blob: 31742f5f07c672ce40f108d0196d446ad26969a6 [file] [log] [blame]
/*
// Copyright (c) 2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include "conf.hpp"
#include "dbus/util.hpp"
#include <algorithm>
#include <chrono>
#include <functional>
#include <iostream>
#include <sdbusplus/bus.hpp>
#include <sdbusplus/bus/match.hpp>
#include <sdbusplus/exception.hpp>
#include <set>
#include <thread>
#include <unordered_map>
static constexpr bool DEBUG = false; // enable to print found configuration
std::map<std::string, struct SensorConfig> sensorConfig = {};
std::map<int64_t, PIDConf> zoneConfig = {};
std::map<int64_t, struct ZoneConfig> zoneDetailsConfig = {};
constexpr const char* pidConfigurationInterface =
"xyz.openbmc_project.Configuration.Pid";
constexpr const char* objectManagerInterface =
"org.freedesktop.DBus.ObjectManager";
constexpr const char* pidZoneConfigurationInterface =
"xyz.openbmc_project.Configuration.Pid.Zone";
constexpr const char* stepwiseConfigurationInterface =
"xyz.openbmc_project.Configuration.Stepwise";
constexpr const char* sensorInterface = "xyz.openbmc_project.Sensor.Value";
constexpr const char* pwmInterface = "xyz.openbmc_project.Control.FanPwm";
namespace dbus_configuration
{
namespace variant_ns = sdbusplus::message::variant_ns;
bool findSensor(const std::unordered_map<std::string, std::string>& sensors,
const std::string& search,
std::pair<std::string, std::string>& sensor)
{
auto found =
std::find_if(sensors.begin(), sensors.end(), [&search](const auto& s) {
return (s.first.find(search) != std::string::npos);
});
if (found != sensors.end())
{
sensor = *found;
return true;
}
return false;
}
// this function prints the configuration into a form similar to the cpp
// generated code to help in verification, should be turned off during normal
// use
void debugPrint(void)
{
// print sensor config
std::cout << "sensor config:\n";
std::cout << "{\n";
for (const auto& pair : sensorConfig)
{
std::cout << "\t{" << pair.first << ",\n\t\t{";
std::cout << pair.second.type << ", ";
std::cout << pair.second.readpath << ", ";
std::cout << pair.second.writepath << ", ";
std::cout << pair.second.min << ", ";
std::cout << pair.second.max << ", ";
std::cout << pair.second.timeout << "},\n\t},\n";
}
std::cout << "}\n\n";
std::cout << "ZoneDetailsConfig\n";
std::cout << "{\n";
for (const auto& zone : zoneDetailsConfig)
{
std::cout << "\t{" << zone.first << ",\n";
std::cout << "\t\t{" << zone.second.minthermalrpm << ", ";
std::cout << zone.second.failsafepercent << "}\n\t},\n";
}
std::cout << "}\n\n";
std::cout << "ZoneConfig\n";
std::cout << "{\n";
for (const auto& zone : zoneConfig)
{
std::cout << "\t{" << zone.first << "\n";
for (const auto& pidconf : zone.second)
{
std::cout << "\t\t{" << pidconf.first << ",\n";
std::cout << "\t\t\t{" << pidconf.second.type << ",\n";
std::cout << "\t\t\t{";
for (const auto& input : pidconf.second.inputs)
{
std::cout << "\n\t\t\t" << input << ",\n";
}
std::cout << "\t\t\t}\n";
std::cout << "\t\t\t" << pidconf.second.setpoint << ",\n";
std::cout << "\t\t\t{" << pidconf.second.pidInfo.ts << ",\n";
std::cout << "\t\t\t" << pidconf.second.pidInfo.p_c << ",\n";
std::cout << "\t\t\t" << pidconf.second.pidInfo.i_c << ",\n";
std::cout << "\t\t\t" << pidconf.second.pidInfo.ff_off << ",\n";
std::cout << "\t\t\t" << pidconf.second.pidInfo.ff_gain << ",\n";
std::cout << "\t\t\t{" << pidconf.second.pidInfo.i_lim.min << ","
<< pidconf.second.pidInfo.i_lim.max << "},\n";
std::cout << "\t\t\t{" << pidconf.second.pidInfo.out_lim.min << ","
