blob: 257fdfb42fcfe294cd9bfe3de4ac5ecc119df7bf [file] [log] [blame]
#include "psu_manager.hpp"
#include "utility.hpp"
#include <fmt/format.h>
#include <sys/types.h>
#include <unistd.h>
#include <regex>
using namespace phosphor::logging;
namespace phosphor::power::manager
{
constexpr auto IBMCFFPSInterface =
"xyz.openbmc_project.Configuration.IBMCFFPSConnector";
constexpr auto i2cBusProp = "I2CBus";
constexpr auto i2cAddressProp = "I2CAddress";
constexpr auto psuNameProp = "Name";
constexpr auto presLineName = "NamedPresenceGpio";
constexpr auto supportedConfIntf =
"xyz.openbmc_project.Configuration.SupportedConfiguration";
PSUManager::PSUManager(sdbusplus::bus::bus& bus, const sdeventplus::Event& e) :
bus(bus)
{
// Subscribe to InterfacesAdded before doing a property read, otherwise
// the interface could be created after the read attempt but before the
// match is created.
entityManagerIfacesAddedMatch = std::make_unique<sdbusplus::bus::match_t>(
bus,
sdbusplus::bus::match::rules::interfacesAdded() +
sdbusplus::bus::match::rules::sender(
"xyz.openbmc_project.EntityManager"),
std::bind(&PSUManager::entityManagerIfaceAdded, this,
std::placeholders::_1));
getPSUConfiguration();
getSystemProperties();
using namespace sdeventplus;
auto interval = std::chrono::milliseconds(1000);
timer = std::make_unique<utility::Timer<ClockId::Monotonic>>(
e, std::bind(&PSUManager::analyze, this), interval);
validationTimer = std::make_unique<utility::Timer<ClockId::Monotonic>>(
e, std::bind(&PSUManager::validateConfig, this));
try
{
powerConfigGPIO = createGPIO("power-config-full-load");
}
catch (const std::exception& e)
{
// Ignore error, GPIO may not be implemented in this system.
powerConfigGPIO = nullptr;
}
// Subscribe to power state changes
powerService = util::getService(POWER_OBJ_PATH, POWER_IFACE, bus);
powerOnMatch = std::make_unique<sdbusplus::bus::match_t>(
bus,
sdbusplus::bus::match::rules::propertiesChanged(POWER_OBJ_PATH,
POWER_IFACE),
[this](auto& msg) { this->powerStateChanged(msg); });
initialize();
}
void PSUManager::getPSUConfiguration()
{
using namespace phosphor::power::util;
auto depth = 0;
auto objects = getSubTree(bus, "/", IBMCFFPSInterface, depth);
psus.clear();
// I should get a map of objects back.
// Each object will have a path, a service, and an interface.
// The interface should match the one passed into this function.
for (const auto& [path, services] : objects)
{
auto service = services.begin()->first;
if (path.empty() || service.empty())
{
continue;
}
// For each object in the array of objects, I want to get properties
// from the service, path, and interface.
auto properties =
getAllProperties(bus, path, IBMCFFPSInterface, service);
getPSUProperties(properties);
}
if (psus.empty())
{
// Interface or properties not found. Let the Interfaces Added callback
// process the information once the interfaces are added to D-Bus.
log<level::INFO>(fmt::format("No power supplies to monitor").c_str());
}
}
void PSUManager::getPSUProperties(util::DbusPropertyMap& properties)
{
// From passed in properties, I want to get: I2CBus, I2CAddress,
// and Name. Create a power supply object, using Name to build the inventory
// path.
const auto basePSUInvPath =
"/xyz/openbmc_project/inventory/system/chassis/motherboard/powersupply";
uint64_t* i2cbus = nullptr;
uint64_t* i2caddr = nullptr;
std::string* psuname = nullptr;
std::string* preslineptr = nullptr;
for (const auto& property : properties)
{
try
{
if (property.first == i2cBusProp)
{
i2cbus = std::get_if<uint64_t>(&properties[i2cBusProp]);
}
else if (property.first == i2cAddressProp)
{
i2caddr = std::get_if<uint64_t>(&properties[i2cAddressProp]);
}
else if (property.first == psuNameProp)
{
psuname = std::get_if<std::string>(&properties[psuNameProp]);
}
else if (property.first == presLineName)
{
preslineptr =
std::get_if<std::string>(&properties[presLineName]);
}
}
catch (const std::exception& e)
{}
}
if ((i2cbus) && (i2caddr) && (psuname) && (!psuname->empty()))
{
std::string invpath = basePSUInvPath;
invpath.push_back(psuname->back());
std::string presline = "";
log<level::DEBUG>(fmt::format("Inventory Path: {}", invpath).c_str());
if (nullptr != preslineptr)
{
presline = *preslineptr;
}
auto invMatch =
std::find_if(psus.begin(), psus.end(), [&invpath](auto& psu) {
return psu->getInventoryPath() == invpath;
});
if (invMatch != psus.end())
{
// This power supply has the same inventory path as the one with
// information just added to D-Bus.
