blob: 68b2c7c0f52e2ea34c7e7ac5f7887341286e389d [file] [log] [blame]
#include "config.h"
#include "power_supply.hpp"
#include "types.hpp"
#include "util.hpp"
#include <xyz/openbmc_project/Common/Device/error.hpp>
#include <chrono> // sleep_for()
#include <cmath>
#include <cstdint> // uint8_t...
#include <format>
#include <fstream>
#include <regex>
#include <thread> // sleep_for()
namespace phosphor::power::psu
{
// Amount of time in milliseconds to delay between power supply going from
// missing to present before running the bind command(s).
constexpr auto bindDelay = 1000;
using namespace phosphor::logging;
using namespace sdbusplus::xyz::openbmc_project::Common::Device::Error;
PowerSupply::PowerSupply(
sdbusplus::bus_t& bus, const std::string& invpath, std::uint8_t i2cbus,
std::uint16_t i2caddr, const std::string& driver,
const std::string& gpioLineName, std::function<bool()>&& callback) :
bus(bus), inventoryPath(invpath),
bindPath("/sys/bus/i2c/drivers/" + driver), isPowerOn(std::move(callback)),
driverName(driver)
{
if (inventoryPath.empty())
{
throw std::invalid_argument{"Invalid empty inventoryPath"};
}
if (gpioLineName.empty())
{
throw std::invalid_argument{"Invalid empty gpioLineName"};
}
shortName = findShortName(inventoryPath);
log<level::DEBUG>(
std::format("{} gpioLineName: {}", shortName, gpioLineName).c_str());
presenceGPIO = createGPIO(gpioLineName);
std::ostringstream ss;
ss << std::hex << std::setw(4) << std::setfill('0') << i2caddr;
std::string addrStr = ss.str();
std::string busStr = std::to_string(i2cbus);
bindDevice = busStr;
bindDevice.append("-");
bindDevice.append(addrStr);
pmbusIntf = phosphor::pmbus::createPMBus(i2cbus, addrStr);
// Get the current state of the Present property.
try
{
updatePresenceGPIO();
}
catch (...)
{
// If the above attempt to use the GPIO failed, it likely means that the
// GPIOs are in use by the kernel, meaning it is using gpio-keys.
// So, I should rely on phosphor-gpio-presence to update D-Bus, and
// work that way for power supply presence.
presenceGPIO = nullptr;
// Setup the functions to call when the D-Bus inventory path for the
// Present property changes.
presentMatch = std::make_unique<sdbusplus::bus::match_t>(
bus,
sdbusplus::bus::match::rules::propertiesChanged(inventoryPath,
INVENTORY_IFACE),
[this](auto& msg) { this->inventoryChanged(msg); });
presentAddedMatch = std::make_unique<sdbusplus::bus::match_t>(
bus,
sdbusplus::bus::match::rules::interfacesAdded() +
sdbusplus::bus::match::rules::argNpath(0, inventoryPath),
[this](auto& msg) { this->inventoryAdded(msg); });
updatePresence();
updateInventory();
setupSensors();
}
setInputVoltageRating();
}
void PowerSupply::bindOrUnbindDriver(bool present)
{
// Symbolic link to the device will exist if the driver is bound.
// So exit no action required if both the link and PSU are present
// or neither is present.
namespace fs = std::filesystem;
fs::path path;
auto action = (present) ? "bind" : "unbind";
// This case should not happen, if no device driver name return.
if (driverName.empty())
{
log<level::INFO>("No device driver name found");
return;
}
if (bindPath.string().find(driverName) != std::string::npos)
{
// bindPath has driver name
path = bindPath / action;
}
else
{
// Add driver name to bindPath
path = bindPath / driverName / action;
bindPath = bindPath / driverName;
}
if ((std::filesystem::exists(bindPath / bindDevice) && present) ||
(!std::filesystem::exists(bindPath / bindDevice) && !present))
{
return;
}
if (present)
{
std::this_thread::sleep_for(std::chrono::milliseconds(bindDelay));
log<level::INFO>(
std::format("Binding device driver. path: {} device: {}",
path.string(), bindDevice)
.c_str());
}
else
{
log<level::INFO>(
std::format("Unbinding device driver. path: {} device: {}",
path.string(), bindDevice)
.c_str());
}
std::ofstream file;
file.exceptions(std::ofstream::failbit | std::ofstream::badbit |
std::ofstream::eofbit);
try
{
file.open(path);
file << bindDevice;
file.close();
}
catch (const std::exception& e)
{
auto err = errno;
log<level::ERR>(
std::format("Failed binding or unbinding device. errno={}", err)
.c_str());
}
}
void PowerSupply::updatePresence()
{
try
{
present = getPresence(bus, inventoryPath);
}
catch (const sdbusplus::exception_t& e)
{
// Relying on property change or interface added to retry.
