blob: bf5d37260f534b9274e117e8b3da65c17e903e4d [file] [log] [blame]
/* Copyright 2013-2014 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <libflash/libflash.h>
#include <libflash/libflash-priv.h>
#include "ast.h"
#ifndef __unused
#define __unused __attribute__((unused))
#endif
#define CALIBRATE_BUF_SIZE 16384
struct ast_sf_ctrl {
/* We have 2 controllers, one for the BMC flash, one for the PNOR */
uint8_t type;
/* Address and previous value of the ctrl register */
uint32_t ctl_reg;
/* Control register value for normal commands */
uint32_t ctl_val;
/* Control register value for (fast) reads */
uint32_t ctl_read_val;
/* Flash read timing register */
uint32_t fread_timing_reg;
uint32_t fread_timing_val;
/* Address of the flash mapping */
uint32_t flash;
/* Current 4b mode */
bool mode_4b;
/* Callbacks */
struct spi_flash_ctrl ops;
};
static uint32_t ast_ahb_freq;
static const uint32_t ast_ct_hclk_divs[] = {
0xf, /* HCLK */
0x7, /* HCLK/2 */
0xe, /* HCLK/3 */
0x6, /* HCLK/4 */
0xd, /* HCLK/5 */
};
static int ast_sf_start_cmd(struct ast_sf_ctrl *ct, uint8_t cmd)
{
/* Switch to user mode, CE# dropped */
ast_ahb_writel(ct->ctl_val | 7, ct->ctl_reg);
/* user mode, CE# active */
ast_ahb_writel(ct->ctl_val | 3, ct->ctl_reg);
/* write cmd */
return ast_copy_to_ahb(ct->flash, &cmd, 1);
}
static void ast_sf_end_cmd(struct ast_sf_ctrl *ct)
{
/* clear CE# */
ast_ahb_writel(ct->ctl_val | 7, ct->ctl_reg);
/* Switch back to read mode */
ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
}
static int ast_sf_send_addr(struct ast_sf_ctrl *ct, uint32_t addr)
{
const void *ap;
/* Layout address MSB first in memory */
addr = cpu_to_be32(addr);
/* Send the right amount of bytes */
ap = (char *)&addr;
if (ct->mode_4b)
return ast_copy_to_ahb(ct->flash, ap, 4);
else
return ast_copy_to_ahb(ct->flash, ap + 1, 3);
}
static int ast_sf_cmd_rd(struct spi_flash_ctrl *ctrl, uint8_t cmd,
bool has_addr, uint32_t addr, void *buffer,
uint32_t size)
{
struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
int rc;
rc = ast_sf_start_cmd(ct, cmd);
if (rc)
goto bail;
if (has_addr) {
rc = ast_sf_send_addr(ct, addr);
if (rc)
goto bail;
}
if (buffer && size)
rc = ast_copy_from_ahb(buffer, ct->flash, size);
bail:
ast_sf_end_cmd(ct);
return rc;
}
static int ast_sf_cmd_wr(struct spi_flash_ctrl *ctrl, uint8_t cmd,
bool has_addr, uint32_t addr, const void *buffer,
uint32_t size)
{
struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
int rc;
rc = ast_sf_start_cmd(ct, cmd);
if (rc)
goto bail;
if (has_addr) {
rc = ast_sf_send_addr(ct, addr);
if (rc)
goto bail;
}
if (buffer && size)
rc = ast_copy_to_ahb(ct->flash, buffer, size);
bail:
ast_sf_end_cmd(ct);
return rc;
}
static int ast_sf_set_4b(struct spi_flash_ctrl *ctrl, bool enable)
{
struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
uint32_t ce_ctrl = 0;
if (ct->type == AST_SF_TYPE_BMC && ct->ops.finfo->size > 0x1000000)
ce_ctrl = ast_ahb_readl(BMC_SPI_FCTL_CE_CTRL);
/*
* We update the "old" value as well since when quitting
* we don't restore the mode of the flash itself so we need
* to leave the controller in a compatible setup
*/
if (enable) {
ct->ctl_val |= 0x2000;
ct->ctl_read_val |= 0x2000;
ce_ctrl |= 0x1;
} else {
ct->ctl_val &= ~0x2000;
