_event_source_set_enabled(source, SD_EVENT_OFF);
if (rc < 0)
{
log<level::ERR>("Failed to disable the timer", entry("RC=%d", rc));
throw std::runtime_error("Failed to disable timer");
}
return;
}
// Turn ON the timer
uint64_t currentTime = 0;
rc = sd_event_now(event, CLOCK_MONOTONIC, &currentTime);
if (rc < 0)
{
log<level::ERR>("Failed to get the current timestamp",
entry("RC=%d", rc));
throw std::runtime_error("Failed to get current timestamp");
}
rc = sd_event_source_set_time(source, currentTime + interval.count());
if (rc < 0)
{
log<level::ERR>("sd_event_source_set_time function failed",
entry("RC=%d", rc));
throw std::runtime_error("sd_event_source_set_time function failed");
}
rc = sd_event_source_set_enabled(source, SD_EVENT_ONESHOT);
if (rc < 0)
{
log<level::ERR>("Failed to enable the timer", entry("RC=%d",rc));
throw std::runtime_error("Failed to enable timer");
}
}
} // namespace eventloop