// Log an informational trace to the journal.
log<level::INFO>(
std::format("D-Bus property {} access failure exception",
inventoryPath)
.c_str());
}
}
void PowerSupply::updatePresenceGPIO()
{
bool presentOld = present;
try
{
if (presenceGPIO->read() > 0)
{
present = true;
}
else
{
present = false;
}
}
catch (const std::exception& e)
{
log<level::ERR>(
std::format("presenceGPIO read fail: {}", e.what()).c_str());
throw;
}
if (presentOld != present)
{
log<level::DEBUG>(std::format("{} presentOld: {} present: {}",
shortName, presentOld, present)
.c_str());
auto invpath = inventoryPath.substr(strlen(INVENTORY_OBJ_PATH));
bindOrUnbindDriver(present);
if (present)
{
// If the power supply was present, then missing, and present again,
// the hwmon path may have changed. We will need the correct/updated
// path before any reads or writes are attempted.
pmbusIntf->findHwmonDir();
}
setPresence(bus, invpath, present, shortName);
setupSensors();
updateInventory();
// Need Functional to already be correct before calling this.
checkAvailability();
if (present)
{
onOffConfig(phosphor::pmbus::ON_OFF_CONFIG_CONTROL_PIN_ONLY);
clearFaults();
// Indicate that the input history data and timestamps between all
// the power supplies that are present in the system need to be
// synchronized.
syncHistoryRequired = true;
}
else
{
setSensorsNotAvailable();
}
}
}
void PowerSupply::analyzeCMLFault()
{
if (statusWord & phosphor::pmbus::status_word::CML_FAULT)
{
if (cmlFault < DEGLITCH_LIMIT)
{
if (statusWord != statusWordOld)
{
log<level::ERR>(
std::format("{} CML fault: STATUS_WORD = {:#06x}, "
"STATUS_CML = {:#02x}",
shortName, statusWord, statusCML)
.c_str());
}
cmlFault++;
}
}
else
{
cmlFault = 0;
}
}
void PowerSupply::analyzeInputFault()
{
if (statusWord & phosphor::pmbus::status_word::INPUT_FAULT_WARN)
{
if (inputFault < DEGLITCH_LIMIT)
{
if (statusWord != statusWordOld)
{
log<level::ERR>(
std::format("{} INPUT fault: STATUS_WORD = {:#06x}, "
"STATUS_MFR_SPECIFIC = {:#04x}, "
"STATUS_INPUT = {:#04x}",
shortName, statusWord, statusMFR, statusInput)
.c_str());
}
inputFault++;
}
}
// If had INPUT/VIN_UV fault, and now off.
// Trace that odd behavior.
if (inputFault &&
!(statusWord & phosphor::pmbus::status_word::INPUT_FAULT_WARN))
{
log<level::INFO>(
std::format("{} INPUT fault cleared: STATUS_WORD = {:#06x}, "
"STATUS_MFR_SPECIFIC = {:#04x}, "
"STATUS_INPUT = {:#04x}",
shortName, statusWord, statusMFR, statusInput)
.c_str());
inputFault = 0;
}
}
void PowerSupply::analyzeVoutOVFault()
{
if (statusWord & phosphor::pmbus::status_word::VOUT_OV_FAULT)
{
if (voutOVFault < DEGLITCH_LIMIT)
{
if (statusWord != statusWordOld)
{
log<level::ERR>(
std::format(
"{} VOUT_OV_FAULT fault: STATUS_WORD = {:#06x}, "
"STATUS_MFR_SPECIFIC = {:#04x}, "
"STATUS_VOUT = {:#02x}",
shortName, statusWord, statusMFR, statusVout)
.c_str());
}
voutOVFault++;
}
}
else
{
voutOVFault = 0;
}
}
void PowerSupply::analyzeIoutOCFault()
{
if (statusWord & phosphor::pmbus::status_word::IOUT_OC_FAULT)
{
if (ioutOCFault < DEGLITCH_LIMIT)
{
if (statusWord != statusWordOld)
{
log<level::ERR>(
std::format("{} IOUT fault: STATUS_WORD = {:#06x}, "
"STATUS_MFR_SPECIFIC = {:#04x}, "
"STATUS_IOUT = {:#04x}",
shortName, statusWord, statusMFR, statusIout)
.c_str());
}
ioutOCFault++;
}
}
else
{
ioutOCFault = 0;
}
}
void PowerSupply::analyzeVoutUVFault()
{
if ((statusWord & phosphor::pmbus::status_word::VOUT_FAULT) &&
!(statusWord & phosphor::pmbus::status_word::VOUT_OV_FAULT))
{
if (voutUVFault < DEGLITCH_LIMIT)
{
if (statusWord != statusWordOld)
{
