blob: bcdea893a2472d6f967c65b3a24161008b6af1cd [file] [log] [blame]
/*
// Copyright (c) 2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include "conf.hpp"
#include "dbushelper.hpp"
#include "dbusutil.hpp"
#include "util.hpp"
#include <boost/asio/steady_timer.hpp>
#include <sdbusplus/bus.hpp>
#include <sdbusplus/bus/match.hpp>
#include <sdbusplus/exception.hpp>
#include <algorithm>
#include <chrono>
#include <functional>
#include <iostream>
#include <list>
#include <regex>
#include <set>
#include <unordered_map>
#include <variant>
namespace pid_control
{
static constexpr bool DEBUG = false; // enable to print found configuration
extern std::map<std::string, struct conf::SensorConfig> sensorConfig;
extern std::map<int64_t, conf::PIDConf> zoneConfig;
extern std::map<int64_t, struct conf::ZoneConfig> zoneDetailsConfig;
constexpr const char* pidConfigurationInterface =
"xyz.openbmc_project.Configuration.Pid";
constexpr const char* objectManagerInterface =
"org.freedesktop.DBus.ObjectManager";
constexpr const char* pidZoneConfigurationInterface =
"xyz.openbmc_project.Configuration.Pid.Zone";
constexpr const char* stepwiseConfigurationInterface =
"xyz.openbmc_project.Configuration.Stepwise";
constexpr const char* thermalControlIface =
"xyz.openbmc_project.Control.ThermalMode";
constexpr const char* sensorInterface = "xyz.openbmc_project.Sensor.Value";
constexpr const char* pwmInterface = "xyz.openbmc_project.Control.FanPwm";
using Association = std::tuple<std::string, std::string, std::string>;
using Associations = std::vector<Association>;
namespace thresholds
{
constexpr const char* warningInterface =
"xyz.openbmc_project.Sensor.Threshold.Warning";
constexpr const char* criticalInterface =
"xyz.openbmc_project.Sensor.Threshold.Critical";
const std::array<const char*, 4> types = {"CriticalLow", "CriticalHigh",
"WarningLow", "WarningHigh"};
} // namespace thresholds
namespace dbus_configuration
{
using DbusVariantType =
std::variant<uint64_t, int64_t, double, std::string,
std::vector<std::string>, std::vector<double>>;
using SensorInterfaceType = std::pair<std::string, std::string>;
inline std::string getSensorNameFromPath(const std::string& dbusPath)
{
return dbusPath.substr(dbusPath.find_last_of("/") + 1);
}
inline std::string sensorNameToDbusName(const std::string& sensorName)
{
std::string retString = sensorName;
std::replace(retString.begin(), retString.end(), ' ', '_');
return retString;
}
bool findSensors(const std::unordered_map<std::string, std::string>& sensors,
const std::string& search,
std::vector<std::pair<std::string, std::string>>& matches)
{
std::smatch match;
std::regex reg(search + '$');
for (const auto& sensor : sensors)
{
if (std::regex_search(sensor.first, match, reg))
{
matches.push_back(sensor);
}
}
return matches.size() > 0;
}
// this function prints the configuration into a form similar to the cpp
// generated code to help in verification, should be turned off during normal
// use
void debugPrint(void)
{
// print sensor config
std::cout << "sensor config:\n";
std::cout << "{\n";
for (const auto& pair : sensorConfig)
{
std::cout << "\t{" << pair.first << ",\n\t\t{";
std::cout << pair.second.type << ", ";
std::cout << pair.second.readPath << ", ";
std::cout << pair.second.writePath << ", ";
std::cout << pair.second.min << ", ";
std::cout << pair.second.max << ", ";
std::cout << pair.second.timeout << "},\n\t},\n";
}
std::cout << "}\n\n";
std::cout << "ZoneDetailsConfig\n";
std::cout << "{\n";
for (const auto& zone : zoneDetailsConfig)
{
std::cout << "\t{" << zone.first << ",\n";
std::cout << "\t\t{" << zone.second.minThermalOutput << ", ";