ct->ctl_read_val &= ~0x2000;
ce_ctrl &= ~0x1;
}
ct->mode_4b = enable;
/* Update read mode */
ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
if (ce_ctrl)
ast_ahb_writel(ce_ctrl, BMC_SPI_FCTL_CE_CTRL);
return 0;
}
static int ast_sf_read(struct spi_flash_ctrl *ctrl, uint32_t pos,
void *buf, uint32_t len)
{
struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
/*
* We are in read mode by default. We don't yet support fancy
* things like fast read or X2 mode
*/
return ast_copy_from_ahb(buf, ct->flash + pos, len);
}
static void ast_get_ahb_freq(void)
{
static const uint32_t cpu_freqs_24_48[] = {
384000000,
360000000,
336000000,
408000000
};
static const uint32_t cpu_freqs_25[] = {
400000000,
375000000,
350000000,
425000000
};
static const uint32_t ahb_div[] = { 1, 2, 4, 3 };
uint32_t strap, cpu_clk, div;
if (ast_ahb_freq)
return;
/* HW strapping gives us the CPU freq and AHB divisor */
strap = ast_ahb_readl(SCU_HW_STRAPPING);
if (strap & 0x00800000) {
FL_DBG("AST: CLKIN 25Mhz\n");
cpu_clk = cpu_freqs_25[(strap >> 8) & 3];
} else {
FL_DBG("AST: CLKIN 24/48Mhz\n");
cpu_clk = cpu_freqs_24_48[(strap >> 8) & 3];
}
FL_DBG("AST: CPU frequency: %d Mhz\n", cpu_clk / 1000000);
div = ahb_div[(strap >> 10) & 3];
ast_ahb_freq = cpu_clk / div;
FL_DBG("AST: AHB frequency: %d Mhz\n", ast_ahb_freq / 1000000);
}
static int ast_sf_check_reads(struct ast_sf_ctrl *ct,
const uint8_t *golden_buf, uint8_t *test_buf)
{
int i, rc;
for (i = 0; i < 10; i++) {
rc = ast_copy_from_ahb(test_buf, ct->flash, CALIBRATE_BUF_SIZE);
if (rc)
return rc;
if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0)
return FLASH_ERR_VERIFY_FAILURE;
}
return 0;
}
static int ast_sf_calibrate_reads(struct ast_sf_ctrl *ct, uint32_t hdiv,
const uint8_t *golden_buf, uint8_t *test_buf)
{
int i, rc;
int good_pass = -1, pass_count = 0;
uint32_t shift = (hdiv - 1) << 2;
uint32_t mask = ~(0xfu << shift);
#define FREAD_TPASS(i) (((i) / 2) | (((i) & 1) ? 0 : 8))
/* Try HCLK delay 0..5, each one with/without delay and look for a
* good pair.
*/
for (i = 0; i < 12; i++) {
bool pass;
ct->fread_timing_val &= mask;
ct->fread_timing_val |= FREAD_TPASS(i) << shift;
ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
rc = ast_sf_check_reads(ct, golden_buf, test_buf);
if (rc && rc != FLASH_ERR_VERIFY_FAILURE)
return rc;
pass = (rc == 0);
FL_DBG(" * [%08x] %d HCLK delay, %dns DI delay : %s\n",
ct->fread_timing_val, i/2, (i & 1) ? 0 : 4, pass ? "PASS" : "FAIL");
if (pass) {
pass_count++;
if (pass_count == 3) {
good_pass = i - 1;
break;
}
} else
pass_count = 0;
}
/* No good setting for this frequency */
if (good_pass < 0)
return FLASH_ERR_VERIFY_FAILURE;
/* We have at least one pass of margin, let's use first pass */
ct->fread_timing_val &= mask;
ct->fread_timing_val |= FREAD_TPASS(good_pass) << shift;
ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
FL_DBG("AST: * -> good is pass %d [0x%08x]\n",
good_pass, ct->fread_timing_val);
return 0;
}
static bool ast_calib_data_usable(const uint8_t *test_buf, uint32_t size)
{
const uint32_t *tb32 = (const uint32_t *)test_buf;
uint32_t i, cnt = 0;
/* We check if we have enough words that are neither all 0
* nor all 1's so the calibration can be considered valid.