log<level::ERR>(
std::format(
"{} VOUT_UV_FAULT fault: STATUS_WORD = {:#06x}, "
"STATUS_MFR_SPECIFIC = {:#04x}, "
"STATUS_VOUT = {:#04x}",
shortName, statusWord, statusMFR, statusVout)
.c_str());
}
voutUVFault++;
}
}
else
{
voutUVFault = 0;
}
}
void PowerSupply::analyzeFanFault()
{
if (statusWord & phosphor::pmbus::status_word::FAN_FAULT)
{
if (fanFault < DEGLITCH_LIMIT)
{
if (statusWord != statusWordOld)
{
log<level::ERR>(
std::format("{} FANS fault/warning: "
"STATUS_WORD = {:#06x}, "
"STATUS_MFR_SPECIFIC = {:#04x}, "
"STATUS_FANS_1_2 = {:#04x}",
shortName, statusWord, statusMFR, statusFans12)
.c_str());
}
fanFault++;
}
}
else
{
fanFault = 0;
}
}
void PowerSupply::analyzeTemperatureFault()
{
if (statusWord & phosphor::pmbus::status_word::TEMPERATURE_FAULT_WARN)
{
if (tempFault < DEGLITCH_LIMIT)
{
if (statusWord != statusWordOld)
{
log<level::ERR>(std::format("{} TEMPERATURE fault/warning: "
"STATUS_WORD = {:#06x}, "
"STATUS_MFR_SPECIFIC = {:#04x}, "
"STATUS_TEMPERATURE = {:#04x}",
shortName, statusWord, statusMFR,
statusTemperature)
.c_str());
}
tempFault++;
}
}
else
{
tempFault = 0;
}
}
void PowerSupply::analyzePgoodFault()
{
if ((statusWord & phosphor::pmbus::status_word::POWER_GOOD_NEGATED) ||
(statusWord & phosphor::pmbus::status_word::UNIT_IS_OFF))
{
if (pgoodFault < PGOOD_DEGLITCH_LIMIT)
{
if (statusWord != statusWordOld)
{
log<level::ERR>(std::format("{} PGOOD fault: "
"STATUS_WORD = {:#06x}, "
"STATUS_MFR_SPECIFIC = {:#04x}",
shortName, statusWord, statusMFR)
.c_str());
}
pgoodFault++;
}
}
else
{
pgoodFault = 0;
}
}
void PowerSupply::determineMFRFault()
{
if (bindPath.string().find(IBMCFFPS_DD_NAME) != std::string::npos)
{
// IBM MFR_SPECIFIC[4] is PS_Kill fault
if (statusMFR & 0x10)
{
if (psKillFault < DEGLITCH_LIMIT)
{
psKillFault++;
}
}
else
{
psKillFault = 0;
}
// IBM MFR_SPECIFIC[6] is 12Vcs fault.
if (statusMFR & 0x40)
{
if (ps12VcsFault < DEGLITCH_LIMIT)
{
ps12VcsFault++;
}
}
else
{
ps12VcsFault = 0;
}
// IBM MFR_SPECIFIC[7] is 12V Current-Share fault.
if (statusMFR & 0x80)
{
if (psCS12VFault < DEGLITCH_LIMIT)
{
psCS12VFault++;
}
}
else
{
psCS12VFault = 0;
}
}
}
void PowerSupply::analyzeMFRFault()
{
if (statusWord & phosphor::pmbus::status_word::MFR_SPECIFIC_FAULT)
{
if (mfrFault < DEGLITCH_LIMIT)
{
if (statusWord != statusWordOld)
{
log<level::ERR>(std::format("{} MFR fault: "
"STATUS_WORD = {:#06x} "
"STATUS_MFR_SPECIFIC = {:#04x}",
shortName, statusWord, statusMFR)
.c_str());
}
mfrFault++;
}
determineMFRFault();
}
else
{
mfrFault = 0;
}
}
void PowerSupply::analyzeVinUVFault()
{
if (statusWord & phosphor::pmbus::status_word::VIN_UV_FAULT)
{
if (vinUVFault < DEGLITCH_LIMIT)
{
if (statusWord != statusWordOld)
{
log<level::ERR>(
std::format("{} VIN_UV fault: STATUS_WORD = {:#06x}, "
"STATUS_MFR_SPECIFIC = {:#04x}, "
"STATUS_INPUT = {:#04x}",
shortName, statusWord, statusMFR, statusInput)
.c_str());
}
vinUVFault++;
}
// Remember that this PSU has seen an AC fault
acFault = AC_FAULT_LIMIT;
}
else
{
if (vinUVFault != 0)
{
log<level::INFO>(
std::format("{} VIN_UV fault cleared: STATUS_WORD = {:#06x}, "
"STATUS_MFR_SPECIFIC = {:#04x}, "
"STATUS_INPUT = {:#04x}",
shortName, statusWord, statusMFR, statusInput)
.c_str());
vinUVFault = 0;
}
// No AC fail, decrement counter
if (acFault != 0)
{
--acFault;
}
}
}
void PowerSupply::analyze()
{
using namespace phosphor::pmbus;
if (presenceGPIO)
{
updatePresenceGPIO();
}
if (present)
{
try
{
statusWordOld = statusWord;
statusWord = pmbusIntf->read(STATUS_WORD, Type::Debug,
(readFail < LOG_LIMIT));
// Read worked, reset the fail count.
