blob: 928aef5b8ffd25a8c99ba64c97a15938924d437b [file] [log] [blame]
/**
* Copyright 2017 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Configuration. */
#include "zone.hpp"
#include "conf.hpp"
#include "pid/controller.hpp"
#include "pid/ec/pid.hpp"
#include "pid/fancontroller.hpp"
#include "pid/stepwisecontroller.hpp"
#include "pid/thermalcontroller.hpp"
#include "pid/tuning.hpp"
#include <algorithm>
#include <chrono>
#include <cstring>
#include <fstream>
#include <iostream>
#include <memory>
using tstamp = std::chrono::high_resolution_clock::time_point;
using namespace std::literals::chrono_literals;
double PIDZone::getMaxRPMRequest(void) const
{
return _maximumRPMSetPt;
}
bool PIDZone::getManualMode(void) const
{
return _manualMode;
}
void PIDZone::setManualMode(bool mode)
{
_manualMode = mode;
}
bool PIDZone::getFailSafeMode(void) const
{
// If any keys are present at least one sensor is in fail safe mode.
return !_failSafeSensors.empty();
}
int64_t PIDZone::getZoneID(void) const
{
return _zoneId;
}
void PIDZone::addRPMSetPoint(double setpoint)
{
_RPMSetPoints.push_back(setpoint);
}
void PIDZone::addRPMCeiling(double ceiling)
{
_RPMCeilings.push_back(ceiling);
}
void PIDZone::clearRPMCeilings(void)
{
_RPMCeilings.clear();
}
void PIDZone::clearRPMSetPoints(void)
{
_RPMSetPoints.clear();
}
double PIDZone::getFailSafePercent(void) const
{
return _failSafePercent;
}
double PIDZone::getMinThermalRPMSetpoint(void) const
{
return _minThermalOutputSetPt;
}
void PIDZone::addFanPID(std::unique_ptr<Controller> pid)
{
_fans.push_back(std::move(pid));
}
void PIDZone::addThermalPID(std::unique_ptr<Controller> pid)
{
_thermals.push_back(std::move(pid));
}
double PIDZone::getCachedValue(const std::string& name)
{
return _cachedValuesByName.at(name);
}
void PIDZone::addFanInput(const std::string& fan)
{
_fanInputs.push_back(fan);
}
void PIDZone::addThermalInput(const std::string& therm)
{
_thermalInputs.push_back(therm);
}
void PIDZone::determineMaxRPMRequest(void)
{
double max = 0;
std::vector<double>::iterator result;
if (_RPMSetPoints.size() > 0)
{
result = std::max_element(_RPMSetPoints.begin(), _RPMSetPoints.end());
max = *result;
}
if (_RPMCeilings.size() > 0)
{
result = std::min_element(_RPMCeilings.begin(), _RPMCeilings.end());
max = std::min(max, *result);
}
/*
* If the maximum RPM setpoint output is below the minimum RPM
* setpoint, set it to the minimum.
*/
max = std::max(getMinThermalRPMSetpoint(), max);
if (tuningLoggingEnabled)
{
/*
* We received no setpoints from thermal sensors.
* This is a case experienced during tuning where they only specify
* fan sensors and one large fan PID for all the fans.
*/
static constexpr auto setpointpath = "/etc/thermal.d/setpoint";
try
{
std::ifstream ifs;
ifs.open(setpointpath);
if (ifs.good())
{
int value;
ifs >> value;
/* expecting RPM setpoint, not pwm% */
max = static_cast<double>(value);
}
}
catch (const std::exception& e)
{
/* This exception is uninteresting. */
std::cerr << "Unable to read from '" << setpointpath << "'\n";
}
}
_maximumRPMSetPt = max;
return;
}
void PIDZone::initializeLog(void)
{
/* Print header for log file:
* epoch_ms,setpt,fan1,fan2,fanN,sensor1,sensor2,sensorN,failsafe
*/
_log << "epoch_ms,setpt";
for (const auto& f : _fanInputs)
{
_log << "," << f;
}
for (const auto& t : _thermalInputs)
{
_log << "," << t;
}
_log << ",failsafe";
_log << std::endl;
return;
}
std::ofstream& PIDZone::getLogHandle(void)
{
return _log;
}
/*
* TODO(venture) This is effectively updating the cache and should check if the
* values they're using to update it are new or old, or whatnot. For instance,
* if we haven't heard from the host in X time we need to detect this failure.
*
* I haven't decided if the Sensor should have a lastUpdated method or whether
* that should be for the ReadInterface or etc...
*/
/**
* We want the PID loop to run with values cached, so this will get all the
* fan tachs for the loop.
*/
void PIDZone::updateFanTelemetry(void)
{
/* TODO(venture): Should I just make _log point to /dev/null when logging
* is disabled? I think it's a waste to try and log things even if the
* data is just being dropped though.
*/
if (tuningLoggingEnabled)
{
tstamp now = std::chrono::high_resolution_clock::now();
_log << std::chrono::duration_cast<std::chrono::milliseconds>(
now.time_since_epoch())
.count();
_log << "," << _maximumRPMSetPt;
}
for (const auto& f : _fanInputs)
{
auto sensor = _mgr.getSensor(f);
ReadReturn r = sensor->read();
_cachedValuesByName[f] = r.value;
/*
* TODO(venture): We should check when these were last read.
* However, these are the fans, so if I'm not getting updated values
* for them... what should I do?
*/
if (tuningLoggingEnabled)
{
_log << "," << r.value;
}
}
if (tuningLoggingEnabled)
{
for (const auto& t : _thermalInputs)
{
_log << "," << _cachedValuesByName[t];
}
}
return;
}
void PIDZone::updateSensors(void)
{
using namespace std::chrono;
/* margin and temp are stored as temp */
tstamp now = high_resolution_clock::now();
for (const auto& t : _thermalInputs)
{
auto sensor = _mgr.getSensor(t);
ReadReturn r = sensor->read();
int64_t timeout = sensor->getTimeout();
_cachedValuesByName[t] = r.value;
tstamp then = r.updated;
auto duration = duration_cast<std::chrono::seconds>(now - then).count();
auto period = std::chrono::seconds(timeout).count();
if (sensor->getFailed())
{
_failSafeSensors.insert(t);
}
else if (timeout != 0 && duration >= period)
{
// std::cerr << "Entering fail safe mode.\n";
_failSafeSensors.insert(t);
}
else
{
// Check if it's in there: remove it.
auto kt = _failSafeSensors.find(t);
if (kt != _failSafeSensors.end())
{
_failSafeSensors.erase(kt);
}
}
}
return;
}
void PIDZone::initializeCache(void)
{
for (const auto& f : _fanInputs)
{
_cachedValuesByName[f] = 0;
}
for (const auto& t : _thermalInputs)
{
_cachedValuesByName[t] = 0;
// Start all sensors in fail-safe mode.
_failSafeSensors.insert(t);
}
}
void PIDZone::dumpCache(void)
{
std::cerr << "Cache values now: \n";
for (const auto& k : _cachedValuesByName)
{
std::cerr << k.first << ": " << k.second << "\n";
}
}
void PIDZone::processFans(void)
{
for (auto& p : _fans)
{
p->process();
}
}
void PIDZone::processThermals(void)
{
for (auto& p : _thermals)
{
p->process();
}
}
Sensor* PIDZone::getSensor(const std::string& name)
{
return _mgr.getSensor(name);
}
bool PIDZone::manual(bool value)
{
std::cerr << "manual: " << value << std::endl;
setManualMode(value);
return ModeObject::manual(value);
}
bool PIDZone::failSafe() const
{
return getFailSafeMode();
}