| #!/usr/bin/env python3 |
| |
| """Tool to visualize PLDM PDR's""" |
| |
| import argparse |
| import json |
| import hashlib |
| import sys |
| from datetime import datetime |
| import paramiko |
| from graphviz import Digraph |
| from tabulate import tabulate |
| |
| |
| def connect_to_bmc(hostname, uname, passwd, port): |
| |
| """ This function is responsible to connect to the BMC via |
| ssh and returns a client object. |
| |
| Parameters: |
| hostname: hostname/IP address of BMC |
| uname: ssh username of BMC |
| passwd: ssh password of BMC |
| port: ssh port of BMC |
| |
| """ |
| |
| client = paramiko.SSHClient() |
| client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) |
| client.connect(hostname, username=uname, password=passwd, port=port) |
| return client |
| |
| |
| def prepare_summary_report(state_sensor_pdr, state_effecter_pdr): |
| |
| """ This function is responsible to parse the state sensor pdr |
| and the state effecter pdr dictionaries and creating the |
| summary table. |
| |
| Parameters: |
| state_sensor_pdr: list of state sensor pdrs |
| state_effecter_pdr: list of state effecter pdrs |
| |
| """ |
| |
| summary_table = [] |
| headers = ["sensor_id", "entity_type", "state_set", "states"] |
| summary_table.append(headers) |
| for value in state_sensor_pdr.values(): |
| summary_record = [] |
| sensor_possible_states = '' |
| for sensor_state in value["possibleStates[0]"]: |
| sensor_possible_states += sensor_state+"\n" |
| summary_record.extend([value["sensorID"], value["entityType"], |
| value["stateSetID[0]"], |
| sensor_possible_states]) |
| summary_table.append(summary_record) |
| print("Created at : ", datetime.now().strftime("%Y-%m-%d %H:%M:%S")) |
| print(tabulate(summary_table, tablefmt="fancy_grid", headers="firstrow")) |
| |
| summary_table = [] |
| headers = ["effecter_id", "entity_type", "state_set", "states"] |
| summary_table.append(headers) |
| for value in state_effecter_pdr.values(): |
| summary_record = [] |
| effecter_possible_states = '' |
| for state in value["possibleStates[0]"]: |
| effecter_possible_states += state+"\n" |
| summary_record.extend([value["effecterID"], value["entityType"], |
| value["stateSetID[0]"], |
| effecter_possible_states]) |
| summary_table.append(summary_record) |
| print(tabulate(summary_table, tablefmt="fancy_grid", headers="firstrow")) |
| |
| |
| def draw_entity_associations(pdr, counter): |
| |
| """ This function is responsible to create a picture that captures |
| the entity association hierarchy based on the entity association |
| PDR's received from the BMC. |
| |
| Parameters: |
| pdr: list of entity association PDR's |
| counter: variable to capture the count of PDR's to unflatten |
| the tree |
| |
| """ |
| |
| dot = Digraph('entity_hierarchy', node_attr={'color': 'lightblue1', |
| 'style': 'filled'}) |
| dot.attr(label=r'\n\nEntity Relation Diagram < ' + |
| str(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))+'>\n') |
| dot.attr(fontsize='20') |
| edge_list = [] |
| for value in pdr.values(): |
| parentnode = str(value["containerEntityType"]) + \ |
| str(value["containerEntityInstanceNumber"]) |
| dot.node(hashlib.md5((parentnode + |
| str(value["containerEntityContainerID"])) |
| .encode()).hexdigest(), parentnode) |
| |
| for i in range(1, value["containedEntityCount"]+1): |
| childnode = str(value[f"containedEntityType[{i}]"]) + \ |
| str(value[f"containedEntityInstanceNumber[{i}]"]) |
| cid = str(value[f"containedEntityContainerID[{i}]"]) |
| dot.node(hashlib.md5((childnode + cid) |
| .encode()).hexdigest(), childnode) |
| |
| if[hashlib.md5((parentnode + |
| str(value["containerEntityContainerID"])) |
| .encode()).hexdigest(), |
| hashlib.md5((childnode + cid) |
| .encode()).hexdigest()] not in edge_list: |
| edge_list.append([hashlib.md5((parentnode + |
| str(value["containerEntityContainerID"])) |
| .encode()).hexdigest(), |
| hashlib.md5((childnode + cid) |
| .encode()).hexdigest()]) |
| dot.edge(hashlib.md5((parentnode + |