readFail = 0;
if (statusWord)
{
statusInput = pmbusIntf->read(STATUS_INPUT, Type::Debug);
if (bindPath.string().find(IBMCFFPS_DD_NAME) !=
std::string::npos)
{
statusMFR = pmbusIntf->read(STATUS_MFR, Type::Debug);
}
statusCML = pmbusIntf->read(STATUS_CML, Type::Debug);
auto status0Vout = pmbusIntf->insertPageNum(STATUS_VOUT, 0);
statusVout = pmbusIntf->read(status0Vout, Type::Debug);
statusIout = pmbusIntf->read(STATUS_IOUT, Type::Debug);
statusFans12 = pmbusIntf->read(STATUS_FANS_1_2, Type::Debug);
statusTemperature =
pmbusIntf->read(STATUS_TEMPERATURE, Type::Debug);
analyzeCMLFault();
analyzeInputFault();
analyzeVoutOVFault();
analyzeIoutOCFault();
analyzeVoutUVFault();
analyzeFanFault();
analyzeTemperatureFault();
analyzePgoodFault();
analyzeMFRFault();
analyzeVinUVFault();
}
else
{
if (statusWord != statusWordOld)
{
log<level::INFO>(std::format("{} STATUS_WORD = {:#06x}",
shortName, statusWord)
.c_str());
}
// if INPUT/VIN_UV fault was on, it cleared, trace it.
if (inputFault)
{
log<level::INFO>(
std::format(
"{} INPUT fault cleared: STATUS_WORD = {:#06x}",
shortName, statusWord)
.c_str());
}
if (vinUVFault)
{
log<level::INFO>(
std::format("{} VIN_UV cleared: STATUS_WORD = {:#06x}",
shortName, statusWord)
.c_str());
}
if (pgoodFault > 0)
{
log<level::INFO>(
std::format("{} pgoodFault cleared", shortName)
.c_str());
}
clearFaultFlags();
// No AC fail, decrement counter
if (acFault != 0)
{
--acFault;
}
}
// Save off old inputVoltage value.
// Get latest inputVoltage.
// If voltage went from below minimum, and now is not, clear faults.
// Note: getInputVoltage() has its own try/catch.
int inputVoltageOld = inputVoltage;
double actualInputVoltageOld = actualInputVoltage;
getInputVoltage(actualInputVoltage, inputVoltage);
if ((inputVoltageOld == in_input::VIN_VOLTAGE_0) &&
(inputVoltage != in_input::VIN_VOLTAGE_0))
{
log<level::INFO>(
std::format(
"{} READ_VIN back in range: actualInputVoltageOld = {} "
"actualInputVoltage = {}",
shortName, actualInputVoltageOld, actualInputVoltage)
.c_str());
clearVinUVFault();
}
else if (vinUVFault && (inputVoltage != in_input::VIN_VOLTAGE_0))
{
log<level::INFO>(
std::format(
"{} CLEAR_FAULTS: vinUVFault {} actualInputVoltage {}",
shortName, vinUVFault, actualInputVoltage)
.c_str());
// Do we have a VIN_UV fault latched that can now be cleared
// due to voltage back in range? Attempt to clear the
// fault(s), re-check faults on next call.
clearVinUVFault();
}
else if (std::abs(actualInputVoltageOld - actualInputVoltage) >
10.0)
{
log<level::INFO>(
std::format(
"{} actualInputVoltageOld = {} actualInputVoltage = {}",
shortName, actualInputVoltageOld, actualInputVoltage)
.c_str());
}
monitorSensors();
checkAvailability();
}
catch (const ReadFailure& e)
{
if (readFail < SIZE_MAX)
{
readFail++;
}
if (readFail == LOG_LIMIT)
{
phosphor::logging::commit<ReadFailure>();
}
}
}
}
void PowerSupply::onOffConfig(uint8_t data)
{
using namespace phosphor::pmbus;
if (present && driverName != ACBEL_FSG032_DD_NAME)
{
log<level::INFO>("ON_OFF_CONFIG write", entry("DATA=0x%02X", data));
try
{
std::vector<uint8_t> configData{data};
pmbusIntf->writeBinary(ON_OFF_CONFIG, configData,
Type::HwmonDeviceDebug);
}
catch (...)
