blob: 39ddc6d8376dbc9702b61b8ce02e40d850bd1c74 [file] [log] [blame]
/**
* Copyright 2017 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Configuration. */
#include "zone.hpp"
#include "conf.hpp"
#include "pid/controller.hpp"
#include "pid/ec/pid.hpp"
#include "pid/fancontroller.hpp"
#include "pid/stepwisecontroller.hpp"
#include "pid/thermalcontroller.hpp"
#include "pid/tuning.hpp"
#include <algorithm>
#include <chrono>
#include <cstring>
#include <fstream>
#include <iostream>
#include <memory>
#include <sstream>
#include <string>
using tstamp = std::chrono::high_resolution_clock::time_point;
using namespace std::literals::chrono_literals;
// Enforces minimum duration between events
// Rreturns true if event should be allowed, false if disallowed
bool allowThrottle(const tstamp& now, const std::chrono::seconds& pace)
{
static tstamp then;
static bool first = true;
if (first)
{
// Special case initialization
then = now;
first = false;
// Initialization, always allow
return true;
}
auto elapsed = now - then;
if (elapsed < pace)
{
// Too soon since last time, disallow
return false;
}
// It has been long enough, allow
then = now;
return true;
}
namespace pid_control
{
double DbusPidZone::getMaxSetPointRequest(void) const
{
return _maximumSetPoint;
}
bool DbusPidZone::getManualMode(void) const
{
return _manualMode;
}
void DbusPidZone::setManualMode(bool mode)
{
_manualMode = mode;
// If returning to automatic mode, need to restore PWM from PID loop
if (!mode)
{
_redundantWrite = true;
}
}
bool DbusPidZone::getFailSafeMode(void) const
{
// If any keys are present at least one sensor is in fail safe mode.
return !_failSafeSensors.empty();
}
void DbusPidZone::markSensorMissing(const std::string& name)
{
if (_missingAcceptable.find(name) != _missingAcceptable.end())
{
// Disallow sensors in MissingIsAcceptable list from causing failsafe
return;
}
_failSafeSensors.emplace(name);
}
int64_t DbusPidZone::getZoneID(void) const
{
return _zoneId;
}
void DbusPidZone::addSetPoint(double setPoint, const std::string& name)
{
/* exclude disabled pidloop from _maximumSetPoint calculation*/
if (!isPidProcessEnabled(name))
{
return;
}
auto profileName = name;
if (getAccSetPoint())
{
/*
* If the name of controller is Linear_Temp_CPU0.
* The profile name will be Temp_CPU0.
*/
profileName = name.substr(name.find("_") + 1);
_SetPoints[profileName] += setPoint;
}
else
{
if (_SetPoints[profileName] < setPoint)
{
_SetPoints[profileName] = setPoint;
}
}
/*
* if there are multiple thermal controllers with the same
* value, pick the first one in the iterator
*/
if (_maximumSetPoint < _SetPoints[profileName])
{
_maximumSetPoint = _SetPoints[profileName];
_maximumSetPointName = profileName;
}
}
void DbusPidZone::addRPMCeiling(double ceiling)
{
_RPMCeilings.push_back(ceiling);
}
void DbusPidZone::clearRPMCeilings(void)
{
_RPMCeilings.clear();
}
void DbusPidZone::clearSetPoints(void)
{
_SetPoints.clear();
_maximumSetPoint = 0;
_maximumSetPointName.clear();
}
double DbusPidZone::getFailSafePercent(void) const
{
return _failSafePercent;
}
double DbusPidZone::getMinThermalSetPoint(void) const
{
return _minThermalOutputSetPt;
}
uint64_t DbusPidZone::getCycleIntervalTime(void) const
{
return _cycleTime.cycleIntervalTimeMS;
}
uint64_t DbusPidZone::getUpdateThermalsCycle(void) const
{
return _cycleTime.updateThermalsTimeMS;
}
void DbusPidZone::addFanPID(std::unique_ptr<Controller> pid)
{
_fans.push_back(std::move(pid));
}
void DbusPidZone::addThermalPID(std::unique_ptr<Controller> pid)
{
_thermals.push_back(std::move(pid));
}
double DbusPidZone::getCachedValue(const std::string& name)
{
return _cachedValuesByName.at(name).scaled;
}
ValueCacheEntry DbusPidZone::getCachedValues(const std::string& name)
{
return _cachedValuesByName.at(name);
}
void DbusPidZone::setOutputCache(std::string_view name,
const ValueCacheEntry& values)
{
_cachedFanOutputs[std::string{name}] = values;
}
void DbusPidZone::addFanInput(const std::string& fan, bool missingAcceptable)
{
_fanInputs.push_back(fan);
if (missingAcceptable)
{
_missingAcceptable.emplace(fan);
}
}
void DbusPidZone::addThermalInput(const std::string& therm,
bool missingAcceptable)
{
/*
* One sensor may have stepwise and PID at the same time.