// Changes to GPIO line name unlikely, so skip checking.
// Changes to the I2C bus and address unlikely, as that would
// require corresponding device tree updates.
// Return out to avoid duplicate object creation.
return;
}
log<level::DEBUG>(
fmt::format("make PowerSupply bus: {} addr: {} presline: {}",
*i2cbus, *i2caddr, presline)
.c_str());
auto psu = std::make_unique<PowerSupply>(bus, invpath, *i2cbus,
*i2caddr, presline);
psus.emplace_back(std::move(psu));
}
if (psus.empty())
{
log<level::INFO>(fmt::format("No power supplies to monitor").c_str());
}
}
void PSUManager::populateSysProperties(const util::DbusPropertyMap& properties)
{
try
{
auto propIt = properties.find("SupportedType");
if (propIt == properties.end())
{
return;
}
const std::string* type = std::get_if<std::string>(&(propIt->second));
if ((type == nullptr) || (*type != "PowerSupply"))
{
return;
}
propIt = properties.find("SupportedModel");
if (propIt == properties.end())
{
return;
}
const std::string* model = std::get_if<std::string>(&(propIt->second));
if (model == nullptr)
{
return;
}
sys_properties sys;
propIt = properties.find("RedundantCount");
if (propIt != properties.end())
{
const uint64_t* count = std::get_if<uint64_t>(&(propIt->second));
if (count != nullptr)
{
sys.powerSupplyCount = *count;
}
}
propIt = properties.find("InputVoltage");
if (propIt != properties.end())
{
const std::vector<uint64_t>* voltage =
std::get_if<std::vector<uint64_t>>(&(propIt->second));
if (voltage != nullptr)
{
sys.inputVoltage = *voltage;
}
}
// The PowerConfigFullLoad is an optional property, default it to false
// since that's the default value of the power-config-full-load GPIO.
sys.powerConfigFullLoad = false;
propIt = properties.find("PowerConfigFullLoad");
if (propIt != properties.end())
{
const bool* fullLoad = std::get_if<bool>(&(propIt->second));
if (fullLoad != nullptr)
{
sys.powerConfigFullLoad = *fullLoad;
}
}
supportedConfigs.emplace(*model, sys);
}
catch (const std::exception& e)
{}
}
void PSUManager::getSystemProperties()
{
try
{
util::DbusSubtree subtree =
util::getSubTree(bus, INVENTORY_OBJ_PATH, supportedConfIntf, 0);
if (subtree.empty())
{
throw std::runtime_error("Supported Configuration Not Found");
}
for (const auto& [objPath, services] : subtree)
{
std::string service = services.begin()->first;
if (objPath.empty() || service.empty())
{
continue;
}
auto properties = util::getAllProperties(
bus, objPath, supportedConfIntf, service);
populateSysProperties(properties);
}
}
catch (const std::exception& e)
{
// Interface or property not found. Let the Interfaces Added callback
// process the information once the interfaces are added to D-Bus.
}
}
void PSUManager::entityManagerIfaceAdded(sdbusplus::message::message& msg)
{
try
{
sdbusplus::message::object_path objPath;
std::map<std::string, std::map<std::string, util::DbusVariant>>
interfaces;
msg.read(objPath, interfaces);
auto itIntf = interfaces.find(supportedConfIntf);
if (itIntf != interfaces.cend())
{
populateSysProperties(itIntf->second);
}
itIntf = interfaces.find(IBMCFFPSInterface);
if (itIntf != interfaces.cend())
{
log<level::INFO>(
fmt::format("InterfacesAdded for: {}", IBMCFFPSInterface)
.c_str());
getPSUProperties(itIntf->second);
}
// Call to validate the psu configuration if the power is on and both
// the IBMCFFPSConnector and SupportedConfiguration interfaces have been
// processed
if (powerOn && !psus.empty() && !supportedConfigs.empty())
{
validationTimer->restartOnce(validationTimeout);
}
}
catch (const std::exception& e)
{
// Ignore, the property may be of a different type than expected.
