blob: 990426f36040ed0788876a51a8378e60500c8ed0 [file] [log] [blame]
#include "sd_event_loop.hpp"
#include "main.hpp"
#include "message_handler.hpp"
#include <netinet/in.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <systemd/sd-daemon.h>
#include <boost/asio/io_context.hpp>
#include <phosphor-logging/log.hpp>
#include <sdbusplus/asio/sd_event.hpp>
namespace eventloop
{
using namespace phosphor::logging;
void EventLoop::handleRmcpPacket()
{
try
{
auto channelPtr = std::make_shared<udpsocket::Channel>(udpSocket);
// Initialize the Message Handler with the socket channel
auto msgHandler = std::make_shared<message::Handler>(channelPtr);
// Read the incoming IPMI packet
std::shared_ptr<message::Message> inMessage(msgHandler->receive());
if (inMessage == nullptr)
{
return;
}
// Execute the Command
std::shared_ptr<message::Message> outMessage =
msgHandler->executeCommand(inMessage);
if (outMessage == nullptr)
{
return;
}
// Send the response IPMI Message
msgHandler->send(outMessage);
}
catch (const std::exception& e)
{
log<level::ERR>("Executing the IPMI message failed",
entry("EXCEPTION=%s", e.what()));
}
}
void EventLoop::startRmcpReceive()
{
udpSocket->async_wait(boost::asio::socket_base::wait_read,
[this](const boost::system::error_code& ec) {
if (!ec)
{
io->post([this]() { startRmcpReceive(); });
handleRmcpPacket();
}
});
}
static int consoleInputHandler(sd_event_source* es, int fd, uint32_t revents,
void* userdata)
{
try
{
int readSize = 0;
if (ioctl(fd, FIONREAD, &readSize) < 0)
{
log<level::ERR>("ioctl failed for FIONREAD:",
entry("ERRNO=%d", errno));
return 0;
}
std::vector<uint8_t> buffer(readSize);
auto bufferSize = buffer.size();
ssize_t readDataLen = 0;
readDataLen = read(fd, buffer.data(), bufferSize);
// Update the Console buffer with data read from the socket
if (readDataLen > 0)
{
buffer.resize(readDataLen);
std::get<sol::Manager&>(singletonPool).dataBuffer.write(buffer);
}
else if (readDataLen == 0)
{
log<level::ERR>("Connection Closed for host console socket");
}
else if (readDataLen < 0) // Error
{
log<level::ERR>("Reading from host console socket failed:",
entry("ERRNO=%d", errno));
}
}
catch (std::exception& e)
{
log<level::ERR>(e.what());
}
return 0;
}
static int charAccTimerHandler(sd_event_source* s, uint64_t usec,
void* userdata)
{
auto bufferSize = std::get<sol::Manager&>(singletonPool).dataBuffer.size();
try
{
// The instance is hardcoded to 1, in the case of supporting multiple
// payload instances we would need to populate it from userdata
uint8_t instance = 1;
if (bufferSize > 0)
{
auto& context =
std::get<sol::Manager&>(singletonPool).getContext(instance);
int rc = context.sendOutboundPayload();
if (rc == 0)
{
return 0;
}
}
std::get<eventloop::EventLoop&>(singletonPool)
.switchTimer(instance, Timers::ACCUMULATE, true);
}
catch (std::exception& e)
{
log<level::ERR>(e.what());
}
return 0;
}
static int retryTimerHandler(sd_event_source* s, uint64_t usec, void* userdata)
{
try
{
// The instance is hardcoded to 1, in the case of supporting multiple
// payload instances we would need to populate it from userdata
uint8_t instance = 1;
auto& context =
std::get<sol::Manager&>(singletonPool).getContext(instance);
if (context.retryCounter)
{
--context.retryCounter;
std::get<eventloop::EventLoop&>(singletonPool)
.switchTimer(instance, Timers::RETRY, true);
context.resendPayload(sol::Context::noClear);
}
else
{
context.retryCounter = context.maxRetryCount;
context.resendPayload(sol::Context::clear);
std::get<eventloop::EventLoop&>(singletonPool)
.switchTimer(instance, Timers::RETRY, false);
std::get<eventloop::EventLoop&>(singletonPool)
.switchTimer(instance, Timers::ACCUMULATE, true);
}
}
catch (std::exception& e)
{
log<level::ERR>(e.what());
}
return 0;
}
int EventLoop::startEventLoop()
{
sdbusplus::asio::sd_event_wrapper sdEvents(*io);
event = sdEvents.get();
// set up boost::asio signal handling
boost::asio::signal_set signals(*io, SIGINT, SIGTERM);
signals.async_wait(
[this](const boost::system::error_code& error, int signalNumber) {
udpSocket->cancel();
udpSocket->close();
io->stop();
});
// Create our own socket if SysD did not supply one.