| str(value["containerEntityContainerID"])) |
| .encode()).hexdigest(), |
| hashlib.md5((childnode + cid).encode()).hexdigest()) |
| unflattentree = dot.unflatten(stagger=(round(counter/3))) |
| unflattentree.render(filename='entity_association_' + |
| str(datetime.now().strftime("%Y-%m-%d_%H-%M-%S")), |
| view=False, cleanup=True, format='pdf') |
| |
| |
| def get_pdrs(client): |
| """ Using pldmtool over SSH, generate (record handle, PDR) tuples for each |
| record in the PDR repository. |
| |
| Parameters: |
| client: paramiko ssh client object |
| |
| """ |
| |
| command_fmt = 'pldmtool platform getpdr -d {}' |
| record_handle = 0 |
| while True: |
| output = client.exec_command(command_fmt.format(str(record_handle))) |
| _, stdout, stderr = output |
| pdr = json.load(stdout) |
| yield record_handle, pdr |
| record_handle = pdr["nextRecordHandle"] |
| if record_handle == 0: |
| break |
| |
| |
| def fetch_pdrs_from_bmc(client): |
| |
| """ This is the core function that would use the existing ssh connection |
| object to connect to BMC and fire the getPDR pldmtool command |
| and it then agreegates the data received from all the calls into |
| the respective dictionaries based on the PDR Type. |
| |
| Parameters: |
| client: paramiko ssh client object |
| |
| """ |
| |
| entity_association_pdr = {} |
| state_sensor_pdr = {} |
| state_effecter_pdr = {} |
| state_effecter_pdr = {} |
| numeric_pdr = {} |
| fru_record_set_pdr = {} |
| tl_pdr = {} |
| for handle_number, my_dic in get_pdrs(client): |
| sys.stdout.write("Fetching PDR's from BMC : %8d\r" % (handle_number)) |
| sys.stdout.flush() |
| if my_dic["PDRType"] == "Entity Association PDR": |
| entity_association_pdr[handle_number] = my_dic |
| if my_dic["PDRType"] == "State Sensor PDR": |
| state_sensor_pdr[handle_number] = my_dic |
| if my_dic["PDRType"] == "State Effecter PDR": |
| state_effecter_pdr[handle_number] = my_dic |
| if my_dic["PDRType"] == "FRU Record Set PDR": |
| fru_record_set_pdr[handle_number] = my_dic |
| if my_dic["PDRType"] == "Terminus Locator PDR": |
| tl_pdr[handle_number] = my_dic |
| if my_dic["PDRType"] == "Numeric Effecter PDR": |
| numeric_pdr[handle_number] = my_dic |
| client.close() |
| |
| total_pdrs = len(entity_association_pdr.keys()) + len(tl_pdr.keys()) + \ |
| len(state_effecter_pdr.keys()) + len(numeric_pdr.keys()) + \ |
| len(state_sensor_pdr.keys()) + len(fru_record_set_pdr.keys()) |
| print("\nSuccessfully fetched " + str(total_pdrs) + " PDR\'s") |
| print("Number of FRU Record PDR's : ", len(fru_record_set_pdr.keys())) |
| print("Number of TerminusLocator PDR's : ", len(tl_pdr.keys())) |
| print("Number of State Sensor PDR's : ", len(state_sensor_pdr.keys())) |
| print("Number of State Effecter PDR's : ", len(state_effecter_pdr.keys())) |
| print("Number of Numeric Effecter PDR's : ", len(numeric_pdr.keys())) |
| print("Number of Entity Association PDR's : ", |
| len(entity_association_pdr.keys())) |
| return (entity_association_pdr, state_sensor_pdr, |
| state_effecter_pdr, len(fru_record_set_pdr.keys())) |
| |
| |
| def main(): |
| |
| """ Create a summary table capturing the information of all the PDR's |
| from the BMC & also create a diagram that captures the entity |
| association hierarchy.""" |
| |
| parser = argparse.ArgumentParser(prog='pldm_visualise_pdrs.py') |
| parser.add_argument('--bmc', type=str, required=True, |
| help="BMC IPAddress/BMC Hostname") |
| parser.add_argument('--user', type=str, help="BMC username") |
| parser.add_argument('--password', type=str, required=True, |
| help="BMC Password") |
| parser.add_argument('--port', type=int, help="BMC SSH port", |
| default=22) |
| args = parser.parse_args() |
| client = connect_to_bmc(args.bmc, args.user, args.password, args.port) |
| association_pdr, state_sensor_pdr, state_effecter_pdr, counter = \ |
| fetch_pdrs_from_bmc(client) |
| draw_entity_associations(association_pdr, counter) |
| prepare_summary_report(state_sensor_pdr, state_effecter_pdr) |
| |
| |
| if __name__ == "__main__": |
| main() |