blob: d7ae9eca548361c81156147dc3a6e742a1cae557 [file] [log] [blame]
#include "pid/ec/pid.hpp"
#include "pid/zone.hpp"
#include "sensors/manager.hpp"
#include "test/controller_mock.hpp"
#include "test/helpers.hpp"
#include "test/sensor_mock.hpp"
#include <sdbusplus/test/sdbus_mock.hpp>
#include <chrono>
#include <cstring>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
namespace pid_control
{
namespace
{
using ::testing::_;
using ::testing::IsNull;
using ::testing::Return;
using ::testing::StrEq;
static std::string modeInterface = "xyz.openbmc_project.Control.Mode";
namespace
{
TEST(PidZoneConstructorTest, BoringConstructorTest)
{
// Build a PID Zone.
sdbusplus::SdBusMock sdbus_mock_passive, sdbus_mock_host, sdbus_mock_mode;
auto bus_mock_passive = sdbusplus::get_mocked_new(&sdbus_mock_passive);
auto bus_mock_host = sdbusplus::get_mocked_new(&sdbus_mock_host);
auto bus_mock_mode = sdbusplus::get_mocked_new(&sdbus_mock_mode);
EXPECT_CALL(sdbus_mock_host,
sd_bus_add_object_manager(
IsNull(), _, StrEq("/xyz/openbmc_project/extsensors")))
.WillOnce(Return(0));
SensorManager m(bus_mock_passive, bus_mock_host);
bool defer = true;
const char* objPath = "/path/";
int64_t zone = 1;
double minThermalOutput = 1000.0;
double failSafePercent = 0.75;
double d;
std::vector<std::string> properties;
SetupDbusObject(&sdbus_mock_mode, defer, objPath, modeInterface, properties,
&d);
PIDZone p(zone, minThermalOutput, failSafePercent, m, bus_mock_mode,
objPath, defer);
// Success.
}
} // namespace
class PidZoneTest : public ::testing::Test
{
protected:
PidZoneTest() :
property_index(), properties(), sdbus_mock_passive(), sdbus_mock_host(),
sdbus_mock_mode()
{
EXPECT_CALL(sdbus_mock_host,
sd_bus_add_object_manager(
IsNull(), _, StrEq("/xyz/openbmc_project/extsensors")))
.WillOnce(Return(0));
auto bus_mock_passive = sdbusplus::get_mocked_new(&sdbus_mock_passive);
auto bus_mock_host = sdbusplus::get_mocked_new(&sdbus_mock_host);
auto bus_mock_mode = sdbusplus::get_mocked_new(&sdbus_mock_mode);
// Compiler weirdly not happy about just instantiating mgr(...);
SensorManager m(bus_mock_passive, bus_mock_host);
mgr = std::move(m);
SetupDbusObject(&sdbus_mock_mode, defer, objPath, modeInterface,
properties, &property_index);
zone =
std::make_unique<PIDZone>(zoneId, minThermalOutput, failSafePercent,
mgr, bus_mock_mode, objPath, defer);
}
// unused
double property_index;
std::vector<std::string> properties;
sdbusplus::SdBusMock sdbus_mock_passive;
sdbusplus::SdBusMock sdbus_mock_host;
sdbusplus::SdBusMock sdbus_mock_mode;
int64_t zoneId = 1;
double minThermalOutput = 1000.0;
double failSafePercent = 0.75;
bool defer = true;
const char* objPath = "/path/";
SensorManager mgr;
std::unique_ptr<PIDZone> zone;
};
TEST_F(PidZoneTest, GetZoneId_ReturnsExpected)
{
// Verifies the zoneId returned is what we expect.
EXPECT_EQ(zoneId, zone->getZoneID());
}
TEST_F(PidZoneTest, GetAndSetManualModeTest_BehavesAsExpected)
{
// Verifies that the zone starts in manual mode. Verifies that one can set
// the mode.
