Tom Joseph | 1e5a76a | 2017-01-30 19:25:06 +0530 | [diff] [blame^] | 1 | #include <openssl/evp.h> |
| 2 | #include <openssl/hmac.h> |
| 3 | #include <openssl/rand.h> |
| 4 | #include <openssl/sha.h> |
| 5 | #include <iostream> |
| 6 | #include <vector> |
| 7 | #include "crypt_algo.hpp" |
| 8 | #include "integrity_algo.hpp" |
| 9 | #include "message_parsers.hpp" |
| 10 | #include <gtest/gtest.h> |
| 11 | |
| 12 | TEST(IntegrityAlgo, HMAC_SHA1_96_GenerateIntegrityDataCheck) |
| 13 | { |
| 14 | /* |
| 15 | * Step-1 Generate Integrity Data for the packet, using the implemented API |
| 16 | */ |
| 17 | // Packet = RMCP Session Header (4 bytes) + Packet (8 bytes) |
| 18 | std::vector<uint8_t> packet = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; |
| 19 | |
| 20 | // Hardcoded Session Integrity Key |
| 21 | std::vector<uint8_t> sik = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, |
| 22 | 13, 14, 15, 16}; |
| 23 | |
| 24 | auto algoPtr = std::make_unique<cipher::integrity::AlgoSHA1>(sik); |
| 25 | |
| 26 | ASSERT_EQ(true, (algoPtr != NULL)); |
| 27 | |
| 28 | // Generate the Integrity Data |
| 29 | auto response = algoPtr->generateIntegrityData(packet); |
| 30 | |
| 31 | EXPECT_EQ(true, (response.size() == |
| 32 | cipher::integrity::AlgoSHA1::SHA1_96_AUTHCODE_LENGTH)); |
| 33 | |
| 34 | /* |
| 35 | * Step-2 Generate Integrity data using OpenSSL SHA1 algorithm |
| 36 | */ |
| 37 | cipher::integrity::Key K1; |
| 38 | constexpr cipher::integrity::Key const1 = { 0x01, 0x01, 0x01, 0x01, 0x01, |
| 39 | 0x01, 0x01, 0x01, 0x01, 0x01, |
| 40 | 0x01, 0x01, 0x01, 0x01, 0x01, |
| 41 | 0x01, 0x01, 0x01, 0x01, 0x01 |
| 42 | }; |
| 43 | |
| 44 | // Generated K1 for the integrity algorithm with the additional key keyed |
| 45 | // with SIK. |
| 46 | unsigned int mdLen = 0; |
| 47 | if (HMAC(EVP_sha1(), sik.data(), sik.size(), const1.data(), |
| 48 | const1.size(), K1.data(), &mdLen) == NULL) |
| 49 | { |
| 50 | FAIL() << "Generating Key1 failed"; |
| 51 | } |
| 52 | |
| 53 | mdLen = 0; |
| 54 | cipher::integrity::Buffer output(SHA_DIGEST_LENGTH); |
| 55 | size_t length = packet.size() - message::parser::RMCP_SESSION_HEADER_SIZE; |
| 56 | |
| 57 | if (HMAC(EVP_sha1(), K1.data(), K1.size(), |
| 58 | packet.data() + message::parser::RMCP_SESSION_HEADER_SIZE, |
| 59 | length, |
| 60 | output.data(), &mdLen) == NULL) |
| 61 | { |
| 62 | FAIL() << "Generating integrity data failed"; |
| 63 | } |
| 64 | |
| 65 | output.resize(cipher::integrity::AlgoSHA1::SHA1_96_AUTHCODE_LENGTH); |
| 66 | |
| 67 | /* |
| 68 | * Step-3 Check if the integrity data we generated using the implemented API |
| 69 | * matches with one generated by OpenSSL SHA1 algorithm. |
| 70 | */ |
| 71 | auto check = std::equal(output.begin(), output.end(), response.begin()); |
| 72 | EXPECT_EQ(true, check); |
| 73 | } |
| 74 | |
| 75 | TEST(IntegrityAlgo, HMAC_SHA1_96_VerifyIntegrityDataPass) |
| 76 | { |
| 77 | /* |
| 78 | * Step-1 Generate Integrity data using OpenSSL SHA1 algorithm |
| 79 | */ |
| 80 | |
| 81 | // Packet = RMCP Session Header (4 bytes) + Packet (8 bytes) |