std::cout << zone.second.failsafePercent << "}\n\t},\n";
}
std::cout << "}\n\n";
std::cout << "ZoneConfig\n";
std::cout << "{\n";
for (const auto& zone : zoneConfig)
{
std::cout << "\t{" << zone.first << "\n";
for (const auto& pidconf : zone.second)
{
std::cout << "\t\t{" << pidconf.first << ",\n";
std::cout << "\t\t\t{" << pidconf.second.type << ",\n";
std::cout << "\t\t\t{";
for (const auto& input : pidconf.second.inputs)
{
std::cout << "\n\t\t\t" << input << ",\n";
}
std::cout << "\t\t\t}\n";
std::cout << "\t\t\t" << pidconf.second.setpoint << ",\n";
std::cout << "\t\t\t{" << pidconf.second.pidInfo.ts << ",\n";
std::cout << "\t\t\t" << pidconf.second.pidInfo.proportionalCoeff
<< ",\n";
std::cout << "\t\t\t" << pidconf.second.pidInfo.integralCoeff
<< ",\n";
std::cout << "\t\t\t" << pidconf.second.pidInfo.feedFwdOffset
<< ",\n";
std::cout << "\t\t\t" << pidconf.second.pidInfo.feedFwdGain
<< ",\n";
std::cout << "\t\t\t{" << pidconf.second.pidInfo.integralLimit.min
<< "," << pidconf.second.pidInfo.integralLimit.max
<< "},\n";
std::cout << "\t\t\t{" << pidconf.second.pidInfo.outLim.min << ","
<< pidconf.second.pidInfo.outLim.max << "},\n";
std::cout << "\t\t\t" << pidconf.second.pidInfo.slewNeg << ",\n";
std::cout << "\t\t\t" << pidconf.second.pidInfo.slewPos << ",\n";
std::cout << "\t\t\t}\n\t\t}\n";
}
std::cout << "\t},\n";
}
std::cout << "}\n\n";
}
size_t getZoneIndex(const std::string& name, std::vector<std::string>& zones)
{
auto it = std::find(zones.begin(), zones.end(), name);
if (it == zones.end())
{
zones.emplace_back(name);
it = zones.end() - 1;
}
return it - zones.begin();
}
std::vector<std::string> getSelectedProfiles(sdbusplus::bus::bus& bus)
{
std::vector<std::string> ret;
auto mapper =
bus.new_method_call("xyz.openbmc_project.ObjectMapper",
"/xyz/openbmc_project/object_mapper",
"xyz.openbmc_project.ObjectMapper", "GetSubTree");
mapper.append("/", 0, std::array<const char*, 1>{thermalControlIface});
std::unordered_map<
std::string, std::unordered_map<std::string, std::vector<std::string>>>
respData;
try
{
auto resp = bus.call(mapper);
resp.read(respData);
}
catch (sdbusplus::exception_t&)
{
// can't do anything without mapper call data
throw std::runtime_error("ObjectMapper Call Failure");
}
if (respData.empty())
{
// if the user has profiles but doesn't expose the interface to select
// one, just go ahead without using profiles
return ret;
}
// assumption is that we should only have a small handful of selected
// profiles at a time (probably only 1), so calling each individually should
// not incur a large cost
for (const auto& objectPair : respData)
{
const std::string& path = objectPair.first;
for (const auto& ownerPair : objectPair.second)
{
const std::string& busName = ownerPair.first;
auto getProfile =
bus.new_method_call(busName.c_str(), path.c_str(),
"org.freedesktop.DBus.Properties", "Get");
getProfile.append(thermalControlIface, "Current");
std::variant<std::string> variantResp;
try
{
auto resp = bus.call(getProfile);
resp.read(variantResp);
}
catch (sdbusplus::exception_t&)
{
throw std::runtime_error("Failure getting profile");
}
std::string mode = std::get<std::string>(variantResp);
ret.emplace_back(std::move(mode));
}
}
if constexpr (DEBUG)
{
std::cout << "Profiles selected: ";
for (const auto& profile : ret)
{
std::cout << profile << " ";
}
std::cout << "\n";
}
return ret;
}
int eventHandler(sd_bus_message* m, void* context, sd_bus_error*)
{
if (context == nullptr || m == nullptr)
{
throw std::runtime_error("Invalid match");
}
// we skip associations because the mapper populates these, not the sensors
const std::array<const char*, 1> skipList = {
"xyz.openbmc_project.Association"};