EXPECT_FALSE(zone->getManualMode());
zone->setManualMode(true);
EXPECT_TRUE(zone->getManualMode());
}
TEST_F(PidZoneTest, RpmSetPoints_AddMaxClear_BehaveAsExpected)
{
// Tests addSetPoint, clearSetPoints, determineMaxSetPointRequest
// and getMinThermalSetpoint.
// At least one value must be above the minimum thermal setpoint used in
// the constructor otherwise it'll choose that value
std::vector<double> values = {100, 200, 300, 400, 500, 5000};
for (auto v : values)
{
zone->addSetPoint(v);
}
// This will pull the maximum RPM setpoint request.
zone->determineMaxSetPointRequest();
EXPECT_EQ(5000, zone->getMaxSetPointRequest());
// Clear the values, so it'll choose the minimum thermal setpoint.
zone->clearSetPoints();
// This will go through the RPM set point values and grab the maximum.
zone->determineMaxSetPointRequest();
EXPECT_EQ(zone->getMinThermalSetpoint(), zone->getMaxSetPointRequest());
}
TEST_F(PidZoneTest, RpmSetPoints_AddBelowMinimum_BehavesAsExpected)
{
// Tests adding several RPM setpoints, however, they're all lower than the
// configured minimal thermal setpoint RPM value.
std::vector<double> values = {100, 200, 300, 400, 500};
for (auto v : values)
{
zone->addSetPoint(v);
}
// This will pull the maximum RPM setpoint request.
zone->determineMaxSetPointRequest();
// Verifies the value returned in the minimal thermal rpm set point.
EXPECT_EQ(zone->getMinThermalSetpoint(), zone->getMaxSetPointRequest());
}
TEST_F(PidZoneTest, GetFailSafePercent_ReturnsExpected)
{
// Verify the value used to create the object is stored.
EXPECT_EQ(failSafePercent, zone->getFailSafePercent());
}
TEST_F(PidZoneTest, ThermalInputs_FailsafeToValid_ReadsSensors)
{
// This test will add a couple thermal inputs, and verify that the zone
// initializes into failsafe mode, and will read each sensor.
std::string name1 = "temp1";
int64_t timeout = 1;
std::unique_ptr<Sensor> sensor1 =
std::make_unique<SensorMock>(name1, timeout);
SensorMock* sensor_ptr1 = reinterpret_cast<SensorMock*>(sensor1.get());
std::string name2 = "temp2";
std::unique_ptr<Sensor> sensor2 =
std::make_unique<SensorMock>(name2, timeout);
SensorMock* sensor_ptr2 = reinterpret_cast<SensorMock*>(sensor2.get());
std::string type = "unchecked";
mgr.addSensor(type, name1, std::move(sensor1));
EXPECT_EQ(mgr.getSensor(name1), sensor_ptr1);
mgr.addSensor(type, name2, std::move(sensor2));
EXPECT_EQ(mgr.getSensor(name2), sensor_ptr2);
// Now that the sensors exist, add them to the zone.
zone->addThermalInput(name1);
zone->addThermalInput(name2);
// Initialize Zone
zone->initializeCache();
// Verify now in failsafe mode.
EXPECT_TRUE(zone->getFailSafeMode());
ReadReturn r1;
r1.value = 10.0;
r1.updated = std::chrono::high_resolution_clock::now();
EXPECT_CALL(*sensor_ptr1, read()).WillOnce(Return(r1));
ReadReturn r2;
r2.value = 11.0;
r2.updated = std::chrono::high_resolution_clock::now();
EXPECT_CALL(*sensor_ptr2, read()).WillOnce(Return(r2));
// Read the sensors, this will put the values into the cache.
zone->updateSensors();
// We should no longer be in failsafe mode.