| 82 | std::vector<uint8_t> packet = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; |
| 83 | |
| 84 | // Hardcoded Session Integrity Key |
| 85 | std::vector<uint8_t> sik = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, |
| 86 | 13, 14, 15, 16}; |
| 87 | |
| 88 | cipher::integrity::Key K1; |
| 89 | constexpr cipher::integrity::Key const1 = { 0x01, 0x01, 0x01, 0x01, 0x01, |
| 90 | 0x01, 0x01, 0x01, 0x01, 0x01, |
| 91 | 0x01, 0x01, 0x01, 0x01, 0x01, |
| 92 | 0x01, 0x01, 0x01, 0x01, 0x01 |
| 93 | }; |
| 94 | |
| 95 | // Generated K1 for the integrity algorithm with the additional key keyed |
| 96 | // with SIK. |
| 97 | unsigned int mdLen = 0; |
| 98 | if (HMAC(EVP_sha1(), sik.data(), sik.size(), const1.data(), |
| 99 | const1.size(), K1.data(), &mdLen) == NULL) |
| 100 | { |
| 101 | FAIL() << "Generating Key1 failed"; |
| 102 | } |
| 103 | |
| 104 | mdLen = 0; |
| 105 | cipher::integrity::Buffer output(SHA_DIGEST_LENGTH); |
| 106 | size_t length = packet.size() - message::parser::RMCP_SESSION_HEADER_SIZE; |
| 107 | |
| 108 | if (HMAC(EVP_sha1(), K1.data(), K1.size(), |
| 109 | packet.data() + message::parser::RMCP_SESSION_HEADER_SIZE, |
| 110 | length, |
| 111 | output.data(), &mdLen) == NULL) |
| 112 | { |
| 113 | FAIL() << "Generating integrity data failed"; |
| 114 | } |
| 115 | |
| 116 | output.resize(cipher::integrity::AlgoSHA1::SHA1_96_AUTHCODE_LENGTH); |
| 117 | |
| 118 | /* |
| 119 | * Step-2 Insert the integrity data into the packet |
| 120 | */ |
| 121 | auto packetSize = packet.size(); |
| 122 | packet.insert(packet.end(), output.begin(), output.end()); |
| 123 | |
| 124 | // Point to the integrity data in the packet |
| 125 | auto integrityIter = packet.cbegin(); |
| 126 | std::advance(integrityIter, packetSize); |
| 127 | |
| 128 | /* |
| 129 | * Step-3 Invoke the verifyIntegrityData API and validate the response |
| 130 | */ |
| 131 | |
| 132 | auto algoPtr = std::make_unique<cipher::integrity::AlgoSHA1>(sik); |
| 133 | ASSERT_EQ(true, (algoPtr != NULL)); |
| 134 | |
| 135 | auto check = algoPtr->verifyIntegrityData( |
| 136 | packet, |
| 137 | packetSize - message::parser::RMCP_SESSION_HEADER_SIZE, |
| 138 | integrityIter); |
| 139 | |
| 140 | EXPECT_EQ(true, check); |
| 141 | } |
| 142 | |
| 143 | TEST(IntegrityAlgo, HMAC_SHA1_96_VerifyIntegrityDataFail) |
| 144 | { |
| 145 | /* |
| 146 | * Step-1 Add hardcoded Integrity data to the packet |
| 147 | */ |
| 148 | |
| 149 | // Packet = RMCP Session Header (4 bytes) + Packet (8 bytes) |
| 150 | std::vector<uint8_t> packet = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; |
| 151 | |
| 152 | std::vector<uint8_t> integrity = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; |
| 153 | |
| 154 | packet.insert(packet.end(), integrity.begin(), integrity.end()); |
| 155 | |
| 156 | // Point to the integrity data in the packet |
| 157 | auto integrityIter = packet.cbegin(); |
| 158 | std::advance(integrityIter, packet.size()); |
| 159 | |
| 160 | /* |
| 161 | * Step-2 Invoke the verifyIntegrityData API and validate the response |
| 162 | */ |
| 163 | |
| 164 | // Hardcoded Session Integrity Key |
