blob: 41047a1568a51538f287b41c446a6634d25142a0 [file] [log] [blame]
/**
* Copyright 2017 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dbuspassive.hpp"
#include "dbushelper_interface.hpp"
#include "dbuspassiveredundancy.hpp"
#include "dbusutil.hpp"
#include "util.hpp"
#include <sdbusplus/bus.hpp>
#include <chrono>
#include <cmath>
#include <memory>
#include <mutex>
#include <string>
#include <variant>
namespace pid_control
{
std::unique_ptr<ReadInterface> DbusPassive::createDbusPassive(
sdbusplus::bus_t& bus, const std::string& type, const std::string& id,
std::unique_ptr<DbusHelperInterface> helper, const conf::SensorConfig* info,
const std::shared_ptr<DbusPassiveRedundancy>& redundancy)
{
if (helper == nullptr)
{
return nullptr;
}
if (!validType(type))
{
return nullptr;
}
/* Need to get the scale and initial value */
/* service == busname */
std::string path;
if (info->readPath.empty())
{
path = getSensorPath(type, id);
}
else
{
path = info->readPath;
}
SensorProperties settings;
bool failed;
try
{
std::string service = helper->getService(sensorintf, path);
helper->getProperties(service, path, &settings);
failed = helper->thresholdsAsserted(service, path);
}
catch (const std::exception& e)
{
return nullptr;
}
/* if these values are zero, they're ignored. */
if (info->ignoreDbusMinMax)
{
settings.min = 0;
settings.max = 0;
}
settings.unavailableAsFailed = info->unavailableAsFailed;
return std::make_unique<DbusPassive>(bus, type, id, std::move(helper),
settings, failed, path, redundancy);
}
DbusPassive::DbusPassive(
sdbusplus::bus_t& bus, const std::string& type, const std::string& id,
std::unique_ptr<DbusHelperInterface> helper,
const SensorProperties& settings, bool failed, const std::string& path,
const std::shared_ptr<DbusPassiveRedundancy>& redundancy) :
ReadInterface(),
_signal(bus, getMatch(path).c_str(), dbusHandleSignal, this), _id(id),
_helper(std::move(helper)), _failed(failed), path(path),
redundancy(redundancy)
{
_scale = settings.scale;
_min = settings.min * std::pow(10.0, _scale);
_max = settings.max * std::pow(10.0, _scale);
_available = settings.available;
_unavailableAsFailed = settings.unavailableAsFailed;
// Cache this type knowledge, to avoid repeated string comparison
_typeMargin = (type == "margin");
_typeFan = (type == "fan");
// Force value to be stored, otherwise member would be uninitialized
updateValue(settings.value, true);
}
ReadReturn DbusPassive::read(void)
{
std::lock_guard<std::mutex> guard(_lock);
ReadReturn r = {_value, _updated};
return r;
}
void DbusPassive::setValue(double value)
{
std::lock_guard<std::mutex> guard(_lock);
_value = value;
_updated = std::chrono::high_resolution_clock::now();
}
bool DbusPassive::getFailed(void) const
{
if (redundancy)
{
const std::set<std::string>& failures = redundancy->getFailed();
if (failures.find(path) != failures.end())
{
return true;
}
}
/*
* Unavailable thermal sensors, who are not present or
* power-state-not-matching, should not trigger the failSafe mode. For
* example, when a system stays at a powered-off state, its CPU Temp
* sensors will be unavailable, these unavailable sensors should not be
* treated as failed and trigger failSafe.
* This is important for systems whose Fans are always on.
*/
if (!_typeFan && !_available && !_unavailableAsFailed)
{
return false;
}
// If a reading has came in,
// but its value bad in some way (determined by sensor type),
// indicate this sensor has failed,
// until another value comes in that is no longer bad.