EXPECT_FALSE(zone->getFailSafeMode());
EXPECT_EQ(r1.value, zone->getCachedValue(name1));
EXPECT_EQ(r2.value, zone->getCachedValue(name2));
}
TEST_F(PidZoneTest, FanInputTest_VerifiesFanValuesCached)
{
// This will add a couple fan inputs, and verify the values are cached.
std::string name1 = "fan1";
int64_t timeout = 2;
std::unique_ptr<Sensor> sensor1 =
std::make_unique<SensorMock>(name1, timeout);
SensorMock* sensor_ptr1 = reinterpret_cast<SensorMock*>(sensor1.get());
std::string name2 = "fan2";
std::unique_ptr<Sensor> sensor2 =
std::make_unique<SensorMock>(name2, timeout);
SensorMock* sensor_ptr2 = reinterpret_cast<SensorMock*>(sensor2.get());
std::string type = "unchecked";
mgr.addSensor(type, name1, std::move(sensor1));
EXPECT_EQ(mgr.getSensor(name1), sensor_ptr1);
mgr.addSensor(type, name2, std::move(sensor2));
EXPECT_EQ(mgr.getSensor(name2), sensor_ptr2);
// Now that the sensors exist, add them to the zone.
zone->addFanInput(name1);
zone->addFanInput(name2);
// Initialize Zone
zone->initializeCache();
ReadReturn r1;
r1.value = 10.0;
r1.updated = std::chrono::high_resolution_clock::now();
EXPECT_CALL(*sensor_ptr1, read()).WillOnce(Return(r1));
ReadReturn r2;
r2.value = 11.0;
r2.updated = std::chrono::high_resolution_clock::now();
EXPECT_CALL(*sensor_ptr2, read()).WillOnce(Return(r2));
// Method under test will read through each fan sensor for the zone and
// cache the values.
zone->updateFanTelemetry();
EXPECT_EQ(r1.value, zone->getCachedValue(name1));
EXPECT_EQ(r2.value, zone->getCachedValue(name2));
}
TEST_F(PidZoneTest, ThermalInput_ValueTimeoutEntersFailSafeMode)
{
// On the second updateSensors call, the updated timestamp will be beyond
// the timeout limit.
int64_t timeout = 1;
std::string name1 = "temp1";
std::unique_ptr<Sensor> sensor1 =
std::make_unique<SensorMock>(name1, timeout);
SensorMock* sensor_ptr1 = reinterpret_cast<SensorMock*>(sensor1.get());
std::string name2 = "temp2";
std::unique_ptr<Sensor> sensor2 =
std::make_unique<SensorMock>(name2, timeout);
SensorMock* sensor_ptr2 = reinterpret_cast<SensorMock*>(sensor2.get());
std::string type = "unchecked";
mgr.addSensor(type, name1, std::move(sensor1));
EXPECT_EQ(mgr.getSensor(name1), sensor_ptr1);
mgr.addSensor(type, name2, std::move(sensor2));
EXPECT_EQ(mgr.getSensor(name2), sensor_ptr2);
zone->addThermalInput(name1);
zone->addThermalInput(name2);
// Initialize Zone
zone->initializeCache();
// Verify now in failsafe mode.
EXPECT_TRUE(zone->getFailSafeMode());
ReadReturn r1;
r1.value = 10.0;
r1.updated = std::chrono::high_resolution_clock::now();
EXPECT_CALL(*sensor_ptr1, read()).WillOnce(Return(r1));
ReadReturn r2;
r2.value = 11.0;
r2.updated = std::chrono::high_resolution_clock::now();
EXPECT_CALL(*sensor_ptr2, read()).WillOnce(Return(r2));
zone->updateSensors();
EXPECT_FALSE(zone->getFailSafeMode());
// Ok, so we're not in failsafe mode, so let's set updated to the past.
// sensor1 will have an updated field older than its timeout value, but
// sensor2 will be fine. :D
r1.updated -= std::chrono::seconds(3);
r2.updated = std::chrono::high_resolution_clock::now();
EXPECT_CALL(*sensor_ptr1, read()).WillOnce(Return(r1));
EXPECT_CALL(*sensor_ptr2, read()).WillOnce(Return(r2));
// Method under test will read each sensor. One sensor's value is older
// than the timeout for that sensor and this triggers failsafe mode.