}
}
void PSUManager::powerStateChanged(sdbusplus::message::message& msg)
{
int32_t state = 0;
std::string msgSensor;
std::map<std::string, std::variant<int32_t>> msgData;
msg.read(msgSensor, msgData);
// Check if it was the Present property that changed.
auto valPropMap = msgData.find("state");
if (valPropMap != msgData.end())
{
state = std::get<int32_t>(valPropMap->second);
// Power is on when state=1. Clear faults.
if (state)
{
powerOn = true;
validationTimer->restartOnce(validationTimeout);
clearFaults();
setPowerConfigGPIO();
}
else
{
powerOn = false;
runValidateConfig = true;
}
}
}
void PSUManager::createError(const std::string& faultName,
std::map<std::string, std::string>& additionalData)
{
using namespace sdbusplus::xyz::openbmc_project;
constexpr auto loggingObjectPath = "/xyz/openbmc_project/logging";
constexpr auto loggingCreateInterface =
"xyz.openbmc_project.Logging.Create";
try
{
additionalData["_PID"] = std::to_string(getpid());
auto service =
util::getService(loggingObjectPath, loggingCreateInterface, bus);
if (service.empty())
{
log<level::ERR>("Unable to get logging manager service");
return;
}
auto method = bus.new_method_call(service.c_str(), loggingObjectPath,
loggingCreateInterface, "Create");
auto level = Logging::server::Entry::Level::Error;
method.append(faultName, level, additionalData);
auto reply = bus.call(method);
}
catch (const std::exception& e)
{
log<level::ERR>(
fmt::format(
"Failed creating event log for fault {} due to error {}",
faultName, e.what())
.c_str());
}
}
void PSUManager::analyze()
{
for (auto& psu : psus)
{
psu->analyze();
}
if (powerOn)
{
std::map<std::string, std::string> additionalData;
for (auto& psu : psus)
{
additionalData.clear();
// TODO: Fault priorities #918
if (!psu->isFaultLogged() && !psu->isPresent())
{
std::map<std::string, std::string> requiredPSUsData;
auto requiredPSUsPresent = hasRequiredPSUs(requiredPSUsData);
if (!requiredPSUsPresent)
{
additionalData.merge(requiredPSUsData);
// Create error for power supply missing.
additionalData["CALLOUT_INVENTORY_PATH"] =
psu->getInventoryPath();
additionalData["CALLOUT_PRIORITY"] = "H";
createError(
"xyz.openbmc_project.Power.PowerSupply.Error.Missing",
additionalData);
}
psu->setFaultLogged();
}
else if (!psu->isFaultLogged() && psu->isFaulted())
{
// Add STATUS_WORD and STATUS_MFR last response, in padded
// hexadecimal format.
additionalData["STATUS_WORD"] =
fmt::format("{:#04x}", psu->getStatusWord());
additionalData["STATUS_MFR"] =
fmt::format("{:#02x}", psu->getMFRFault());
// If there are faults being reported, they possibly could be
// related to a bug in the firmware version running on the power
// supply. Capture that data into the error as well.
additionalData["FW_VERSION"] = psu->getFWVersion();
if (psu->hasCommFault())
{
additionalData["STATUS_CML"] =
fmt::format("{:#02x}", psu->getStatusCML());
/* Attempts to communicate with the power supply have
* reached there limit. Create an error. */
additionalData["CALLOUT_DEVICE_PATH"] =
psu->getDevicePath();
createError(
"xyz.openbmc_project.Power.PowerSupply.Error.CommFault",
additionalData);
psu->setFaultLogged();
}
else if ((psu->hasInputFault() || psu->hasVINUVFault()))
{
// Include STATUS_INPUT for input faults.
additionalData["STATUS_INPUT"] =
fmt::format("{:#02x}", psu->getStatusInput());
/* The power supply location might be needed if the input
* fault is due to a problem with the power supply itself.
* Include the inventory path with a call out priority of
* low.
*/
additionalData["CALLOUT_INVENTORY_PATH"] =
psu->getInventoryPath();
additionalData["CALLOUT_PRIORITY"] = "L";
createError("xyz.openbmc_project.Power.PowerSupply.Error."
"InputFault",
additionalData);
psu->setFaultLogged();
}
else if (psu->hasVoutOVFault())
{
// Include STATUS_VOUT for Vout faults.
additionalData["STATUS_VOUT"] =
fmt::format("{:#02x}", psu->getStatusVout());
additionalData["CALLOUT_INVENTORY_PATH"] =
psu->getInventoryPath();
createError(
"xyz.openbmc_project.Power.PowerSupply.Error.Fault",
additionalData);
psu->setFaultLogged();
}
else if (psu->hasMFRFault())
{
/* This can represent a variety of faults that result in
* calling out the power supply for replacement: Output
* OverCurrent, Output Under Voltage, and potentially other
* faults.