sdbusplus::message::message message(m);
if (std::string(message.get_member()) == "InterfacesAdded")
{
sdbusplus::message::object_path path;
std::unordered_map<
std::string,
std::unordered_map<std::string, std::variant<Associations, bool>>>
data;
message.read(path, data);
for (const char* skip : skipList)
{
auto find = data.find(skip);
if (find != data.end())
{
data.erase(find);
if (data.empty())
{
return 1;
}
}
}
}
boost::asio::steady_timer* timer =
static_cast<boost::asio::steady_timer*>(context);
// do a brief sleep as we tend to get a bunch of these events at
// once
timer->expires_after(std::chrono::seconds(2));
timer->async_wait([](const boost::system::error_code ec) {
if (ec == boost::asio::error::operation_aborted)
{
/* another timer started*/
return;
}
std::cout << "New configuration detected, reloading\n.";
tryRestartControlLoops();
});
return 1;
}
void createMatches(sdbusplus::bus::bus& bus, boost::asio::steady_timer& timer)
{
// this is a list because the matches can't be moved
static std::list<sdbusplus::bus::match::match> matches;
const std::array<std::string, 4> interfaces = {
thermalControlIface, pidConfigurationInterface,
pidZoneConfigurationInterface, stepwiseConfigurationInterface};
// this list only needs to be created once
if (!matches.empty())
{
return;
}
// we restart when the configuration changes or there are new sensors
for (const auto& interface : interfaces)
{
matches.emplace_back(
bus,
"type='signal',member='PropertiesChanged',arg0namespace='" +
interface + "'",
eventHandler, &timer);
}
matches.emplace_back(
bus,
"type='signal',member='InterfacesAdded',arg0path='/xyz/openbmc_project/"
"sensors/'",
eventHandler, &timer);
}
/**
* retrieve an attribute from the pid configuration map
* @param[in] base - the PID configuration map, keys are the attributes and
* value is the variant associated with that attribute.
* @param attributeName - the name of the attribute
* @return a variant holding the value associated with a key
* @throw runtime_error : attributeName is not in base
*/
inline DbusVariantType getPIDAttribute(
const std::unordered_map<std::string, DbusVariantType>& base,
const std::string& attributeName)
{
auto search = base.find(attributeName);
if (search == base.end())
{
throw std::runtime_error("missing attribute " + attributeName);
}
return search->second;
}
void populatePidInfo(
sdbusplus::bus::bus& bus,
const std::unordered_map<std::string, DbusVariantType>& base,
struct conf::ControllerInfo& info, const std::string* thresholdProperty)
{
info.type = std::get<std::string>(getPIDAttribute(base, "Class"));
if (info.type == "fan")
{
info.setpoint = 0;
}
else
{
info.setpoint = std::visit(VariantToDoubleVisitor(),
getPIDAttribute(base, "SetPoint"));
}
if (thresholdProperty != nullptr)
{
std::string interface;
if (*thresholdProperty == "WarningHigh" ||
*thresholdProperty == "WarningLow")
{
interface = thresholds::warningInterface;
}
else
{
interface = thresholds::criticalInterface;
}
const std::string& path = sensorConfig[info.inputs.front()].readPath;
DbusHelper helper(sdbusplus::bus::new_system());
std::string service = helper.getService(interface, path);
double reading = 0;
try
{
helper.getProperty(service, path, interface, *thresholdProperty,
reading);
}
catch (const sdbusplus::exception::SdBusError& ex)
{
// unsupported threshold, leaving reading at 0
}
info.setpoint += reading;
}
info.pidInfo.ts = 1.0; // currently unused
info.pidInfo.proportionalCoeff = std::visit(
VariantToDoubleVisitor(), getPIDAttribute(base, "PCoefficient"));
info.pidInfo.integralCoeff = std::visit(
VariantToDoubleVisitor(), getPIDAttribute(base, "ICoefficient"));