<< pidconf.second.pidInfo.out_lim.max << "},\n";
std::cout << "\t\t\t" << pidconf.second.pidInfo.slew_neg << ",\n";
std::cout << "\t\t\t" << pidconf.second.pidInfo.slew_pos << ",\n";
std::cout << "\t\t\t}\n\t\t}\n";
}
std::cout << "\t},\n";
}
std::cout << "}\n\n";
}
int eventHandler(sd_bus_message*, void*, sd_bus_error*)
{
// do a brief sleep as we tend to get a bunch of these events at
// once
std::this_thread::sleep_for(std::chrono::seconds(5));
std::cout << "New configuration detected, restarting\n.";
std::exit(EXIT_SUCCESS); // service file should make us restart
return 1;
}
size_t getZoneIndex(const std::string& name, std::vector<std::string>& zones)
{
auto it = std::find(zones.begin(), zones.end(), name);
if (it == zones.end())
{
zones.emplace_back(name);
it = zones.end() - 1;
}
return it - zones.begin();
}
void init(sdbusplus::bus::bus& bus)
{
using DbusVariantType =
sdbusplus::message::variant<uint64_t, int64_t, double, std::string,
std::vector<std::string>,
std::vector<double>>;
using ManagedObjectType = std::unordered_map<
sdbusplus::message::object_path,
std::unordered_map<std::string,
std::unordered_map<std::string, DbusVariantType>>>;
// restart on configuration properties changed
static sdbusplus::bus::match::match configMatch(
bus,
"type='signal',member='PropertiesChanged',arg0namespace='" +
std::string(pidConfigurationInterface) + "'",
eventHandler);
// restart on sensors changed
static sdbusplus::bus::match::match sensorAdded(
bus,
"type='signal',member='InterfacesAdded',arg0path='/xyz/openbmc_project/"
"sensors/'",
eventHandler);
auto mapper =
bus.new_method_call("xyz.openbmc_project.ObjectMapper",
"/xyz/openbmc_project/object_mapper",
"xyz.openbmc_project.ObjectMapper", "GetSubTree");
mapper.append("/", 0,
std::array<const char*, 6>{objectManagerInterface,
pidConfigurationInterface,
pidZoneConfigurationInterface,
stepwiseConfigurationInterface,
sensorInterface, pwmInterface});
std::unordered_map<
std::string, std::unordered_map<std::string, std::vector<std::string>>>
respData;
try
{
auto resp = bus.call(mapper);
resp.read(respData);
}
catch (sdbusplus::exception_t&)
{
// can't do anything without mapper call data
throw std::runtime_error("ObjectMapper Call Failure");
}
if (respData.empty())
{
// can't do anything without mapper call data
throw std::runtime_error("No configuration data available from Mapper");
}
// create a map of pair of <has pid configuration, ObjectManager path>
std::unordered_map<std::string, std::pair<bool, std::string>> owners;
// and a map of <path, interface> for sensors
std::unordered_map<std::string, std::string> sensors;
for (const auto& objectPair : respData)
{
for (const auto& ownerPair : objectPair.second)
{
auto& owner = owners[ownerPair.first];
for (const std::string& interface : ownerPair.second)
{
if (interface == objectManagerInterface)
{
owner.second = objectPair.first;
}
if (interface == pidConfigurationInterface ||
interface == pidZoneConfigurationInterface ||
interface == stepwiseConfigurationInterface)
{
owner.first = true;
}
if (interface == sensorInterface || interface == pwmInterface)
{
// we're not interested in pwm sensors, just pwm control
if (interface == sensorInterface &&
objectPair.first.find("pwm") != std::string::npos)
{
continue;
}
sensors[objectPair.first] = interface;
}
}
}
}
ManagedObjectType configurations;
for (const auto& owner : owners)
{
// skip if no pid configuration (means probably a sensor)
if (!owner.second.first)
{
continue;
}
auto endpoint = bus.new_method_call(