*
* I use an arbitrary threshold for now of 64
*/
size >>= 2;
for (i = 0; i < size; i++) {
if (tb32[i] != 0 && tb32[i] != 0xffffffff)
cnt++;
}
return cnt >= 64;
}
static int ast_sf_optimize_reads(struct ast_sf_ctrl *ct,
struct flash_info *info __unused,
uint32_t max_freq)
{
uint8_t *golden_buf, *test_buf;
int i, rc, best_div = -1;
uint32_t save_read_val = ct->ctl_read_val;
test_buf = malloc(CALIBRATE_BUF_SIZE * 2);
golden_buf = test_buf + CALIBRATE_BUF_SIZE;
/* We start with the dumbest setting and read some data */
ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
(0x00 << 28) | /* Single bit */
(0x00 << 24) | /* CE# max */
(0x03 << 16) | /* use normal reads */
(0x00 << 8) | /* HCLK/16 */
(0x00 << 6) | /* no dummy cycle */
(0x00); /* normal read */
ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
rc = ast_copy_from_ahb(golden_buf, ct->flash, CALIBRATE_BUF_SIZE);
if (rc) {
free(test_buf);
return rc;
}
/* Establish our read mode with freq field set to 0 */
ct->ctl_read_val = save_read_val & 0xfffff0ff;
/* Check if calibration data is suitable */
if (!ast_calib_data_usable(golden_buf, CALIBRATE_BUF_SIZE)) {
FL_INF("AST: Calibration area too uniform, "
"using low speed\n");
ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
free(test_buf);
return 0;
}
/* Now we iterate the HCLK dividers until we find our breaking point */
for (i = 5; i > 0; i--) {
uint32_t tv, freq;
/* Compare timing to max */
freq = ast_ahb_freq / i;
if (freq >= max_freq)
continue;
/* Set the timing */
tv = ct->ctl_read_val | (ast_ct_hclk_divs[i - 1] << 8);
ast_ahb_writel(tv, ct->ctl_reg);
FL_DBG("AST: Trying HCLK/%d...\n", i);
rc = ast_sf_calibrate_reads(ct, i, golden_buf, test_buf);
/* Some other error occurred, bail out */
if (rc && rc != FLASH_ERR_VERIFY_FAILURE) {
free(test_buf);
return rc;
}
if (rc == 0)
best_div = i;
}
free(test_buf);
/* Nothing found ? */
if (best_div < 0)
FL_ERR("AST: No good frequency, using dumb slow\n");
else {
FL_DBG("AST: Found good read timings at HCLK/%d\n", best_div);
ct->ctl_read_val |= (ast_ct_hclk_divs[best_div - 1] << 8);
}
ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
return 0;
}
static int ast_sf_get_hclk(uint32_t *ctl_val, uint32_t max_freq)
{
int i;
/* It appears that running commands at HCLK/2 on some micron
* chips results in occasionally reads of bogus status (that
* or unrelated chip hangs).
*
* Since we cannot calibrate properly the reads for commands,
* instead, let's limit our SPI frequency to HCLK/4 to stay
* on the safe side of things
*/
#define MIN_CMD_FREQ 4
for (i = MIN_CMD_FREQ; i <= 5; i++) {
uint32_t freq = ast_ahb_freq / i;
if (freq >= max_freq)
continue;
*ctl_val |= (ast_ct_hclk_divs[i - 1] << 8);
return i;
}
return 0;
}
static int ast_sf_setup_macronix(struct ast_sf_ctrl *ct, struct flash_info *info)
{
int rc, div __unused;
uint8_t srcr[2];
/*
* Those Macronix chips support dual reads at 104Mhz
* and dual IO at 84Mhz with 4 dummies.