{
// The underlying code in writeBinary will log a message to the
// journal if the write fails. If the ON_OFF_CONFIG is not setup
// as desired, later fault detection and analysis code should
// catch any of the fall out. We should not need to terminate
// the application if this write fails.
}
}
}
void PowerSupply::clearVinUVFault()
{
// Read in1_lcrit_alarm to clear bits 3 and 4 of STATUS_INPUT.
// The fault bits in STAUTS_INPUT roll-up to STATUS_WORD. Clearing those
// bits in STATUS_INPUT should result in the corresponding STATUS_WORD bits
// also clearing.
//
// Do not care about return value. Should be 1 if active, 0 if not.
if (driverName != ACBEL_FSG032_DD_NAME)
{
static_cast<void>(
pmbusIntf->read("in1_lcrit_alarm", phosphor::pmbus::Type::Hwmon));
}
else
{
static_cast<void>(
pmbusIntf->read("curr1_crit_alarm", phosphor::pmbus::Type::Hwmon));
}
vinUVFault = 0;
}
void PowerSupply::clearFaults()
{
log<level::DEBUG>(
std::format("clearFaults() inventoryPath: {}", inventoryPath).c_str());
faultLogged = false;
// The PMBus device driver does not allow for writing CLEAR_FAULTS
// directly. However, the pmbus hwmon device driver code will send a
// CLEAR_FAULTS after reading from any of the hwmon "files" in sysfs, so
// reading in1_input should result in clearing the fault bits in
// STATUS_BYTE/STATUS_WORD.
// I do not care what the return value is.
if (present)
{
clearFaultFlags();
checkAvailability();
readFail = 0;
try
{
clearVinUVFault();
static_cast<void>(
pmbusIntf->read("in1_input", phosphor::pmbus::Type::Hwmon));
}
catch (const ReadFailure& e)
{
// Since I do not care what the return value is, I really do not
// care much if it gets a ReadFailure either. However, this
// should not prevent the application from continuing to run, so
// catching the read failure.
}
}
}
void PowerSupply::inventoryChanged(sdbusplus::message_t& msg)
{
std::string msgSensor;
std::map<std::string, std::variant<uint32_t, bool>> msgData;
msg.read(msgSensor, msgData);
// Check if it was the Present property that changed.
auto valPropMap = msgData.find(PRESENT_PROP);
if (valPropMap != msgData.end())
{
if (std::get<bool>(valPropMap->second))
{
present = true;
// TODO: Immediately trying to read or write the "files" causes
// read or write failures.
using namespace std::chrono_literals;
std::this_thread::sleep_for(20ms);
pmbusIntf->findHwmonDir();
onOffConfig(phosphor::pmbus::ON_OFF_CONFIG_CONTROL_PIN_ONLY);
clearFaults();
updateInventory();
}
else
{
present = false;
// Clear out the now outdated inventory properties
updateInventory();
}
checkAvailability();
}
}
void PowerSupply::inventoryAdded(sdbusplus::message_t& msg)
{
sdbusplus::message::object_path path;
msg.read(path);
// Make sure the signal is for the PSU inventory path
if (path == inventoryPath)
{
std::map<std::string, std::map<std::string, std::variant<bool>>>
interfaces;
// Get map of interfaces and their properties
msg.read(interfaces);
auto properties = interfaces.find(INVENTORY_IFACE);
if (properties != interfaces.end())
{
auto property = properties->second.find(PRESENT_PROP);
if (property != properties->second.end())
{
present = std::get<bool>(property->second);
log<level::INFO>(std::format("Power Supply {} Present {}",
inventoryPath, present)
.c_str());
updateInventory();
checkAvailability();
}
}
}
}
auto PowerSupply::readVPDValue(const std::string& vpdName,
const phosphor::pmbus::Type& type,
const std::size_t& vpdSize)
{
std::string vpdValue;
const std::regex illegalVPDRegex =
std::regex("[^[:alnum:]]", std::regex::basic);
try
{
vpdValue = pmbusIntf->readString(vpdName, type);
}
catch (const ReadFailure& e)
{
// Ignore the read failure, let pmbus code indicate failure,
// path...
// TODO - ibm918
// https://github.com/openbmc/docs/blob/master/designs/vpd-collection.md
// The BMC must log errors if any of the VPD cannot be properly
// parsed or fails ECC checks.