*
* Also plan on putting specific fault in AdditionalData,
* along with register names and register values
* (STATUS_WORD, STATUS_MFR, etc.).*/
additionalData["CALLOUT_INVENTORY_PATH"] =
psu->getInventoryPath();
createError(
"xyz.openbmc_project.Power.PowerSupply.Error.Fault",
additionalData);
psu->setFaultLogged();
}
}
}
}
}
void PSUManager::validateConfig()
{
if (!runValidateConfig || supportedConfigs.empty())
{
return;
}
std::map<std::string, std::string> additionalData;
auto supported = hasRequiredPSUs(additionalData);
if (supported)
{
runValidateConfig = false;
return;
}
// Validation failed, create an error log.
// Return without setting the runValidateConfig flag to false because
// it may be that an additional supported configuration interface is
// added and we need to validate it to see if it matches this system.
createError("xyz.openbmc_project.Power.PowerSupply.Error.NotSupported",
additionalData);
}
bool PSUManager::hasRequiredPSUs(
std::map<std::string, std::string>& additionalData)
{
std::string model{};
if (!validateModelName(model, additionalData))
{
return false;
}
auto presentCount =
std::count_if(psus.begin(), psus.end(),
[](const auto& psu) { return psu->isPresent(); });
// Validate the supported configurations. A system may support more than one
// power supply model configuration. Since all configurations need to be
// checked, the additional data would contain only the information of the
// last configuration that did not match.
std::map<std::string, std::string> tmpAdditionalData;
for (const auto& config : supportedConfigs)
{
if (config.first != model)
{
continue;
}
if (presentCount != config.second.powerSupplyCount)
{
tmpAdditionalData.clear();
tmpAdditionalData["EXPECTED_COUNT"] =
std::to_string(config.second.powerSupplyCount);
tmpAdditionalData["ACTUAL_COUNT"] = std::to_string(presentCount);
continue;
}
bool voltageValidated = true;
for (const auto& psu : psus)
{
if (!psu->isPresent())
{
// Only present PSUs report a valid input voltage
continue;
}
double actualInputVoltage;
int inputVoltage;
psu->getInputVoltage(actualInputVoltage, inputVoltage);
if (std::find(config.second.inputVoltage.begin(),
config.second.inputVoltage.end(),
inputVoltage) == config.second.inputVoltage.end())
{
tmpAdditionalData.clear();
tmpAdditionalData["ACTUAL_VOLTAGE"] =
std::to_string(actualInputVoltage);
for (const auto& voltage : config.second.inputVoltage)
{
tmpAdditionalData["EXPECTED_VOLTAGE"] +=
std::to_string(voltage) + " ";
}
tmpAdditionalData["CALLOUT_INVENTORY_PATH"] =
psu->getInventoryPath();
voltageValidated = false;
break;
}
}
if (!voltageValidated)
{
continue;
}
return true;
}
additionalData.insert(tmpAdditionalData.begin(), tmpAdditionalData.end());
return false;
}
bool PSUManager::validateModelName(
std::string& model, std::map<std::string, std::string>& additionalData)
{
// Check that all PSUs have the same model name. Initialize the model
// variable with the first PSU name found, then use it as a base to compare
// against the rest of the PSUs.
model.clear();
for (const auto& psu : psus)
{
auto psuModel = psu->getModelName();
if (psuModel.empty())
{
continue;
}
if (model.empty())
{
model = psuModel;
continue;
}
if (psuModel != model)
{
additionalData["EXPECTED_MODEL"] = model;
additionalData["ACTUAL_MODEL"] = psuModel;
additionalData["CALLOUT_INVENTORY_PATH"] = psu->getInventoryPath();
model.clear();
return false;
}
}
return true;
}
void PSUManager::setPowerConfigGPIO()
{
if (!powerConfigGPIO)
{
return;
}
std::string model{};
std::map<std::string, std::string> additionalData;
if (!validateModelName(model, additionalData))
{
return;
}
auto config = supportedConfigs.find(model);
if (config != supportedConfigs.end())
{
// The power-config-full-load is an open drain GPIO. Set it to low (0)
// if the supported configuration indicates that this system model
// expects the maximum number of power supplies (full load set to true).
// Else, set it to high (1), this is the default.
auto powerConfigValue =
(config->second.powerConfigFullLoad == true ? 0 : 1);
auto flags = gpiod::line_request::FLAG_OPEN_DRAIN;
powerConfigGPIO->write(powerConfigValue, flags);
}
}
} // namespace phosphor::power::manager