owner.first.c_str(), owner.second.second.c_str(),
"org.freedesktop.DBus.ObjectManager", "GetManagedObjects");
ManagedObjectType configuration;
try
{
auto responce = bus.call(endpoint);
responce.read(configuration);
}
catch (sdbusplus::exception_t&)
{
// this shouldn't happen, probably means daemon crashed
throw std::runtime_error("Error getting managed objects from " +
owner.first);
}
for (auto& pathPair : configuration)
{
if (pathPair.second.find(pidConfigurationInterface) !=
pathPair.second.end() ||
pathPair.second.find(pidZoneConfigurationInterface) !=
pathPair.second.end() ||
pathPair.second.find(stepwiseConfigurationInterface) !=
pathPair.second.end())
{
configurations.emplace(pathPair);
}
}
}
// on dbus having an index field is a bit strange, so randomly
// assign index based on name property
std::vector<std::string> foundZones;
for (const auto& configuration : configurations)
{
auto findZone =
configuration.second.find(pidZoneConfigurationInterface);
if (findZone != configuration.second.end())
{
const auto& zone = findZone->second;
const std::string& name =
variant_ns::get<std::string>(zone.at("Name"));
size_t index = getZoneIndex(name, foundZones);
auto& details = zoneDetailsConfig[index];
details.minthermalrpm = variant_ns::apply_visitor(
VariantToDoubleVisitor(), zone.at("MinThermalRpm"));
details.failsafepercent = variant_ns::apply_visitor(
VariantToDoubleVisitor(), zone.at("FailSafePercent"));
}
auto findBase = configuration.second.find(pidConfigurationInterface);
if (findBase != configuration.second.end())
{
const auto& base =
configuration.second.at(pidConfigurationInterface);
const std::vector<std::string>& zones =
variant_ns::get<std::vector<std::string>>(base.at("Zones"));
for (const std::string& zone : zones)
{
size_t index = getZoneIndex(zone, foundZones);
PIDConf& conf = zoneConfig[index];
std::vector<std::string> sensorNames =
variant_ns::get<std::vector<std::string>>(
base.at("Inputs"));
auto findOutputs =
base.find("Outputs"); // currently only fans have outputs
if (findOutputs != base.end())
{
std::vector<std::string> outputs =
variant_ns::get<std::vector<std::string>>(
findOutputs->second);
sensorNames.insert(sensorNames.end(), outputs.begin(),
outputs.end());
}
bool sensorsAvailable = sensorNames.size();
std::vector<std::string> inputs;
for (const std::string& sensorName : sensorNames)
{
std::string name = sensorName;
// replace spaces with underscores to be legal on dbus
std::replace(name.begin(), name.end(), ' ', '_');
std::pair<std::string, std::string> sensorPathIfacePair;
if (!findSensor(sensors, name, sensorPathIfacePair))
{
sensorsAvailable = false;
break;
}
if (sensorPathIfacePair.second == sensorInterface)
{
inputs.push_back(name);
auto& config = sensorConfig[name];
config.type =
variant_ns::get<std::string>(base.at("Class"));
config.readpath = sensorPathIfacePair.first;
// todo: maybe un-hardcode this if we run into slower
// timeouts with sensors
if (config.type == "temp")
{
config.timeout = 500;
}
}
else if (sensorPathIfacePair.second == pwmInterface)
{
// copy so we can modify it
for (std::string otherSensor : sensorNames)
{
if (otherSensor == sensorName)
{
continue;
}
std::replace(otherSensor.begin(), otherSensor.end(),
' ', '_');
auto& config = sensorConfig[otherSensor];
config.writepath = sensorPathIfacePair.first;
// todo: un-hardcode this if there are fans with
// different ranges
config.max = 255;
config.min = 0;
}
}
}
// if the sensors aren't available in the current state, don't
// add them to the configuration.