| 165 | std::vector<uint8_t> sik = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, |
| 166 | 13, 14, 15, 16}; |
| 167 | |
| 168 | auto algoPtr = std::make_unique<cipher::integrity::AlgoSHA1>(sik); |
| 169 | |
| 170 | ASSERT_EQ(true, (algoPtr != NULL)); |
| 171 | |
| 172 | |
| 173 | // Verify the Integrity Data |
| 174 | auto check = algoPtr->verifyIntegrityData( |
| 175 | packet, |
| 176 | packet.size() - message::parser::RMCP_SESSION_HEADER_SIZE, |
| 177 | integrityIter); |
| 178 | |
| 179 | EXPECT_EQ(false, check); |
| 180 | } |
| 181 | |
| 182 | TEST(CryptAlgo, AES_CBC_128_EncryptPayloadValidate) |
| 183 | { |
| 184 | /* |
| 185 | * Step-1 Generate the encrypted data using the implemented API for |
| 186 | * AES-CBC-128 |
| 187 | */ |
| 188 | std::vector<uint8_t> payload = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; |
| 189 | |
| 190 | // Hardcoded Session Integrity Key |
| 191 | std::vector<uint8_t> sik = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, |
| 192 | 13, 14, 15, 16}; |
| 193 | |
| 194 | auto cryptPtr = std::make_unique<cipher::crypt::AlgoAES128>(sik); |
| 195 | |
| 196 | ASSERT_EQ(true, (cryptPtr != NULL)); |
| 197 | |
| 198 | auto cipher = cryptPtr->encryptPayload(payload); |
| 199 | |
| 200 | /* |
| 201 | * Step-2 Decrypt the encrypted payload using OpenSSL EVP_aes_128_cbc() |
| 202 | * implementation |
| 203 | */ |
| 204 | |
| 205 | EVP_CIPHER_CTX ctx; |
| 206 | EVP_CIPHER_CTX_init(&ctx); |
| 207 | cipher::crypt::key k2; |
| 208 | unsigned int mdLen = 0; |
| 209 | constexpr cipher::crypt::key const1 = { 0x02, 0x02, 0x02, 0x02, 0x02, |
| 210 | 0x02, 0x02, 0x02, 0x02, 0x02, |
| 211 | 0x02, 0x02, 0x02, 0x02, 0x02, |
| 212 | 0x02, 0x02, 0x02, 0x02, 0x02 |
| 213 | }; |
| 214 | |
| 215 | // Generated K2 for the confidentiality algorithm with the additional key |
| 216 | // keyed with SIK. |
| 217 | if (HMAC(EVP_sha1(), sik.data(), sik.size(), const1.data(), |
| 218 | const1.size(), k2.data(), &mdLen) == NULL) |
| 219 | { |
| 220 | FAIL() << "Generating K2 for confidentiality algorithm failed"; |
| 221 | } |
| 222 | |
| 223 | if (!EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, k2.data(), |
| 224 | cipher.data())) |
| 225 | { |
| 226 | EVP_CIPHER_CTX_cleanup(&ctx); |
| 227 | FAIL() << "EVP_DecryptInit_ex failed for type AES-CBC-128"; |
| 228 | } |
| 229 | |
| 230 | EVP_CIPHER_CTX_set_padding(&ctx, 0); |
| 231 | std::vector<uint8_t> output( |
| 232 | cipher.size() + cipher::crypt::AlgoAES128::AESCBC128BlockSize); |
| 233 | int outputLen = 0; |
| 234 | |
| 235 | if (!EVP_DecryptUpdate(&ctx, output.data(), &outputLen, |
| 236 | cipher.data() + |
| 237 | cipher::crypt::AlgoAES128::AESCBC128ConfHeader, |
| 238 | cipher.size() - |
| 239 | cipher::crypt::AlgoAES128::AESCBC128ConfHeader)) |
| 240 | { |
| 241 | EVP_CIPHER_CTX_cleanup(&ctx); |
| 242 | FAIL() << "EVP_DecryptUpdate failed"; |
| 243 | } |
| 244 | |
| 245 | output.resize(outputLen); |
| 246 | EVP_CIPHER_CTX_cleanup(&ctx); |
| 247 | |
| 248 | /* |
| 249 | * Step -3 Check if the plain payload matches with the decrypted one |
| 250 | */ |