// This is different from the overall _failed flag,
// which is set and cleared by other causes.
if (_badReading)
{
return true;
}
// If a reading has came in, and it is not a bad reading,
// but it indicates there is no more thermal margin left,
// that is bad, something is wrong with the PID loops,
// they are not cooling the system, enable failsafe mode also.
if (_marginHot)
{
return true;
}
return _failed || !_available || !_functional;
}
void DbusPassive::setFailed(bool value)
{
_failed = value;
}
void DbusPassive::setFunctional(bool value)
{
_functional = value;
}
void DbusPassive::setAvailable(bool value)
{
_available = value;
}
int64_t DbusPassive::getScale(void)
{
return _scale;
}
std::string DbusPassive::getID(void)
{
return _id;
}
double DbusPassive::getMax(void)
{
return _max;
}
double DbusPassive::getMin(void)
{
return _min;
}
void DbusPassive::updateValue(double value, bool force)
{
_badReading = false;
// Do not let a NAN, or other floating-point oddity, be used to update
// the value, as that indicates the sensor has no valid reading.
if (!(std::isfinite(value)))
{
_badReading = true;
// Do not continue with a bad reading, unless caller forcing
if (!force)
{
return;
}
}
value *= std::pow(10.0, _scale);
auto unscaled = value;
scaleSensorReading(_min, _max, value);
if (_typeMargin)
{
_marginHot = false;
// Unlike an absolute temperature sensor,
// where 0 degrees C is a good reading,
// a value received of 0 (or negative) margin is worrisome,
// and should be flagged.
// Either it indicates margin not calculated properly,
// or somebody forgot to set the margin-zero setpoint,
// or the system is really overheating that much.
// This is a different condition from _failed
// and _badReading, so it merits its own flag.
// The sensor has not failed, the reading is good, but the zone
// still needs to know that it should go to failsafe mode.
if (unscaled <= 0.0)
{
_marginHot = true;
}
}
setValue(value);
}
int handleSensorValue(sdbusplus::message_t& msg, DbusPassive* owner)
{
std::string msgSensor;
std::map<std::string, std::variant<int64_t, double, bool>> msgData;
msg.read(msgSensor, msgData);
if (msgSensor == "xyz.openbmc_project.Sensor.Value")
{
auto valPropMap = msgData.find("Value");
if (valPropMap != msgData.end())
{
double value =
std::visit(VariantToDoubleVisitor(), valPropMap->second);
owner->updateValue(value, false);
}
}
else if (msgSensor == "xyz.openbmc_project.Sensor.Threshold.Critical")
{
auto criticalAlarmLow = msgData.find("CriticalAlarmLow");
auto criticalAlarmHigh = msgData.find("CriticalAlarmHigh");
if (criticalAlarmHigh == msgData.end() &&
criticalAlarmLow == msgData.end())
{
return 0;
}
bool asserted = false;
if (criticalAlarmLow != msgData.end())
{
asserted = std::get<bool>(criticalAlarmLow->second);
}
// checking both as in theory you could de-assert one threshold and
// assert the other at the same moment
if (!asserted && criticalAlarmHigh != msgData.end())
{
asserted = std::get<bool>(criticalAlarmHigh->second);
}
owner->setFailed(asserted);
}
else if (msgSensor == "xyz.openbmc_project.State.Decorator.Availability")
{
auto available = msgData.find("Available");
if (available == msgData.end())
{
return 0;
}
bool asserted = std::get<bool>(available->second);
owner->setAvailable(asserted);
if (!asserted)
{
// A thermal controller will continue its PID calculation and not
// trigger a 'failsafe' when some inputs are unavailable.
// So, forced to clear the value here to prevent a historical
// value to participate in a latter PID calculation.
owner->updateValue(std::numeric_limits<double>::quiet_NaN(), true);
}
}
else if (msgSensor ==
"xyz.openbmc_project.State.Decorator.OperationalStatus")
{
auto functional = msgData.find("Functional");
if (functional == msgData.end())
{
return 0;
}
bool asserted = std::get<bool>(functional->second);
owner->setFunctional(asserted);
}
return 0;
}
int dbusHandleSignal(sd_bus_message* msg, void* usrData,
[[maybe_unused]] sd_bus_error* err)
{
auto sdbpMsg = sdbusplus::message_t(msg);
DbusPassive* obj = static_cast<DbusPassive*>(usrData);
return handleSensorValue(sdbpMsg, obj);
}
} // namespace pid_control