int listensFdCount = sd_listen_fds(0);
if (listensFdCount == 1)
{
if (sd_is_socket(SD_LISTEN_FDS_START, AF_UNSPEC, SOCK_DGRAM, -1))
{
udpSocket = std::make_shared<boost::asio::ip::udp::socket>(
*io, boost::asio::ip::udp::v6(), SD_LISTEN_FDS_START);
}
}
else if (listensFdCount > 1)
{
log<level::ERR>("Too many file descriptors received");
return EXIT_FAILURE;
}
if (!udpSocket)
{
udpSocket = std::make_shared<boost::asio::ip::udp::socket>(
*io, boost::asio::ip::udp::endpoint(boost::asio::ip::udp::v6(),
IPMI_STD_PORT));
if (!udpSocket)
{
log<level::ERR>("Failed to start listening on RMCP socket");
return EXIT_FAILURE;
}
}
startRmcpReceive();
io->run();
return EXIT_SUCCESS;
}
void EventLoop::startHostConsole(const sol::CustomFD& fd)
{
int rc = 0;
if ((fd() == -1) || hostConsole.get())
{
throw std::runtime_error("Console descriptor already added");
}
sd_event_source* source = nullptr;
// Add the fd to the event loop for EPOLLIN
rc = sd_event_add_io(event, &source, fd(), EPOLLIN, consoleInputHandler,
nullptr);
if (rc < 0)
{
throw std::runtime_error("Failed to add socket descriptor");
}
hostConsole.reset(source);
source = nullptr;
}
void EventLoop::stopHostConsole()
{
if (hostConsole.get())
{
// Disable the host console payload
int rc = sd_event_source_set_enabled(hostConsole.get(), SD_EVENT_OFF);
if (rc < 0)
{
log<level::ERR>("Failed to disable the host console socket",
entry("RC=%d", rc));
}
hostConsole.reset();
}
}
void EventLoop::startSOLPayloadInstance(uint8_t payloadInst,
IntervalType accumulateInterval,
IntervalType retryInterval)
{
auto instance = payloadInst;
sd_event_source* accTimerSource = nullptr;
sd_event_source* retryTimerSource = nullptr;
int rc = 0;
uint64_t currentTime = 0;
rc = sd_event_now(event, CLOCK_MONOTONIC, &currentTime);
if (rc < 0)
{
log<level::ERR>("Failed to get the current timestamp",
entry("RC=%d", rc));
throw std::runtime_error("Failed to get current timestamp");
}
// Create character accumulate timer
rc = sd_event_add_time(event, &accTimerSource, CLOCK_MONOTONIC,
currentTime + accumulateInterval.count(), 0,
charAccTimerHandler, static_cast<void*>(&instance));
if (rc < 0)
{
log<level::ERR>("Failed to setup the accumulate timer",
entry("RC=%d", rc));
throw std::runtime_error("Failed to setup accumulate timer");
}
// Create retry interval timer and add to the event loop
rc = sd_event_add_time(event, &retryTimerSource, CLOCK_MONOTONIC,
currentTime + retryInterval.count(), 0,
retryTimerHandler, static_cast<void*>(&instance));
if (rc < 0)
{
log<level::ERR>("Failed to setup the retry timer", entry("RC=%d", rc));
throw std::runtime_error("Failed to setup retry timer");
}
// Enable the Character Accumulate Timer
rc = sd_event_source_set_enabled(accTimerSource, SD_EVENT_ONESHOT);
if (rc < 0)
{
log<level::ERR>("Failed to enable the accumulate timer",
entry("RC=%d", rc));
throw std::runtime_error("Failed to enable accumulate timer");
}
// Disable the Retry Interval Timer
rc = sd_event_source_set_enabled(retryTimerSource, SD_EVENT_OFF);