info.pidInfo.feedFwdOffset = std::visit(
VariantToDoubleVisitor(), getPIDAttribute(base, "FFOffCoefficient"));
info.pidInfo.feedFwdGain = std::visit(
VariantToDoubleVisitor(), getPIDAttribute(base, "FFGainCoefficient"));
info.pidInfo.integralLimit.max = std::visit(
VariantToDoubleVisitor(), getPIDAttribute(base, "ILimitMax"));
info.pidInfo.integralLimit.min = std::visit(
VariantToDoubleVisitor(), getPIDAttribute(base, "ILimitMin"));
info.pidInfo.outLim.max = std::visit(VariantToDoubleVisitor(),
getPIDAttribute(base, "OutLimitMax"));
info.pidInfo.outLim.min = std::visit(VariantToDoubleVisitor(),
getPIDAttribute(base, "OutLimitMin"));
info.pidInfo.slewNeg =
std::visit(VariantToDoubleVisitor(), getPIDAttribute(base, "SlewNeg"));
info.pidInfo.slewPos =
std::visit(VariantToDoubleVisitor(), getPIDAttribute(base, "SlewPos"));
double negativeHysteresis = 0;
double positiveHysteresis = 0;
auto findNeg = base.find("NegativeHysteresis");
auto findPos = base.find("PositiveHysteresis");
if (findNeg != base.end())
{
negativeHysteresis =
std::visit(VariantToDoubleVisitor(), findNeg->second);
}
if (findPos != base.end())
{
positiveHysteresis =
std::visit(VariantToDoubleVisitor(), findPos->second);
}
info.pidInfo.negativeHysteresis = negativeHysteresis;
info.pidInfo.positiveHysteresis = positiveHysteresis;
}
bool init(sdbusplus::bus::bus& bus, boost::asio::steady_timer& timer)
{
sensorConfig.clear();
zoneConfig.clear();
zoneDetailsConfig.clear();
createMatches(bus, timer);
using DbusVariantType =
std::variant<uint64_t, int64_t, double, std::string,
std::vector<std::string>, std::vector<double>>;
using ManagedObjectType = std::unordered_map<
sdbusplus::message::object_path,
std::unordered_map<std::string,
std::unordered_map<std::string, DbusVariantType>>>;
auto mapper =
bus.new_method_call("xyz.openbmc_project.ObjectMapper",
"/xyz/openbmc_project/object_mapper",
"xyz.openbmc_project.ObjectMapper", "GetSubTree");
mapper.append("/", 0,
std::array<const char*, 6>{objectManagerInterface,
pidConfigurationInterface,
pidZoneConfigurationInterface,
stepwiseConfigurationInterface,
sensorInterface, pwmInterface});
std::unordered_map<
std::string, std::unordered_map<std::string, std::vector<std::string>>>
respData;
try
{
auto resp = bus.call(mapper);
resp.read(respData);
}
catch (sdbusplus::exception_t&)
{
// can't do anything without mapper call data
throw std::runtime_error("ObjectMapper Call Failure");
}
if (respData.empty())
{
// can't do anything without mapper call data
throw std::runtime_error("No configuration data available from Mapper");
}
// create a map of pair of <has pid configuration, ObjectManager path>
std::unordered_map<std::string, std::pair<bool, std::string>> owners;
// and a map of <path, interface> for sensors
std::unordered_map<std::string, std::string> sensors;
for (const auto& objectPair : respData)
{
for (const auto& ownerPair : objectPair.second)
{
auto& owner = owners[ownerPair.first];
for (const std::string& interface : ownerPair.second)
{
if (interface == objectManagerInterface)
{
owner.second = objectPair.first;
}
if (interface == pidConfigurationInterface ||
interface == pidZoneConfigurationInterface ||
interface == stepwiseConfigurationInterface)
{
owner.first = true;
}
if (interface == sensorInterface || interface == pwmInterface)
{
// we're not interested in pwm sensors, just pwm control
if (interface == sensorInterface &&
objectPair.first.find("pwm") != std::string::npos)
{
continue;
}
sensors[objectPair.first] = interface;
}
}
}
}
ManagedObjectType configurations;
for (const auto& owner : owners)
{
// skip if no pid configuration (means probably a sensor)
if (!owner.second.first)
{
continue;