*
* Our calibration algo should give us something along
* the lines of HCLK/3 (HCLK/2 seems to work sometimes
* but appears to be fairly unreliable) which is 64Mhz
*
* So we chose dual IO mode.
*
* The CE# inactive width for reads must be 7ns, we set it
* to 3T which is about 15ns at the fastest speed we support
* HCLK/2) as I've had issue with smaller values.
*
* For write and program it's 30ns so let's set the value
* for normal ops to 6T.
*
* Preserve the current 4b mode.
*/
FL_DBG("AST: Setting up Macronix...\n");
/*
* Read the status and config registers
*/
rc = ast_sf_cmd_rd(&ct->ops, CMD_RDSR, false, 0, &srcr[0], 1);
if (rc != 0) {
FL_ERR("AST: Failed to read status\n");
return rc;
}
rc = ast_sf_cmd_rd(&ct->ops, CMD_RDCR, false, 0, &srcr[1], 1);
if (rc != 0) {
FL_ERR("AST: Failed to read configuration\n");
return rc;
}
FL_DBG("AST: Macronix SR:CR: 0x%02x:%02x\n", srcr[0], srcr[1]);
/* Switch to 8 dummy cycles to enable 104Mhz operations */
srcr[1] = (srcr[1] & 0x3f) | 0x80;
rc = fl_wren(&ct->ops);
if (rc) {
FL_ERR("AST: Failed to WREN for Macronix config\n");
return rc;
}
rc = ast_sf_cmd_wr(&ct->ops, CMD_WRSR, false, 0, srcr, 2);
if (rc != 0) {
FL_ERR("AST: Failed to write Macronix config\n");
return rc;
}
rc = fl_sync_wait_idle(&ct->ops);;
if (rc != 0) {
FL_ERR("AST: Failed waiting for config write\n");
return rc;
}
FL_DBG("AST: Macronix SR:CR: 0x%02x:%02x\n", srcr[0], srcr[1]);
/* Use 2READ */
ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
(0x03 << 28) | /* Dual IO */
(0x0d << 24) | /* CE# width 3T */
(0xbb << 16) | /* 2READ command */
(0x00 << 8) | /* HCLK/16 (optimize later) */
(0x02 << 6) | /* 2 bytes dummy cycle (8 clocks) */
(0x01); /* fast read */
/* Configure SPI flash read timing */
rc = ast_sf_optimize_reads(ct, info, 104000000);
if (rc) {
FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);
return rc;
}
/*
* For other commands and writes also increase the SPI clock
* to HCLK/2 since the chip supports up to 133Mhz and set
* CE# inactive to 6T. We request a timing that is 20% below
* the limit of the chip, so about 106Mhz which should fit.
*/
ct->ctl_val = (ct->ctl_val & 0x2000) |
(0x00 << 28) | /* Single bit */
(0x0a << 24) | /* CE# width 6T (b1010) */
(0x00 << 16) | /* no command */
(0x00 << 8) | /* HCLK/16 (done later) */
(0x00 << 6) | /* no dummy cycle */
(0x00); /* normal read */
div = ast_sf_get_hclk(&ct->ctl_val, 106000000);
FL_DBG("AST: Command timing set to HCLK/%d\n", div);
/* Update chip with current read config */
ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
return 0;
}
static int ast_sf_setup_winbond(struct ast_sf_ctrl *ct, struct flash_info *info)
{
int rc, div __unused;
FL_DBG("AST: Setting up Windbond...\n");
/*
* This Windbond chip support dual reads at 104Mhz
* with 8 dummy cycles.
*
* The CE# inactive width for reads must be 10ns, we set it
* to 3T which is about 15.6ns.