if (!sensorsAvailable)
{
continue;
}
struct ControllerInfo& info =
conf[variant_ns::get<std::string>(base.at("Name"))];
info.inputs = std::move(inputs);
info.type = variant_ns::get<std::string>(base.at("Class"));
// todo: auto generation yaml -> c script seems to discard this
// value for fans, verify this is okay
if (info.type == "fan")
{
info.setpoint = 0;
}
else
{
info.setpoint = variant_ns::apply_visitor(
VariantToDoubleVisitor(), base.at("SetPoint"));
}
info.pidInfo.ts = 1.0; // currently unused
info.pidInfo.p_c = variant_ns::apply_visitor(
VariantToDoubleVisitor(), base.at("PCoefficient"));
info.pidInfo.i_c = variant_ns::apply_visitor(
VariantToDoubleVisitor(), base.at("ICoefficient"));
info.pidInfo.ff_off = variant_ns::apply_visitor(
VariantToDoubleVisitor(), base.at("FFOffCoefficient"));
info.pidInfo.ff_gain = variant_ns::apply_visitor(
VariantToDoubleVisitor(), base.at("FFGainCoefficient"));
info.pidInfo.i_lim.max = variant_ns::apply_visitor(
VariantToDoubleVisitor(), base.at("ILimitMax"));
info.pidInfo.i_lim.min = variant_ns::apply_visitor(
VariantToDoubleVisitor(), base.at("ILimitMin"));
info.pidInfo.out_lim.max = variant_ns::apply_visitor(
VariantToDoubleVisitor(), base.at("OutLimitMax"));
info.pidInfo.out_lim.min = variant_ns::apply_visitor(
VariantToDoubleVisitor(), base.at("OutLimitMin"));
info.pidInfo.slew_neg = variant_ns::apply_visitor(
VariantToDoubleVisitor(), base.at("SlewNeg"));
info.pidInfo.slew_pos = variant_ns::apply_visitor(
VariantToDoubleVisitor(), base.at("SlewPos"));
}
}
auto findStepwise =
configuration.second.find(stepwiseConfigurationInterface);
if (findStepwise != configuration.second.end())
{
const auto& base = findStepwise->second;
const std::vector<std::string>& zones =
variant_ns::get<std::vector<std::string>>(base.at("Zones"));
for (const std::string& zone : zones)
{
size_t index = getZoneIndex(zone, foundZones);
PIDConf& conf = zoneConfig[index];
std::vector<std::string> inputs;
std::vector<std::string> sensorNames =
variant_ns::get<std::vector<std::string>>(
base.at("Inputs"));
bool sensorFound = sensorNames.size();
for (const std::string& sensorName : sensorNames)
{
std::string name = sensorName;
// replace spaces with underscores to be legal on dbus
std::replace(name.begin(), name.end(), ' ', '_');
std::pair<std::string, std::string> sensorPathIfacePair;
if (!findSensor(sensors, name, sensorPathIfacePair))
{
sensorFound = false;
break;
}
inputs.push_back(name);
auto& config = sensorConfig[name];
config.readpath = sensorPathIfacePair.first;
config.type = "temp";
// todo: maybe un-hardcode this if we run into slower
// timeouts with sensors
config.timeout = 500;
}
if (!sensorFound)
{
continue;
}
struct ControllerInfo& info =
conf[variant_ns::get<std::string>(base.at("Name"))];
info.inputs = std::move(inputs);
info.type = "stepwise";
info.stepwiseInfo.ts = 1.0; // currently unused
info.stepwiseInfo.positiveHysteresis = 0.0;
info.stepwiseInfo.negativeHysteresis = 0.0;
auto findPosHyst = base.find("PositiveHysteresis");
auto findNegHyst = base.find("NegativeHysteresis");
if (findPosHyst != base.end())
{
info.stepwiseInfo.positiveHysteresis =
variant_ns::apply_visitor(VariantToDoubleVisitor(),
findPosHyst->second);
}
if (findNegHyst != base.end())
{
info.stepwiseInfo.positiveHysteresis =
variant_ns::apply_visitor(VariantToDoubleVisitor(),
findNegHyst->second);
}
std::vector<double> readings =
variant_ns::get<std::vector<double>>(base.at("Reading"));
if (readings.size() > ec::maxStepwisePoints)
{
throw std::invalid_argument("Too many stepwise points.");
}
if (readings.empty())
{
throw std::invalid_argument(
"Must have one stepwise point.");
}
std::copy(readings.begin(), readings.end(),
info.stepwiseInfo.reading);
if (readings.size() < ec::maxStepwisePoints)
{
info.stepwiseInfo.reading[readings.size()] =
std::numeric_limits<double>::quiet_NaN();
}
std::vector<double> outputs =
variant_ns::get<std::vector<double>>(base.at("Output"));
if (readings.size() != outputs.size())
{
throw std::invalid_argument(
"Outputs size must match readings");
}
std::copy(outputs.begin(), outputs.end(),
info.stepwiseInfo.output);
if (outputs.size() < ec::maxStepwisePoints)
{
info.stepwiseInfo.output[outputs.size()] =
std::numeric_limits<double>::quiet_NaN();
}
}
}
}
if (DEBUG)
{
debugPrint();
}
if (zoneConfig.empty() || zoneDetailsConfig.empty())
{
std::cerr << "No fan zones, application pausing until reboot\n";
while (1)
{
bus.process_discard();
bus.wait();
}
}
}
} // namespace dbus_configuration