if (rc < 0)
{
log<level::ERR>("Failed to disable the retry timer",
entry("RC=%d", rc));
throw std::runtime_error("Failed to disable retry timer");
}
EventSource accEventSource(accTimerSource);
EventSource retryEventSource(retryTimerSource);
accTimerSource = nullptr;
retryTimerSource = nullptr;
TimerMap timer;
timer.emplace(Timers::ACCUMULATE, std::make_tuple(std::move(accEventSource),
accumulateInterval));
timer.emplace(Timers::RETRY,
std::make_tuple(std::move(retryEventSource), retryInterval));
payloadInfo.emplace(instance, std::move(timer));
}
void EventLoop::stopSOLPayloadInstance(uint8_t payloadInst)
{
auto iter = payloadInfo.find(payloadInst);
if (iter == payloadInfo.end())
{
log<level::ERR>("SOL Payload instance not found",
entry("PAYLOADINST=%d", payloadInst));
throw std::runtime_error("SOL payload instance not found");
}
int rc = 0;
/* Destroy the character accumulate timer event source */
rc = sd_event_source_set_enabled(
(std::get<0>(iter->second.at(Timers::ACCUMULATE))).get(), SD_EVENT_OFF);
if (rc < 0)
{
log<level::ERR>("Failed to disable the character accumulate timer",
entry("RC=%d", rc));
payloadInfo.erase(payloadInst);
throw std::runtime_error("Failed to disable accumulate timer");
}
/* Destroy the retry interval timer event source */
rc = sd_event_source_set_enabled(
(std::get<0>(iter->second.at(Timers::RETRY))).get(), SD_EVENT_OFF);
if (rc < 0)
{
log<level::ERR>("Failed to disable the retry timer",
entry("RC=%d", rc));
payloadInfo.erase(payloadInst);
throw std::runtime_error("Failed to disable retry timer");
}
payloadInfo.erase(payloadInst);
}
void EventLoop::switchTimer(uint8_t payloadInst, Timers type, bool status)
{
auto iter = payloadInfo.find(payloadInst);
if (iter == payloadInfo.end())
{
log<level::ERR>("SOL Payload instance not found",
entry("PAYLOADINST=%d", payloadInst));
throw std::runtime_error("SOL Payload instance not found");
}
int rc = 0;
auto source = (std::get<0>(iter->second.at(type))).get();
auto interval = std::get<1>(iter->second.at(type));
// Turn OFF the timer
if (!status)
{
rc = sd_event_source_set_enabled(source, SD_EVENT_OFF);
if (rc < 0)
{
log<level::ERR>("Failed to disable the timer", entry("RC=%d", rc));
throw std::runtime_error("Failed to disable timer");
}
return;
}
// Turn ON the timer
uint64_t currentTime = 0;
rc = sd_event_now(event, CLOCK_MONOTONIC, &currentTime);
if (rc < 0)
{
log<level::ERR>("Failed to get the current timestamp",
entry("RC=%d", rc));
throw std::runtime_error("Failed to get current timestamp");
}
rc = sd_event_source_set_time(source, currentTime + interval.count());
if (rc < 0)
{
log<level::ERR>("sd_event_source_set_time function failed",
entry("RC=%d", rc));
throw std::runtime_error("sd_event_source_set_time function failed");
}
rc = sd_event_source_set_enabled(source, SD_EVENT_ONESHOT);
if (rc < 0)
{
log<level::ERR>("Failed to enable the timer", entry("RC=%d", rc));
throw std::runtime_error("Failed to enable timer");
}
}
} // namespace eventloop