*/
ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
(0x02 << 28) | /* Dual bit data only */
(0x0e << 24) | /* CE# width 2T (b1110) */
(0x3b << 16) | /* DREAD command */
(0x00 << 8) | /* HCLK/16 */
(0x01 << 6) | /* 1-byte dummy cycle */
(0x01); /* fast read */
/* Configure SPI flash read timing */
rc = ast_sf_optimize_reads(ct, info, 104000000);
if (rc) {
FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);
return rc;
}
/*
* For other commands and writes also increase the SPI clock
* to HCLK/2 since the chip supports up to 133Mhz. CE# inactive
* for write and erase is 50ns so let's set it to 10T.
*/
ct->ctl_val = (ct->ctl_read_val & 0x2000) |
(0x00 << 28) | /* Single bit */
(0x06 << 24) | /* CE# width 10T (b0110) */
(0x00 << 16) | /* no command */
(0x00 << 8) | /* HCLK/16 */
(0x00 << 6) | /* no dummy cycle */
(0x01); /* fast read */
div = ast_sf_get_hclk(&ct->ctl_val, 106000000);
FL_DBG("AST: Command timing set to HCLK/%d\n", div);
/* Update chip with current read config */
ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
return 0;
}
static int ast_sf_setup_micron(struct ast_sf_ctrl *ct, struct flash_info *info)
{
uint8_t vconf, ext_id[6];
int rc, div __unused;
FL_DBG("AST: Setting up Micron...\n");
/*
* Read the extended chip ID to try to detect old vs. new
* flashes since old Micron flashes have a lot of issues
*/
rc = ast_sf_cmd_rd(&ct->ops, CMD_RDID, false, 0, ext_id, 6);
if (rc != 0) {
FL_ERR("AST: Failed to read Micron ext ID, sticking to dumb speed\n");
return 0;
}
/* Check ID matches expectations */
if (ext_id[0] != ((info->id >> 16) & 0xff) ||
ext_id[1] != ((info->id >> 8) & 0xff) ||
ext_id[2] != ((info->id ) & 0xff)) {
FL_ERR("AST: Micron ext ID mismatch, sticking to dumb speed\n");
return 0;
}
FL_DBG("AST: Micron ext ID byte: 0x%02x\n", ext_id[4]);
/* Check for old (<45nm) chips, don't try to be fancy on those */
if (!(ext_id[4] & 0x40)) {
FL_DBG("AST: Old chip, using dumb timings\n");
goto dumb;
}
/*
* Read the micron specific volatile configuration reg
*/
rc = ast_sf_cmd_rd(&ct->ops, CMD_MIC_RDVCONF, false, 0, &vconf, 1);
if (rc != 0) {
FL_ERR("AST: Failed to read Micron vconf, sticking to dumb speed\n");
goto dumb;
}
FL_DBG("AST: Micron VCONF: 0x%02x\n", vconf);
/* Switch to 8 dummy cycles (we might be able to operate with 4
* but let's keep some margin
*/
vconf = (vconf & 0x0f) | 0x80;
rc = ast_sf_cmd_wr(&ct->ops, CMD_MIC_WRVCONF, false, 0, &vconf, 1);
if (rc != 0) {
FL_ERR("AST: Failed to write Micron vconf, "
" sticking to dumb speed\n");
goto dumb;
}
rc = fl_sync_wait_idle(&ct->ops);;
if (rc != 0) {
FL_ERR("AST: Failed waiting for config write\n");
return rc;
}
FL_DBG("AST: Updated to : 0x%02x\n", vconf);
/*
* Try to do full dual IO, with 8 dummy cycles it supports 133Mhz
*
* The CE# inactive width for reads must be 20ns, we set it
* to 4T which is about 20.8ns.
*/
ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
(0x03 << 28) | /* Single bit */
(0x0c << 24) | /* CE# 4T */
(0xbb << 16) | /* 2READ command */
(0x00 << 8) | /* HCLK/16 (optimize later) */
(0x02 << 6) | /* 8 dummy cycles (2 bytes) */
(0x01); /* fast read */
/* Configure SPI flash read timing */
rc = ast_sf_optimize_reads(ct, info, 133000000);
if (rc) {
FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);
return rc;
}
/*
* For other commands and writes also increase the SPI clock
* to HCLK/2 since the chip supports up to 133Mhz. CE# inactive
* for write and erase is 50ns so let's set it to 10T.