}
auto endpoint = bus.new_method_call(
owner.first.c_str(), owner.second.second.c_str(),
"org.freedesktop.DBus.ObjectManager", "GetManagedObjects");
ManagedObjectType configuration;
try
{
auto responce = bus.call(endpoint);
responce.read(configuration);
}
catch (sdbusplus::exception_t&)
{
// this shouldn't happen, probably means daemon crashed
throw std::runtime_error("Error getting managed objects from " +
owner.first);
}
for (auto& pathPair : configuration)
{
if (pathPair.second.find(pidConfigurationInterface) !=
pathPair.second.end() ||
pathPair.second.find(pidZoneConfigurationInterface) !=
pathPair.second.end() ||
pathPair.second.find(stepwiseConfigurationInterface) !=
pathPair.second.end())
{
configurations.emplace(pathPair);
}
}
}
// remove controllers from config that aren't in the current profile(s)
std::vector<std::string> selectedProfiles = getSelectedProfiles(bus);
if (selectedProfiles.size())
{
for (auto pathIt = configurations.begin();
pathIt != configurations.end();)
{
for (auto confIt = pathIt->second.begin();
confIt != pathIt->second.end();)
{
auto profilesFind = confIt->second.find("Profiles");
if (profilesFind == confIt->second.end())
{
confIt++;
continue; // if no profiles selected, apply always
}
auto profiles =
std::get<std::vector<std::string>>(profilesFind->second);
if (profiles.empty())
{
confIt++;
continue;
}
bool found = false;
for (const std::string& profile : profiles)
{
if (std::find(selectedProfiles.begin(),
selectedProfiles.end(),
profile) != selectedProfiles.end())
{
found = true;
break;
}
}
if (found)
{
confIt++;
}
else
{
confIt = pathIt->second.erase(confIt);
}
}
if (pathIt->second.empty())
{
pathIt = configurations.erase(pathIt);
}
else
{
pathIt++;
}
}
}
// on dbus having an index field is a bit strange, so randomly
// assign index based on name property
std::vector<std::string> foundZones;
for (const auto& configuration : configurations)
{
auto findZone =
configuration.second.find(pidZoneConfigurationInterface);
if (findZone != configuration.second.end())
{
const auto& zone = findZone->second;
const std::string& name = std::get<std::string>(zone.at("Name"));
size_t index = getZoneIndex(name, foundZones);
auto& details = zoneDetailsConfig[index];
details.minThermalOutput = std::visit(VariantToDoubleVisitor(),
zone.at("MinThermalOutput"));
details.failsafePercent = std::visit(VariantToDoubleVisitor(),
zone.at("FailSafePercent"));
}
auto findBase = configuration.second.find(pidConfigurationInterface);
// loop through all the PID configurations and fill out a sensor config
if (findBase != configuration.second.end())
{
const auto& base =
configuration.second.at(pidConfigurationInterface);
const std::string pidName = std::get<std::string>(base.at("Name"));
const std::string pidClass =
std::get<std::string>(base.at("Class"));
const std::vector<std::string>& zones =
std::get<std::vector<std::string>>(base.at("Zones"));
for (const std::string& zone : zones)
{
size_t index = getZoneIndex(zone, foundZones);
conf::PIDConf& conf = zoneConfig[index];
std::vector<std::string> inputSensorNames(
std::get<std::vector<std::string>>(base.at("Inputs")));
std::vector<std::string> outputSensorNames;
// assumption: all fan pids must have at least one output
if (pidClass == "fan")
{
outputSensorNames = std::get<std::vector<std::string>>(
getPIDAttribute(base, "Outputs"));
}
std::vector<SensorInterfaceType> inputSensorInterfaces;
std::vector<SensorInterfaceType> outputSensorInterfaces;
/* populate an interface list for different sensor direction
* types (input,output)
*/
/* take the Inputs from the configuration and generate
* a list of dbus descriptors (path, interface).