* Searching the sensor name before inserting it to avoid duplicated sensor
* names.
*/
if (std::find(_thermalInputs.begin(), _thermalInputs.end(), therm) ==
_thermalInputs.end())
{
_thermalInputs.push_back(therm);
}
if (missingAcceptable)
{
_missingAcceptable.emplace(therm);
}
}
// Updates desired RPM setpoint from optional text file
// Returns true if rpmValue updated, false if left unchanged
static bool fileParseRpm(const std::string& fileName, double& rpmValue)
{
static constexpr std::chrono::seconds throttlePace{3};
std::string errText;
try
{
std::ifstream ifs;
ifs.open(fileName);
if (ifs)
{
int value;
ifs >> value;
if (value <= 0)
{
errText = "File content could not be parsed to a number";
}
else if (value <= 100)
{
errText = "File must contain RPM value, not PWM value";
}
else
{
rpmValue = static_cast<double>(value);
return true;
}
}
}
catch (const std::exception& e)
{
errText = "Exception: ";
errText += e.what();
}
// The file is optional, intentionally not an error if file not found
if (!(errText.empty()))
{
tstamp now = std::chrono::high_resolution_clock::now();
if (allowThrottle(now, throttlePace))
{
std::cerr << "Unable to read from '" << fileName << "': " << errText
<< "\n";
}
}
return false;
}
void DbusPidZone::determineMaxSetPointRequest(void)
{
std::vector<double>::iterator result;
double minThermalThreshold = getMinThermalSetPoint();
if (_RPMCeilings.size() > 0)
{
result = std::min_element(_RPMCeilings.begin(), _RPMCeilings.end());
// if Max set point is larger than the lowest ceiling, reset to lowest
// ceiling.
if (*result < _maximumSetPoint)
{
_maximumSetPoint = *result;
// When using lowest ceiling, controller name is ceiling.
_maximumSetPointName = "Ceiling";
}
}
/*
* Combine the maximum SetPoint Name if the controllers have same profile
* name. e.g., PID_BB_INLET_TEMP_C + Stepwise_BB_INLET_TEMP_C.
*/
if (getAccSetPoint())
{
auto profileName = _maximumSetPointName;
_maximumSetPointName = "";
for (auto& p : _thermals)
{
auto controllerID = p->getID();
auto found = controllerID.find(profileName);
if (found != std::string::npos)
{
if (_maximumSetPointName.empty())
{
_maximumSetPointName = controllerID;
}
else
{
_maximumSetPointName += " + " + controllerID;
}
}
}
}
/*
* If the maximum RPM setpoint output is below the minimum RPM
* setpoint, set it to the minimum.