*/
ct->ctl_val = (ct->ctl_read_val & 0x2000) |
(0x00 << 28) | /* Single bit */
(0x06 << 24) | /* CE# width 10T (b0110) */
(0x00 << 16) | /* no command */
(0x00 << 8) | /* HCLK/16 */
(0x00 << 6) | /* no dummy cycle */
(0x00); /* norm read */
div = ast_sf_get_hclk(&ct->ctl_val, 133000000);
FL_DBG("AST: Command timing set to HCLK/%d\n", div);
/* Update chip with current read config */
ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
return 0;
dumb:
ct->ctl_val = ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
(0x00 << 28) | /* Single bit */
(0x00 << 24) | /* CE# max */
(0x03 << 16) | /* use normal reads */
(0x06 << 8) | /* HCLK/4 */
(0x00 << 6) | /* no dummy cycle */
(0x00); /* normal read */
/* Update chip with current read config */
ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
return 0;
}
static int ast_sf_setup(struct spi_flash_ctrl *ctrl, uint32_t *tsize)
{
struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
struct flash_info *info = ctrl->finfo;
(void)tsize;
/*
* Configure better timings and read mode for known
* flash chips
*/
switch(info->id) {
case 0xc22018: /* MX25L12835F */
case 0xc22019: /* MX25L25635F */
case 0xc2201a: /* MX66L51235F */
return ast_sf_setup_macronix(ct, info);
case 0xef4018: /* W25Q128BV */
return ast_sf_setup_winbond(ct, info);
case 0x20ba20: /* MT25Qx512xx */
return ast_sf_setup_micron(ct, info);
}
/* No special tuning */
return 0;
}
static bool ast_sf_init_pnor(struct ast_sf_ctrl *ct)
{
uint32_t reg;
ct->ctl_reg = PNOR_SPI_FCTL_CTRL;
ct->fread_timing_reg = PNOR_SPI_FREAD_TIMING;
ct->flash = PNOR_FLASH_BASE;
/* Enable writing to the controller */
reg = ast_ahb_readl(PNOR_SPI_FCTL_CONF);
if (reg == 0xffffffff) {
FL_ERR("AST_SF: Failed read from controller config\n");
return false;
}
ast_ahb_writel(reg | 1, PNOR_SPI_FCTL_CONF);
/*
* Snapshot control reg and sanitize it for our
* use, switching to 1-bit mode, clearing user
* mode if set, etc...
*
* Also configure SPI clock to something safe
* like HCLK/8 (24Mhz)
*/
ct->ctl_val = ast_ahb_readl(ct->ctl_reg);
if (ct->ctl_val == 0xffffffff) {
FL_ERR("AST_SF: Failed read from controller control\n");
return false;
}
ct->ctl_val = (ct->ctl_val & 0x2000) |
(0x00 << 28) | /* Single bit */
(0x00 << 24) | /* CE# width 16T */
(0x00 << 16) | /* no command */
(0x04 << 8) | /* HCLK/8 */
(0x00 << 6) | /* no dummy cycle */
(0x00); /* normal read */
/* Initial read mode is default */
ct->ctl_read_val = ct->ctl_val;
/* Initial read timings all 0 */
ct->fread_timing_val = 0;
/* Configure for read */
ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
if (ct->ctl_val & 0x2000)
ct->mode_4b = true;
else
ct->mode_4b = false;
return true;
}
static bool ast_sf_init_bmc(struct ast_sf_ctrl *ct)
{
ct->ctl_reg = BMC_SPI_FCTL_CTRL;
ct->fread_timing_reg = BMC_SPI_FREAD_TIMING;
ct->flash = BMC_FLASH_BASE;
/*
* Snapshot control reg and sanitize it for our
* use, switching to 1-bit mode, clearing user
* mode if set, etc...