zone->updateSensors();
EXPECT_TRUE(zone->getFailSafeMode());
}
TEST_F(PidZoneTest, FanInputTest_FailsafeToValid_ReadsSensors)
{
// This will add a couple fan inputs, and verify the values are cached.
std::string name1 = "fan1";
int64_t timeout = 2;
std::unique_ptr<Sensor> sensor1 =
std::make_unique<SensorMock>(name1, timeout);
SensorMock* sensor_ptr1 = reinterpret_cast<SensorMock*>(sensor1.get());
std::string name2 = "fan2";
std::unique_ptr<Sensor> sensor2 =
std::make_unique<SensorMock>(name2, timeout);
SensorMock* sensor_ptr2 = reinterpret_cast<SensorMock*>(sensor2.get());
std::string type = "unchecked";
mgr.addSensor(type, name1, std::move(sensor1));
EXPECT_EQ(mgr.getSensor(name1), sensor_ptr1);
mgr.addSensor(type, name2, std::move(sensor2));
EXPECT_EQ(mgr.getSensor(name2), sensor_ptr2);
// Now that the sensors exist, add them to the zone.
zone->addFanInput(name1);
zone->addFanInput(name2);
// Initialize Zone
zone->initializeCache();
// Verify now in failsafe mode.
EXPECT_TRUE(zone->getFailSafeMode());
ReadReturn r1;
r1.value = 10.0;
r1.updated = std::chrono::high_resolution_clock::now();
EXPECT_CALL(*sensor_ptr1, read()).WillOnce(Return(r1));
ReadReturn r2;
r2.value = 11.0;
r2.updated = std::chrono::high_resolution_clock::now();
EXPECT_CALL(*sensor_ptr2, read()).WillOnce(Return(r2));
// Method under test will read through each fan sensor for the zone and
// cache the values.
zone->updateFanTelemetry();
// We should no longer be in failsafe mode.
EXPECT_FALSE(zone->getFailSafeMode());
EXPECT_EQ(r1.value, zone->getCachedValue(name1));
EXPECT_EQ(r2.value, zone->getCachedValue(name2));
}
TEST_F(PidZoneTest, FanInputTest_ValueTimeoutEntersFailSafeMode)
{
// This will add a couple fan inputs, and verify the values are cached.
std::string name1 = "fan1";
int64_t timeout = 2;
std::unique_ptr<Sensor> sensor1 =
std::make_unique<SensorMock>(name1, timeout);
SensorMock* sensor_ptr1 = reinterpret_cast<SensorMock*>(sensor1.get());
std::string name2 = "fan2";
std::unique_ptr<Sensor> sensor2 =
std::make_unique<SensorMock>(name2, timeout);
SensorMock* sensor_ptr2 = reinterpret_cast<SensorMock*>(sensor2.get());
std::string type = "unchecked";
mgr.addSensor(type, name1, std::move(sensor1));
EXPECT_EQ(mgr.getSensor(name1), sensor_ptr1);
mgr.addSensor(type, name2, std::move(sensor2));
EXPECT_EQ(mgr.getSensor(name2), sensor_ptr2);
// Now that the sensors exist, add them to the zone.
zone->addFanInput(name1);
zone->addFanInput(name2);
// Initialize Zone
zone->initializeCache();
// Verify now in failsafe mode.
EXPECT_TRUE(zone->getFailSafeMode());
ReadReturn r1;
r1.value = 10.0;
r1.updated = std::chrono::high_resolution_clock::now();
EXPECT_CALL(*sensor_ptr1, read()).WillOnce(Return(r1));
ReadReturn r2;
r2.value = 11.0;
r2.updated = std::chrono::high_resolution_clock::now();
EXPECT_CALL(*sensor_ptr2, read()).WillOnce(Return(r2));
// Method under test will read through each fan sensor for the zone and
// cache the values.
zone->updateFanTelemetry();
// We should no longer be in failsafe mode.