* Mapping can be many-to-one since an element of Inputs can be
* a regex
*/
for (const std::string& sensorName : inputSensorNames)
{
findSensors(sensors, sensorNameToDbusName(sensorName),
inputSensorInterfaces);
}
for (const std::string& sensorName : outputSensorNames)
{
findSensors(sensors, sensorNameToDbusName(sensorName),
outputSensorInterfaces);
}
inputSensorNames.clear();
for (const SensorInterfaceType& inputSensorInterface :
inputSensorInterfaces)
{
const std::string& dbusInterface =
inputSensorInterface.second;
const std::string& inputSensorPath =
inputSensorInterface.first;
std::string inputSensorName =
getSensorNameFromPath(inputSensorPath);
auto& config = sensorConfig[inputSensorName];
inputSensorNames.push_back(inputSensorName);
config.type = pidClass;
config.readPath = inputSensorInterface.first;
// todo: maybe un-hardcode this if we run into slower
// timeouts with sensors
if (config.type == "temp")
{
config.timeout = 0;
config.ignoreDbusMinMax = true;
}
if (dbusInterface != sensorInterface)
{
/* all expected inputs in the configuration are expected
* to be sensor interfaces
*/
throw std::runtime_error(
"sensor at dbus path [" + inputSensorPath +
"] has an interface [" + dbusInterface +
"] that does not match the expected interface of " +
sensorInterface);
}
}
/* fan pids need to pair up tach sensors with their pwm
* counterparts
*/
if (pidClass == "fan")
{
/* If a PID is a fan there should be either
* (1) one output(pwm) per input(tach)
* OR
* (2) one putput(pwm) for all inputs(tach)
* everything else indicates a bad configuration.
*/
bool singlePwm = false;
if (outputSensorInterfaces.size() == 1)
{
/* one pwm, set write paths for all fan sensors to it */
singlePwm = true;
}
else if (inputSensorInterfaces.size() ==
outputSensorInterfaces.size())
{
/* one to one mapping, each fan sensor gets its own pwm
* control */
singlePwm = false;
}
else
{
throw std::runtime_error(
"fan PID has invalid number of Outputs");
}
std::string fanSensorName;
std::string pwmPath;
std::string pwmInterface;
if (singlePwm)
{
/* if just a single output(pwm) is provided then use
* that pwm control path for all the fan sensor write
* path configs
*/
pwmPath = outputSensorInterfaces.at(0).first;
pwmInterface = outputSensorInterfaces.at(0).second;
}
for (uint32_t idx = 0; idx < inputSensorInterfaces.size();
idx++)
{
if (!singlePwm)
{
pwmPath = outputSensorInterfaces.at(idx).first;
pwmInterface =
outputSensorInterfaces.at(idx).second;
}
if (pwmInterface != pwmInterface)
{
throw std::runtime_error(
"fan pwm control at dbus path [" + pwmPath +
"] has an interface [" + pwmInterface +
"] that does not match the expected interface "
"of " +
pwmInterface);
}
const std::string& fanPath =
inputSensorInterfaces.at(idx).first;
fanSensorName = getSensorNameFromPath(fanPath);
auto& fanConfig = sensorConfig[fanSensorName];
fanConfig.writePath = pwmPath;
// todo: un-hardcode this if there are fans with
// different ranges
fanConfig.max = 255;
fanConfig.min = 0;
}
}
// if the sensors aren't available in the current state, don't
// add them to the configuration.
if (inputSensorNames.empty())
{
continue;
}
std::string offsetType;
// SetPointOffset is a threshold value to pull from the sensor
// to apply an offset. For upper thresholds this means the
// setpoint is usually negative.