*
* Also configure SPI clock to something safe
* like HCLK/8 (24Mhz)
*/
ct->ctl_val =
(0x00 << 28) | /* Single bit */
(0x00 << 24) | /* CE# width 16T */
(0x00 << 16) | /* no command */
(0x04 << 8) | /* HCLK/8 */
(0x00 << 6) | /* no dummy cycle */
(0x00); /* normal read */
/* Initial read mode is default */
ct->ctl_read_val = ct->ctl_val;
/* Initial read timings all 0 */
ct->fread_timing_val = 0;
/* Configure for read */
ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
ct->mode_4b = false;
return true;
}
static int ast_mem_set4b(struct spi_flash_ctrl *ctrl __unused,
bool enable __unused)
{
return 0;
}
static int ast_mem_setup(struct spi_flash_ctrl *ctrl __unused,
uint32_t *tsize __unused)
{
return 0;
}
static int ast_mem_chipid(struct spi_flash_ctrl *ctrl __unused, uint8_t *id_buf,
uint32_t *id_size)
{
if (*id_size < 3)
return -1;
id_buf[0] = 0xaa;
id_buf[1] = 0x55;
id_buf[2] = 0xaa;
*id_size = 3;
return 0;
}
static int ast_mem_write(struct spi_flash_ctrl *ctrl, uint32_t pos,
const void *buf, uint32_t len)
{
struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
/*
* This only works when the ahb is pointed at system memory.
*/
return ast_copy_to_ahb(ct->flash + pos, buf, len);
}
static int ast_mem_erase(struct spi_flash_ctrl *ctrl, uint32_t addr, uint32_t size)
{
struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
uint32_t pos, len, end = addr + size;
uint64_t zero = 0;
int ret;
for (pos = addr; pos < end; pos += sizeof(zero)) {
if (pos + sizeof(zero) > end)
len = end - pos;
else
len = sizeof(zero);
ret = ast_copy_to_ahb(ct->flash + pos, &zero, len);
if (ret)
return ret;
}
return 0;
}
int ast_sf_open(uint8_t type, struct spi_flash_ctrl **ctrl)
{
struct ast_sf_ctrl *ct;
if (type != AST_SF_TYPE_PNOR && type != AST_SF_TYPE_BMC
&& type != AST_SF_TYPE_MEM)
return -EINVAL;
*ctrl = NULL;
ct = malloc(sizeof(*ct));
if (!ct) {
FL_ERR("AST_SF: Failed to allocate\n");
return -ENOMEM;
}
memset(ct, 0, sizeof(*ct));
ct->type = type;
if (type == AST_SF_TYPE_MEM) {
ct->ops.cmd_wr = NULL;
ct->ops.cmd_rd = NULL;
ct->ops.read = ast_sf_read;
ct->ops.set_4b = ast_mem_set4b;
ct->ops.write = ast_mem_write;
ct->ops.erase = ast_mem_erase;
ct->ops.setup = ast_mem_setup;
ct->ops.chip_id = ast_mem_chipid;
ct->flash = PNOR_FLASH_BASE;
} else {
ct->ops.cmd_wr = ast_sf_cmd_wr;
ct->ops.cmd_rd = ast_sf_cmd_rd;
ct->ops.set_4b = ast_sf_set_4b;
ct->ops.read = ast_sf_read;
ct->ops.setup = ast_sf_setup;
}
ast_get_ahb_freq();
if (type == AST_SF_TYPE_PNOR) {
if (!ast_sf_init_pnor(ct))
goto fail;
} else if (type == AST_SF_TYPE_BMC) {
if (!ast_sf_init_bmc(ct))
goto fail;
}
*ctrl = &ct->ops;
return 0;
fail:
free(ct);
return -EIO;
}
void ast_sf_close(struct spi_flash_ctrl *ctrl)
{
struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
/* Restore control reg to read */
ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
/* Additional cleanup */
if (ct->type == AST_SF_TYPE_PNOR) {
uint32_t reg = ast_ahb_readl(PNOR_SPI_FCTL_CONF);
if (reg != 0xffffffff)
ast_ahb_writel(reg & ~1, PNOR_SPI_FCTL_CONF);
}
/* Free the whole lot */
free(ct);
}