*/
if (minThermalThreshold >= _maximumSetPoint)
{
_maximumSetPoint = minThermalThreshold;
_maximumSetPointName = "Minimum";
}
else if (_maximumSetPointName.compare(_maximumSetPointNamePrev))
{
std::cerr << "PID Zone " << _zoneId << " max SetPoint "
<< _maximumSetPoint << " requested by "
<< _maximumSetPointName;
for (const auto& sensor : _failSafeSensors)
{
if (sensor.find("Fan") == std::string::npos)
{
std::cerr << " " << sensor;
}
}
std::cerr << "\n";
_maximumSetPointNamePrev.assign(_maximumSetPointName);
}
if (tuningEnabled)
{
/*
* We received no setpoints from thermal sensors.
* This is a case experienced during tuning where they only specify
* fan sensors and one large fan PID for all the fans.
*/
static constexpr auto setpointpath = "/etc/thermal.d/setpoint";
fileParseRpm(setpointpath, _maximumSetPoint);
// Allow per-zone setpoint files to override overall setpoint file
std::ostringstream zoneSuffix;
zoneSuffix << ".zone" << _zoneId;
std::string zoneSetpointPath = setpointpath + zoneSuffix.str();
fileParseRpm(zoneSetpointPath, _maximumSetPoint);
}
return;
}
void DbusPidZone::initializeLog(void)
{
/* Print header for log file:
* epoch_ms,setpt,fan1,fan1_raw,fan1_pwm,fan1_pwm_raw,fan2,fan2_raw,fan2_pwm,fan2_pwm_raw,fanN,fanN_raw,fanN_pwm,fanN_pwm_raw,sensor1,sensor1_raw,sensor2,sensor2_raw,sensorN,sensorN_raw,failsafe
*/
_log << "epoch_ms,setpt,requester";
for (const auto& f : _fanInputs)
{
_log << "," << f << "," << f << "_raw";
_log << "," << f << "_pwm," << f << "_pwm_raw";
}
for (const auto& t : _thermalInputs)
{
_log << "," << t << "," << t << "_raw";
}
_log << ",failsafe";
_log << std::endl;
}
void DbusPidZone::writeLog(const std::string& value)
{
_log << value;
}
/*
* TODO(venture) This is effectively updating the cache and should check if the
* values they're using to update it are new or old, or whatnot. For instance,
* if we haven't heard from the host in X time we need to detect this failure.
*
* I haven't decided if the Sensor should have a lastUpdated method or whether
* that should be for the ReadInterface or etc...
*/
/**
* We want the PID loop to run with values cached, so this will get all the
* fan tachs for the loop.
*/
void DbusPidZone::updateFanTelemetry(void)
{
/* TODO(venture): Should I just make _log point to /dev/null when logging
* is disabled? I think it's a waste to try and log things even if the
* data is just being dropped though.
*/
const auto now = std::chrono::high_resolution_clock::now();
if (loggingEnabled)
{
_log << std::chrono::duration_cast<std::chrono::milliseconds>(
now.time_since_epoch())
.count();
_log << "," << _maximumSetPoint;
_log << "," << _maximumSetPointName;
}
processSensorInputs</* fanSensorLogging */ true>(_fanInputs, now);
if (loggingEnabled)
{
for (const auto& t : _thermalInputs)
{
const auto& v = _cachedValuesByName[t];
_log << "," << v.scaled << "," << v.unscaled;
}
}
return;
}
void DbusPidZone::updateSensors(void)
{
processSensorInputs</* fanSensorLogging */ false>(
_thermalInputs, std::chrono::high_resolution_clock::now());
return;
}
void DbusPidZone::initializeCache(void)
{
auto nan = std::numeric_limits<double>::quiet_NaN();
for (const auto& f : _fanInputs)
{
_cachedValuesByName[f] = {nan, nan};
_cachedFanOutputs[f] = {nan, nan};
// Start all fans in fail-safe mode.
markSensorMissing(f);
}
for (const auto& t : _thermalInputs)
{
_cachedValuesByName[t] = {nan, nan};
// Start all sensors in fail-safe mode.