}
if (vpdValue.size() != vpdSize)
{
log<level::INFO>(std::format("{} {} resize needed. size: {}", shortName,
vpdName, vpdValue.size())
.c_str());
vpdValue.resize(vpdSize, ' ');
}
// Replace any illegal values with space(s).
std::regex_replace(vpdValue.begin(), vpdValue.begin(), vpdValue.end(),
illegalVPDRegex, " ");
return vpdValue;
}
void PowerSupply::updateInventory()
{
using namespace phosphor::pmbus;
#if IBM_VPD
std::string pn;
std::string fn;
std::string header;
std::string sn;
// The IBM power supply splits the full serial number into two parts.
// Each part is 6 bytes long, which should match up with SN_KW_SIZE.
const auto HEADER_SIZE = 6;
const auto SERIAL_SIZE = 6;
// The IBM PSU firmware version size is a bit complicated. It was originally
// 1-byte, per command. It was later expanded to 2-bytes per command, then
// up to 8-bytes per command. The device driver only reads up to 2 bytes per
// command, but combines all three of the 2-byte reads, or all 4 of the
// 1-byte reads into one string. So, the maximum size expected is 6 bytes.
// However, it is formatted by the driver as a hex string with two ASCII
// characters per byte. So the maximum ASCII string size is 12.
const auto IBMCFFPS_FW_VERSION_SIZE = 12;
const auto ACBEL_FSG032_FW_VERSION_SIZE = 6;
using PropertyMap =
std::map<std::string,
std::variant<std::string, std::vector<uint8_t>, bool>>;
PropertyMap assetProps;
PropertyMap operProps;
PropertyMap versionProps;
PropertyMap ipzvpdDINFProps;
PropertyMap ipzvpdVINIProps;
using InterfaceMap = std::map<std::string, PropertyMap>;
InterfaceMap interfaces;
using ObjectMap = std::map<sdbusplus::message::object_path, InterfaceMap>;
ObjectMap object;
#endif
log<level::DEBUG>(
std::format("updateInventory() inventoryPath: {}", inventoryPath)
.c_str());
if (present)
{
// TODO: non-IBM inventory updates?
#if IBM_VPD
if (driverName == ACBEL_FSG032_DD_NAME)
{
getPsuVpdFromDbus("CC", modelName);
getPsuVpdFromDbus("PN", pn);
getPsuVpdFromDbus("FN", fn);
getPsuVpdFromDbus("SN", sn);
assetProps.emplace(SN_PROP, sn);
fwVersion = readVPDValue(FW_VERSION, Type::Debug,
ACBEL_FSG032_FW_VERSION_SIZE);
versionProps.emplace(VERSION_PROP, fwVersion);
}
else
{
modelName = readVPDValue(CCIN, Type::HwmonDeviceDebug, CC_KW_SIZE);
pn = readVPDValue(PART_NUMBER, Type::Debug, PN_KW_SIZE);
fn = readVPDValue(FRU_NUMBER, Type::Debug, FN_KW_SIZE);
header = readVPDValue(SERIAL_HEADER, Type::Debug, HEADER_SIZE);
sn = readVPDValue(SERIAL_NUMBER, Type::Debug, SERIAL_SIZE);
assetProps.emplace(SN_PROP, header + sn);
fwVersion = readVPDValue(FW_VERSION, Type::HwmonDeviceDebug,
IBMCFFPS_FW_VERSION_SIZE);
versionProps.emplace(VERSION_PROP, fwVersion);
}
assetProps.emplace(MODEL_PROP, modelName);
assetProps.emplace(PN_PROP, pn);
assetProps.emplace(SPARE_PN_PROP, fn);
ipzvpdVINIProps.emplace(
"CC", std::vector<uint8_t>(modelName.begin(), modelName.end()));
ipzvpdVINIProps.emplace("PN",
std::vector<uint8_t>(pn.begin(), pn.end()));
ipzvpdVINIProps.emplace("FN",
std::vector<uint8_t>(fn.begin(), fn.end()));
std::string header_sn = header + sn;
ipzvpdVINIProps.emplace(
"SN", std::vector<uint8_t>(header_sn.begin(), header_sn.end()));
std::string description = "IBM PS";
ipzvpdVINIProps.emplace(
"DR", std::vector<uint8_t>(description.begin(), description.end()));
// Populate the VINI Resource Type (RT) keyword
ipzvpdVINIProps.emplace("RT", std::vector<uint8_t>{'V', 'I', 'N', 'I'});
// Update the Resource Identifier (RI) keyword
// 2 byte FRC: 0x0003
// 2 byte RID: 0x1000, 0x1001...
std::uint8_t num = std::stoul(
inventoryPath.substr(inventoryPath.size() - 1, 1), nullptr, 0);
std::vector<uint8_t> ri{0x00, 0x03, 0x10, num};
ipzvpdDINFProps.emplace("RI", ri);
// Fill in the FRU Label (FL) keyword.