auto findSetpointOffset = base.find("SetPointOffset");
if (findSetpointOffset != base.end())
{
offsetType =
std::get<std::string>(findSetpointOffset->second);
if (std::find(thresholds::types.begin(),
thresholds::types.end(),
offsetType) == thresholds::types.end())
{
throw std::runtime_error("Unsupported type: " +
offsetType);
}
}
if (offsetType.empty())
{
struct conf::ControllerInfo& info =
conf[std::get<std::string>(base.at("Name"))];
info.inputs = std::move(inputSensorNames);
populatePidInfo(bus, base, info, nullptr);
}
else
{
// we have to split up the inputs, as in practice t-control
// values will differ, making setpoints differ
for (const std::string& input : inputSensorNames)
{
struct conf::ControllerInfo& info = conf[input];
info.inputs.emplace_back(input);
populatePidInfo(bus, base, info, &offsetType);
}
}
}
}
auto findStepwise =
configuration.second.find(stepwiseConfigurationInterface);
if (findStepwise != configuration.second.end())
{
const auto& base = findStepwise->second;
const std::vector<std::string>& zones =
std::get<std::vector<std::string>>(base.at("Zones"));
for (const std::string& zone : zones)
{
size_t index = getZoneIndex(zone, foundZones);
conf::PIDConf& conf = zoneConfig[index];
std::vector<std::string> inputs;
std::vector<std::string> sensorNames =
std::get<std::vector<std::string>>(base.at("Inputs"));
bool sensorFound = false;
for (const std::string& sensorName : sensorNames)
{
std::vector<std::pair<std::string, std::string>>
sensorPathIfacePairs;
if (!findSensors(sensors, sensorNameToDbusName(sensorName),
sensorPathIfacePairs))
{
break;
}
for (const auto& sensorPathIfacePair : sensorPathIfacePairs)
{
size_t idx =
sensorPathIfacePair.first.find_last_of("/") + 1;
std::string shortName =
sensorPathIfacePair.first.substr(idx);
inputs.push_back(shortName);
auto& config = sensorConfig[shortName];
config.readPath = sensorPathIfacePair.first;
config.type = "temp";
config.ignoreDbusMinMax = true;
// todo: maybe un-hardcode this if we run into slower
// timeouts with sensors
config.timeout = 0;
sensorFound = true;
}
}
if (!sensorFound)
{
continue;
}
struct conf::ControllerInfo& info =
conf[std::get<std::string>(base.at("Name"))];
info.inputs = std::move(inputs);
info.type = "stepwise";
info.stepwiseInfo.ts = 1.0; // currently unused
info.stepwiseInfo.positiveHysteresis = 0.0;
info.stepwiseInfo.negativeHysteresis = 0.0;
std::string subtype = std::get<std::string>(base.at("Class"));
info.stepwiseInfo.isCeiling = (subtype == "Ceiling");
auto findPosHyst = base.find("PositiveHysteresis");
auto findNegHyst = base.find("NegativeHysteresis");
if (findPosHyst != base.end())
{
info.stepwiseInfo.positiveHysteresis = std::visit(
VariantToDoubleVisitor(), findPosHyst->second);
}
if (findNegHyst != base.end())
{
info.stepwiseInfo.negativeHysteresis = std::visit(
VariantToDoubleVisitor(), findNegHyst->second);
}
std::vector<double> readings =
std::get<std::vector<double>>(base.at("Reading"));
if (readings.size() > ec::maxStepwisePoints)
{
throw std::invalid_argument("Too many stepwise points.");
}
if (readings.empty())
{
throw std::invalid_argument(
"Must have one stepwise point.");
}
std::copy(readings.begin(), readings.end(),
info.stepwiseInfo.reading);
if (readings.size() < ec::maxStepwisePoints)
{
info.stepwiseInfo.reading[readings.size()] =
std::numeric_limits<double>::quiet_NaN();
}
std::vector<double> outputs =
std::get<std::vector<double>>(base.at("Output"));
if (readings.size() != outputs.size())
{
throw std::invalid_argument(
"Outputs size must match readings");
}
std::copy(outputs.begin(), outputs.end(),
info.stepwiseInfo.output);
if (outputs.size() < ec::maxStepwisePoints)
{
info.stepwiseInfo.output[outputs.size()] =
std::numeric_limits<double>::quiet_NaN();
}
}
}
}
if constexpr (DEBUG)
{
debugPrint();
}
if (zoneConfig.empty() || zoneDetailsConfig.empty())
{
std::cerr
<< "No fan zones, application pausing until new configuration\n";
return false;
}
return true;
}
} // namespace dbus_configuration
} // namespace pid_control