| 251 | auto check = std::equal(payload.begin(), payload.end(), output.begin()); |
| 252 | EXPECT_EQ(true, check); |
| 253 | } |
| 254 | |
| 255 | TEST(CryptAlgo, AES_CBC_128_DecryptPayloadValidate) |
| 256 | { |
| 257 | /* |
| 258 | * Step-1 Encrypt the payload using OpenSSL EVP_aes_128_cbc() |
| 259 | * implementation |
| 260 | */ |
| 261 | |
| 262 | std::vector<uint8_t> payload = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, |
| 263 | 13, 14, 15, 16}; |
| 264 | payload.resize(payload.size() + 1); |
| 265 | payload.back() = 0; |
| 266 | |
| 267 | // Hardcoded Session Integrity Key |
| 268 | std::vector<uint8_t> sik = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, |
| 269 | 13, 14, 15, 16}; |
| 270 | EVP_CIPHER_CTX ctx; |
| 271 | EVP_CIPHER_CTX_init(&ctx); |
| 272 | cipher::crypt::key k2; |
| 273 | unsigned int mdLen = 0; |
| 274 | constexpr cipher::crypt::key const1 = { 0x02, 0x02, 0x02, 0x02, 0x02, |
| 275 | 0x02, 0x02, 0x02, 0x02, 0x02, |
| 276 | 0x02, 0x02, 0x02, 0x02, 0x02, |
| 277 | 0x02, 0x02, 0x02, 0x02, 0x02 |
| 278 | }; |
| 279 | std::vector<uint8_t> output( |
| 280 | payload.size() + cipher::crypt::AlgoAES128::AESCBC128BlockSize); |
| 281 | |
| 282 | if (!RAND_bytes(output.data(), |
| 283 | cipher::crypt::AlgoAES128::AESCBC128ConfHeader)) |
| 284 | { |
| 285 | FAIL() << "RAND_bytes failed"; |
| 286 | } |
| 287 | |
| 288 | // Generated K2 for the confidentiality algorithm with the additional key |
| 289 | // keyed with SIK. |
| 290 | if (HMAC(EVP_sha1(), sik.data(), sik.size(), const1.data(), |
| 291 | const1.size(), k2.data(), &mdLen) == NULL) |
| 292 | { |
| 293 | FAIL() << "Generating K2 for confidentiality algorithm failed"; |
| 294 | } |
| 295 | |
| 296 | if (!EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, k2.data(), |
| 297 | output.data())) |
| 298 | { |
| 299 | EVP_CIPHER_CTX_cleanup(&ctx); |
| 300 | FAIL() << "EVP_EncryptInit_ex failed for type AES-CBC-128"; |
| 301 | } |
| 302 | |
| 303 | EVP_CIPHER_CTX_set_padding(&ctx, 0); |
| 304 | int outputLen = 0; |
| 305 | |
| 306 | if (!EVP_EncryptUpdate(&ctx, |
| 307 | output.data() + |
| 308 | cipher::crypt::AlgoAES128::AESCBC128ConfHeader, |
| 309 | &outputLen, |
| 310 | payload.data(), |
| 311 | payload.size())) |
| 312 | { |
| 313 | EVP_CIPHER_CTX_cleanup(&ctx); |
| 314 | FAIL() << "EVP_EncryptUpdate failed"; |
| 315 | } |
| 316 | |
| 317 | output.resize(cipher::crypt::AlgoAES128::AESCBC128ConfHeader + outputLen); |
| 318 | EVP_CIPHER_CTX_cleanup(&ctx); |
| 319 | |
| 320 | /* |
| 321 | * Step-2 Decrypt the encrypted payload using the implemented API for |
| 322 | * AES-CBC-128 |
| 323 | */ |
| 324 | |
| 325 | auto cryptPtr = std::make_unique<cipher::crypt::AlgoAES128>(sik); |
| 326 | |
| 327 | ASSERT_EQ(true, (cryptPtr != NULL)); |
| 328 | |
| 329 | auto plain = cryptPtr->decryptPayload(output, 0, output.size()); |
| 330 | |
| 331 | /* |
| 332 | * Step -3 Check if the plain payload matches with the decrypted one |
| 333 | */ |
| 334 | auto check = std::equal(payload.begin(), payload.end(), plain.begin()); |
| 335 | EXPECT_EQ(true, check); |
| 336 | } |