std::string fl = "E";
fl.push_back(inventoryPath.back());
fl.resize(FL_KW_SIZE, ' ');
ipzvpdDINFProps.emplace("FL",
std::vector<uint8_t>(fl.begin(), fl.end()));
// Populate the DINF Resource Type (RT) keyword
ipzvpdDINFProps.emplace("RT", std::vector<uint8_t>{'D', 'I', 'N', 'F'});
interfaces.emplace(ASSET_IFACE, std::move(assetProps));
interfaces.emplace(VERSION_IFACE, std::move(versionProps));
interfaces.emplace(DINF_IFACE, std::move(ipzvpdDINFProps));
interfaces.emplace(VINI_IFACE, std::move(ipzvpdVINIProps));
// Update the Functional
operProps.emplace(FUNCTIONAL_PROP, present);
interfaces.emplace(OPERATIONAL_STATE_IFACE, std::move(operProps));
auto path = inventoryPath.substr(strlen(INVENTORY_OBJ_PATH));
object.emplace(path, std::move(interfaces));
try
{
auto service =
util::getService(INVENTORY_OBJ_PATH, INVENTORY_MGR_IFACE, bus);
if (service.empty())
{
log<level::ERR>("Unable to get inventory manager service");
return;
}
auto method =
bus.new_method_call(service.c_str(), INVENTORY_OBJ_PATH,
INVENTORY_MGR_IFACE, "Notify");
method.append(std::move(object));
auto reply = bus.call(method);
}
catch (const std::exception& e)
{
log<level::ERR>(
std::string(e.what() + std::string(" PATH=") + inventoryPath)
.c_str());
}
#endif
}
}
auto PowerSupply::getMaxPowerOut() const
{
using namespace phosphor::pmbus;
auto maxPowerOut = 0;
if (present)
{
try
{
// Read max_power_out, should be direct format
auto maxPowerOutStr =
pmbusIntf->readString(MFR_POUT_MAX, Type::HwmonDeviceDebug);
log<level::INFO>(std::format("{} MFR_POUT_MAX read {}", shortName,
maxPowerOutStr)
.c_str());
maxPowerOut = std::stod(maxPowerOutStr);
}
catch (const std::exception& e)
{
log<level::ERR>(std::format("{} MFR_POUT_MAX read error: {}",
shortName, e.what())
.c_str());
}
}
return maxPowerOut;
}
void PowerSupply::setupSensors()
{
setupInputPowerPeakSensor();
}
void PowerSupply::setupInputPowerPeakSensor()
{
if (peakInputPowerSensor || !present ||
(bindPath.string().find(IBMCFFPS_DD_NAME) == std::string::npos))
{
return;
}
// This PSU has problems with the input_history command
if (getMaxPowerOut() == phosphor::pmbus::IBM_CFFPS_1400W)
{
return;
}
auto sensorPath =
std::format("/xyz/openbmc_project/sensors/power/ps{}_input_power_peak",
shortName.back());
peakInputPowerSensor = std::make_unique<PowerSensorObject>(
bus, sensorPath.c_str(), PowerSensorObject::action::defer_emit);
// The others can remain at the defaults.
peakInputPowerSensor->functional(true, true);
peakInputPowerSensor->available(true, true);
peakInputPowerSensor->value(0, true);
peakInputPowerSensor->unit(
sdbusplus::xyz::openbmc_project::Sensor::server::Value::Unit::Watts,
true);
auto associations = getSensorAssociations();
peakInputPowerSensor->associations(associations, true);
peakInputPowerSensor->emit_object_added();
}
void PowerSupply::setSensorsNotAvailable()
{
if (peakInputPowerSensor)
{
peakInputPowerSensor->value(std::numeric_limits<double>::quiet_NaN());
peakInputPowerSensor->available(false);
}
}
void PowerSupply::monitorSensors()
{
monitorPeakInputPowerSensor();
}
void PowerSupply::monitorPeakInputPowerSensor()
{
if (!peakInputPowerSensor)
{
return;
}
constexpr size_t recordSize = 5;
std::vector<uint8_t> data;
// Get the peak input power with input history command.
// New data only shows up every 30s, but just try to read it every 1s
// anyway so we always have the most up to date value.