markSensorMissing(t);
}
// Initialize Pid FailSafePercent
initPidFailSafePercent();
}
void DbusPidZone::dumpCache(void)
{
std::cerr << "Cache values now: \n";
for (const auto& [name, value] : _cachedValuesByName)
{
std::cerr << name << ": " << value.scaled << " " << value.unscaled
<< "\n";
}
std::cerr << "Fan outputs now: \n";
for (const auto& [name, value] : _cachedFanOutputs)
{
std::cerr << name << ": " << value.scaled << " " << value.unscaled
<< "\n";
}
}
void DbusPidZone::processFans(void)
{
for (auto& p : _fans)
{
p->process();
}
if (_redundantWrite)
{
// This is only needed once
_redundantWrite = false;
}
}
void DbusPidZone::processThermals(void)
{
for (auto& p : _thermals)
{
p->process();
}
}
Sensor* DbusPidZone::getSensor(const std::string& name)
{
return _mgr.getSensor(name);
}
bool DbusPidZone::getRedundantWrite(void) const
{
return _redundantWrite;
}
bool DbusPidZone::manual(bool value)
{
std::cerr << "manual: " << value << std::endl;
setManualMode(value);
return ModeObject::manual(value);
}
bool DbusPidZone::failSafe() const
{
return getFailSafeMode();
}
void DbusPidZone::addPidControlProcess(std::string name, std::string type,
double setpoint, sdbusplus::bus_t& bus,
std::string objPath, bool defer)
{
_pidsControlProcess[name] = std::make_unique<ProcessObject>(
bus, objPath.c_str(),
defer ? ProcessObject::action::defer_emit
: ProcessObject::action::emit_object_added);
// Default enable setting = true
_pidsControlProcess[name]->enabled(true);
_pidsControlProcess[name]->setpoint(setpoint);
if (type == "temp")
{
_pidsControlProcess[name]->classType("Temperature");
}
else if (type == "margin")
{
_pidsControlProcess[name]->classType("Margin");
}
else if (type == "power")
{
_pidsControlProcess[name]->classType("Power");
}
else if (type == "powersum")
{
_pidsControlProcess[name]->classType("PowerSum");
}
}
bool DbusPidZone::isPidProcessEnabled(std::string name)
{
return _pidsControlProcess[name]->enabled();
}
void DbusPidZone::initPidFailSafePercent(void)
{
// Currently, find the max failsafe percent pwm settings from zone and
// controller, and assign it to zone failsafe percent.
_failSafePercent = _zoneFailSafePercent;
std::cerr << "zone: Zone" << _zoneId
<< " zoneFailSafePercent: " << _zoneFailSafePercent << "\n";
for (const auto& [name, value] : _pidsFailSafePercent)
{
_failSafePercent = std::max(_failSafePercent, value);
std::cerr << "pid: " << name << " failSafePercent: " << value << "\n";
}
// when the final failsafe percent is zero , it indicate no failsafe
// percent is configured  , set it to 100% as the default setting.
if (_failSafePercent == 0)
{
_failSafePercent = 100;
}
std::cerr << "Final zone" << _zoneId
<< " failSafePercent: " << _failSafePercent << "\n";
}
void DbusPidZone::addPidFailSafePercent(std::string name, double percent)
{
_pidsFailSafePercent[name] = percent;
}
std::string DbusPidZone::leader() const
{
return _maximumSetPointName;
}
void DbusPidZone::updateThermalPowerDebugInterface(
std::string pidName, std::string leader, double input, double output)
{
if (leader.empty())
{
_pidsControlProcess[pidName]->output(output);
}
else
{
_pidsControlProcess[pidName]->leader(leader);
_pidsControlProcess[pidName]->input(input);
}
}
bool DbusPidZone::getAccSetPoint(void) const
{
return _accumulateSetPoint;
}
} // namespace pid_control