EXPECT_FALSE(zone->getFailSafeMode());
r1.updated -= std::chrono::seconds(3);
r2.updated = std::chrono::high_resolution_clock::now();
EXPECT_CALL(*sensor_ptr1, read()).WillOnce(Return(r1));
EXPECT_CALL(*sensor_ptr2, read()).WillOnce(Return(r2));
zone->updateFanTelemetry();
EXPECT_TRUE(zone->getFailSafeMode());
}
TEST_F(PidZoneTest, GetSensorTest_ReturnsExpected)
{
// One can grab a sensor from the manager through the zone.
int64_t timeout = 1;
std::string name1 = "temp1";
std::unique_ptr<Sensor> sensor1 =
std::make_unique<SensorMock>(name1, timeout);
SensorMock* sensor_ptr1 = reinterpret_cast<SensorMock*>(sensor1.get());
std::string type = "unchecked";
mgr.addSensor(type, name1, std::move(sensor1));
EXPECT_EQ(mgr.getSensor(name1), sensor_ptr1);
zone->addThermalInput(name1);
// Verify method under test returns the pointer we expect.
EXPECT_EQ(mgr.getSensor(name1), zone->getSensor(name1));
}
TEST_F(PidZoneTest, AddThermalPIDTest_VerifiesThermalPIDsProcessed)
{
// Tests adding a thermal PID controller to the zone, and verifies it's
// touched during processing.
std::unique_ptr<PIDController> tpid =
std::make_unique<ControllerMock>("thermal1", zone.get());
ControllerMock* tmock = reinterpret_cast<ControllerMock*>(tpid.get());
// Access the internal pid configuration to clear it out (unrelated to the
// test).
ec::pid_info_t* info = tpid->getPIDInfo();
std::memset(info, 0x00, sizeof(ec::pid_info_t));
zone->addThermalPID(std::move(tpid));
EXPECT_CALL(*tmock, setptProc()).WillOnce(Return(10.0));
EXPECT_CALL(*tmock, inputProc()).WillOnce(Return(11.0));
EXPECT_CALL(*tmock, outputProc(_));
// Method under test will, for each thermal PID, call setpt, input, and
// output.
zone->processThermals();
}
TEST_F(PidZoneTest, AddFanPIDTest_VerifiesFanPIDsProcessed)
{
// Tests adding a fan PID controller to the zone, and verifies it's
// touched during processing.
std::unique_ptr<PIDController> tpid =
std::make_unique<ControllerMock>("fan1", zone.get());
ControllerMock* tmock = reinterpret_cast<ControllerMock*>(tpid.get());
// Access the internal pid configuration to clear it out (unrelated to the
// test).
ec::pid_info_t* info = tpid->getPIDInfo();
std::memset(info, 0x00, sizeof(ec::pid_info_t));
zone->addFanPID(std::move(tpid));
EXPECT_CALL(*tmock, setptProc()).WillOnce(Return(10.0));
EXPECT_CALL(*tmock, inputProc()).WillOnce(Return(11.0));
EXPECT_CALL(*tmock, outputProc(_));
// Method under test will, for each fan PID, call setpt, input, and output.
zone->processFans();
}
TEST_F(PidZoneTest, ManualModeDbusTest_VerifySetManualBehavesAsExpected)
{
// The manual(bool) method is inherited from the dbus mode interface.
// Verifies that someone doesn't remove the internal call to the dbus
// object from which we're inheriting.
EXPECT_CALL(sdbus_mock_mode,
sd_bus_emit_properties_changed_strv(
IsNull(), StrEq(objPath), StrEq(modeInterface), NotNull()))
.WillOnce(Invoke([&](sd_bus* bus, const char* path,
const char* interface, char** names) {
EXPECT_STREQ("Manual", names[0]);
return 0;
}));
// Method under test will set the manual mode to true and broadcast this
// change on dbus.
zone->manual(true);
EXPECT_TRUE(zone->getManualMode());
}
TEST_F(PidZoneTest, FailsafeDbusTest_VerifiesReturnsExpected)
{
// This property is implemented by us as read-only, such that trying to
// write to it will have no effect.
EXPECT_EQ(zone->failSafe(), zone->getFailSafeMode());
}
} // namespace
} // namespace pid_control