try
{
data = pmbusIntf->readBinary(INPUT_HISTORY,
pmbus::Type::HwmonDeviceDebug, recordSize);
}
catch (const ReadFailure& e)
{
peakInputPowerSensor->value(std::numeric_limits<double>::quiet_NaN());
peakInputPowerSensor->functional(false);
throw;
}
if (data.size() != recordSize)
{
log<level::DEBUG>(
std::format("Input history command returned {} bytes instead of 5",
data.size())
.c_str());
peakInputPowerSensor->value(std::numeric_limits<double>::quiet_NaN());
peakInputPowerSensor->functional(false);
return;
}
// The format is SSAAAAPPPP:
// SS = packet sequence number
// AAAA = average power (linear format, little endian)
// PPPP = peak power (linear format, little endian)
auto peak = static_cast<uint16_t>(data[4]) << 8 | data[3];
auto peakPower = linearToInteger(peak);
peakInputPowerSensor->value(peakPower);
peakInputPowerSensor->functional(true);
peakInputPowerSensor->available(true);
}
void PowerSupply::getInputVoltage(double& actualInputVoltage,
int& inputVoltage) const
{
using namespace phosphor::pmbus;
actualInputVoltage = in_input::VIN_VOLTAGE_0;
inputVoltage = in_input::VIN_VOLTAGE_0;
if (present)
{
try
{
// Read input voltage in millivolts
auto inputVoltageStr = pmbusIntf->readString(READ_VIN, Type::Hwmon);
// Convert to volts
actualInputVoltage = std::stod(inputVoltageStr) / 1000;
// Calculate the voltage based on voltage thresholds
if (actualInputVoltage < in_input::VIN_VOLTAGE_MIN)
{
inputVoltage = in_input::VIN_VOLTAGE_0;
}
else if (actualInputVoltage < in_input::VIN_VOLTAGE_110_THRESHOLD)
{
inputVoltage = in_input::VIN_VOLTAGE_110;
}
else
{
inputVoltage = in_input::VIN_VOLTAGE_220;
}
}
catch (const std::exception& e)
{
log<level::ERR>(
std::format("{} READ_VIN read error: {}", shortName, e.what())
.c_str());
}
}
}
void PowerSupply::checkAvailability()
{
bool origAvailability = available;
bool faulted = isPowerOn() && (hasPSKillFault() || hasIoutOCFault());
available = present && !hasInputFault() && !hasVINUVFault() && !faulted;
if (origAvailability != available)
{
auto invpath = inventoryPath.substr(strlen(INVENTORY_OBJ_PATH));
phosphor::power::psu::setAvailable(bus, invpath, available);
// Check if the health rollup needs to change based on the
// new availability value.
phosphor::power::psu::handleChassisHealthRollup(bus, inventoryPath,
!available);
}
}
void PowerSupply::setInputVoltageRating()
{
if (!present)
{
if (inputVoltageRatingIface)
{
inputVoltageRatingIface->value(0);
inputVoltageRatingIface.reset();
}
return;
}
double inputVoltageValue{};
int inputVoltageRating{};
getInputVoltage(inputVoltageValue, inputVoltageRating);
if (!inputVoltageRatingIface)
{
auto path = std::format(
"/xyz/openbmc_project/sensors/voltage/ps{}_input_voltage_rating",
shortName.back());
inputVoltageRatingIface = std::make_unique<SensorObject>(
bus, path.c_str(), SensorObject::action::defer_emit);
// Leave other properties at their defaults
inputVoltageRatingIface->unit(SensorInterface::Unit::Volts, true);
inputVoltageRatingIface->value(static_cast<double>(inputVoltageRating),
true);
inputVoltageRatingIface->emit_object_added();
}
else
{
inputVoltageRatingIface->value(static_cast<double>(inputVoltageRating));
}
}
void PowerSupply::getPsuVpdFromDbus(const std::string& keyword,
std::string& vpdStr)
{
try
{
std::vector<uint8_t> value;
vpdStr.clear();
util::getProperty(VINI_IFACE, keyword, inventoryPath,
INVENTORY_MGR_IFACE, bus, value);
for (char c : value)
{
vpdStr += c;
}
}
catch (const sdbusplus::exception_t& e)
{
log<level::ERR>(
std::format("Failed getProperty error: {}", e.what()).c_str());
}
}
double PowerSupply::linearToInteger(uint16_t data)
{
// The exponent is the first 5 bits, followed by 11 bits of mantissa.
int8_t exponent = (data & 0xF800) >> 11;
int16_t mantissa = (data & 0x07FF);
// If exponent's MSB on, then it's negative.
// Convert from two's complement.
if (exponent & 0x10)
{
exponent = (~exponent) & 0x1F;
exponent = (exponent + 1) * -1;
}
// If mantissa's MSB on, then it's negative.
// Convert from two's complement.
if (mantissa & 0x400)
{
mantissa = (~mantissa) & 0x07FF;
mantissa = (mantissa + 1) * -1;
}
auto value = static_cast<double>(mantissa) * pow(2, exponent);
return value;
}
std::vector<AssociationTuple> PowerSupply::getSensorAssociations()
{
std::vector<AssociationTuple> associations;
associations.emplace_back("inventory", "sensors", inventoryPath);
auto chassis = getChassis(bus, inventoryPath);
associations.emplace_back("chassis", "all_sensors", std::move(chassis));
return associations;
}
} // namespace phosphor::power::psu