blob: 99bb81d1126ff4d81438099837b2d3c6b4e80594 [file] [log] [blame]
#pragma once
#include <chrono>
#include <exception>
#include <list>
#include <memory>
#include <string>
#include <vector>
#include "auth_algo.hpp"
#include "crypt_algo.hpp"
#include "integrity_algo.hpp"
#include "endian.hpp"
#include "socket_channel.hpp"
namespace session
{
using namespace std::chrono_literals;
using SessionID = uint32_t;
enum class Privilege : uint8_t
{
HIGHEST_MATCHING,
CALLBACK,
USER,
OPERATOR,
ADMIN,
OEM,
};
enum class State
{
INACTIVE, // Session is not in use
SETUP_IN_PROGRESS, // Session Setup Sequence is progressing
ACTIVE, // Session is active
TEAR_DOWN_IN_PROGRESS,// When Closing Session
};
// Seconds of inactivity allowed during session setup stage
constexpr auto SESSION_SETUP_TIMEOUT = 5s;
// Seconds of inactivity allowed when session is active
constexpr auto SESSION_INACTIVITY_TIMEOUT = 60s;
/*
* @struct SequenceNumbers Session Sequence Numbers
*
* IPMI v2.0 RMCP+ Session Sequence Numbers are used for rejecting packets that
* may have been duplicated by the network or intentionally replayed. There are
* two sets of Session SequenceNumbers for a given session.One set of inbound
* and outbound sequence numbers is used for authenticated (signed) packets,
* and the other set is used for unauthenticated packets.
*
* The individual Session Sequence Numbers is are initialized to zero whenever
* a session is created and incremented by one at the start of outbound
* processing for a given packet (i.e. the first transmitted packet has a ‘1’
* as the sequence number, not 0). Session Sequence numbers are incremented for
* every packet that is transmitted by a given sender, regardless of whether
* the payload for the packet is a ‘retry’ or not.
*/
struct SequenceNumbers
{
auto get(bool inbound = true) const
{
return inbound ? in : out;
}
void set(uint32_t seqNumber, bool inbound = true)
{
inbound ? (in = seqNumber) : (out = seqNumber);
}
auto increment()
{
return ++out;
}
private:
uint32_t in = 0;
uint32_t out = 0;
};
/*
* @class Session
*
* Encapsulates the data related to an IPMI Session
*
* Authenticated IPMI communication to the BMC is accomplished by establishing
* a session. Once established, a session is identified by a Session ID. The
* Session ID may be thought of as a handle that identifies a connection between
* a given remote user and the BMC. The specification supports having multiple
* active sessions established with the BMC. It is recommended that a BMC
* implementation support at least four simultaneous sessions
*/
class Session
{
public:
Session() = default;
~Session() = default;
Session(const Session&) = delete;
Session& operator=(const Session&) = delete;
Session(Session&&) = default;
Session& operator=(Session&&) = default;
/*
* @brief Session Constructor
*
* This is issued by the Session Manager when a session is started for
* the Open SessionRequest command
*
* @param[in] inRemoteConsoleSessID - Remote Console Session ID
* @param[in] priv - Privilege Level requested in the Command
*/
Session(SessionID inRemoteConsoleSessID, Privilege priv):
curPrivLevel(priv),
bmcSessionID(std::rand()),
remoteConsoleSessionID(inRemoteConsoleSessID) {}
auto getBMCSessionID() const
{
return bmcSessionID;
}
auto getRCSessionID() const
{
return remoteConsoleSessionID;
}
auto getAuthAlgo() const
{
if(authAlgoInterface)
{
return authAlgoInterface.get();
}
else
{
throw std::runtime_error("Authentication Algorithm Empty");
}
}
void setAuthAlgo(std::unique_ptr<cipher::rakp_auth::Interface>&&
inAuthAlgo)
{
authAlgoInterface = std::move(inAuthAlgo);
}
/*
* @brief Get Session's Integrity Algorithm
*
* @return pointer to the integrity algorithm
*/
auto getIntegrityAlgo() const
{
if(integrityAlgoInterface)
{
return integrityAlgoInterface.get();
}
else
{
throw std::runtime_error("Integrity Algorithm Empty");
}
}
/*
* @brief Set Session's Integrity Algorithm
*
* @param[in] integrityAlgo - unique pointer to integrity algorithm
* instance
*/
void setIntegrityAlgo(
std::unique_ptr<cipher::integrity::Interface>&& integrityAlgo)
{
integrityAlgoInterface = std::move(integrityAlgo);
}
/*
* @brief Get Session's Confidentiality Algorithm
*
* @return pointer to the confidentiality algorithm
*/
auto getCryptAlgo() const
{
if(cryptAlgoInterface)
{
return cryptAlgoInterface.get();
}
else
{
throw std::runtime_error("Confidentiality Algorithm Empty");
}
}
/*
* @brief Set Session's Confidentiality Algorithm
*
* @param[in] confAlgo - unique pointer to confidentiality algorithm
* instance
*/
void setCryptAlgo(
std::unique_ptr<cipher::crypt::Interface>&& cryptAlgo)
{
cryptAlgoInterface = std::move(cryptAlgo);
}
void updateLastTransactionTime()
{
lastTime = std::chrono::steady_clock::now();
}
/*
* @brief Session Active Status
*
* Session Active status is decided upon the Session State and the last
* transaction time is compared against the session inactivity timeout.
*
*/
bool isSessionActive();
/*
* @brief Session's Current Privilege Level
*/
Privilege curPrivLevel;
/*
* @brief Session's Maximum Privilege Level
*/
Privilege maxPrivLevel = Privilege::CALLBACK;
SequenceNumbers sequenceNums; // Session Sequence Numbers
State state = State::INACTIVE; // Session State
std::vector<char> userName; // User Name
private:
SessionID bmcSessionID = 0; //BMC Session ID
SessionID remoteConsoleSessionID = 0; //Remote Console Session ID
// Authentication Algorithm Interface for the Session
std::unique_ptr<cipher::rakp_auth::Interface> authAlgoInterface;
// Integrity Algorithm Interface for the Session
std::unique_ptr<cipher::integrity::Interface> integrityAlgoInterface =
nullptr;
// Confidentiality Algorithm Interface for the Session
std::unique_ptr<cipher::crypt::Interface> cryptAlgoInterface =
nullptr;
// Last Transaction Time
decltype(std::chrono::steady_clock::now()) lastTime;
};
} // namespace session