blob: 63a53b6b8855a8b1e4919dd9950aab03f98f012a [file] [log] [blame]
# This file is part of pybootchartgui.
# pybootchartgui is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# pybootchartgui is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with pybootchartgui. If not, see <http://www.gnu.org/licenses/>.
import os
import string
import re
import sys
import tarfile
import time
from collections import defaultdict
from functools import reduce
from .samples import *
from .process_tree import ProcessTree
if sys.version_info >= (3, 0):
long = int
# Parsing produces as its end result a 'Trace'
class Trace:
def __init__(self, writer, paths, options):
self.processes = {}
self.start = {}
self.end = {}
self.min = None
self.max = None
self.headers = None
self.disk_stats = []
self.ps_stats = None
self.taskstats = None
self.cpu_stats = []
self.cmdline = None
self.kernel = None
self.kernel_tree = None
self.filename = None
self.parent_map = None
self.mem_stats = []
self.monitor_disk = None
self.cpu_pressure = []
self.io_pressure = []
self.mem_pressure = []
self.times = [] # Always empty, but expected by draw.py when drawing system charts.
if len(paths):
parse_paths (writer, self, paths)
if not self.valid():
raise ParseError("empty state: '%s' does not contain a valid bootchart" % ", ".join(paths))
if options.full_time:
self.min = min(self.start.keys())
self.max = max(self.end.keys())
# Rendering system charts depends on start and end
# time. Provide them where the original drawing code expects
# them, i.e. in proc_tree.
class BitbakeProcessTree:
def __init__(self, start_time, end_time):
self.start_time = start_time
self.end_time = end_time
self.duration = self.end_time - self.start_time
self.proc_tree = BitbakeProcessTree(min(self.start.keys()),
max(self.end.keys()))
return
# Turn that parsed information into something more useful
# link processes into a tree of pointers, calculate statistics
self.compile(writer)
# Crop the chart to the end of the first idle period after the given
# process
if options.crop_after:
idle = self.crop (writer, options.crop_after)
else:
idle = None
# Annotate other times as the first start point of given process lists
self.times = [ idle ]
if options.annotate:
for procnames in options.annotate:
names = [x[:15] for x in procnames.split(",")]
for proc in self.ps_stats.process_map.values():
if proc.cmd in names:
self.times.append(proc.start_time)
break
else:
self.times.append(None)
self.proc_tree = ProcessTree(writer, self.kernel, self.ps_stats,
self.ps_stats.sample_period,
self.headers.get("profile.process"),
options.prune, idle, self.taskstats,
self.parent_map is not None)
if self.kernel is not None:
self.kernel_tree = ProcessTree(writer, self.kernel, None, 0,
self.headers.get("profile.process"),
False, None, None, True)
def valid(self):
return len(self.processes) != 0
return self.headers != None and self.disk_stats != None and \
self.ps_stats != None and self.cpu_stats != None
def add_process(self, process, start, end):
self.processes[process] = [start, end]
if start not in self.start:
self.start[start] = []
if process not in self.start[start]:
self.start[start].append(process)
if end not in self.end:
self.end[end] = []
if process not in self.end[end]:
self.end[end].append(process)
def compile(self, writer):
def find_parent_id_for(pid):
if pid == 0:
return 0
ppid = self.parent_map.get(pid)
if ppid:
# many of these double forks are so short lived
# that we have no samples, or process info for them
# so climb the parent hierarcy to find one
if int (ppid * 1000) not in self.ps_stats.process_map:
# print "Pid '%d' short lived with no process" % ppid
ppid = find_parent_id_for (ppid)
# else:
# print "Pid '%d' has an entry" % ppid
else:
# print "Pid '%d' missing from pid map" % pid
return 0
return ppid
# merge in the cmdline data
if self.cmdline is not None:
for proc in self.ps_stats.process_map.values():
rpid = int (proc.pid // 1000)
if rpid in self.cmdline:
cmd = self.cmdline[rpid]
proc.exe = cmd['exe']
proc.args = cmd['args']
# else:
# print "proc %d '%s' not in cmdline" % (rpid, proc.exe)
# re-parent any stray orphans if we can
if self.parent_map is not None:
for process in self.ps_stats.process_map.values():
ppid = find_parent_id_for (int(process.pid // 1000))
if ppid:
process.ppid = ppid * 1000
# stitch the tree together with pointers
for process in self.ps_stats.process_map.values():
process.set_parent (self.ps_stats.process_map)
# count on fingers variously
for process in self.ps_stats.process_map.values():
process.calc_stats (self.ps_stats.sample_period)
def crop(self, writer, crop_after):
def is_idle_at(util, start, j):
k = j + 1
while k < len(util) and util[k][0] < start + 300:
k += 1
k = min(k, len(util)-1)
if util[j][1] >= 0.25:
return False
avgload = sum(u[1] for u in util[j:k+1]) / (k-j+1)
if avgload < 0.25:
return True
else:
return False
def is_idle(util, start):
for j in range(0, len(util)):
if util[j][0] < start:
continue
return is_idle_at(util, start, j)
else:
return False
names = [x[:15] for x in crop_after.split(",")]
for proc in self.ps_stats.process_map.values():
if proc.cmd in names or proc.exe in names:
writer.info("selected proc '%s' from list (start %d)"
% (proc.cmd, proc.start_time))
break
if proc is None:
writer.warn("no selected crop proc '%s' in list" % crop_after)
cpu_util = [(sample.time, sample.user + sample.sys + sample.io) for sample in self.cpu_stats]
disk_util = [(sample.time, sample.util) for sample in self.disk_stats]
idle = None
for i in range(0, len(cpu_util)):
if cpu_util[i][0] < proc.start_time:
continue
if is_idle_at(cpu_util, cpu_util[i][0], i) \
and is_idle(disk_util, cpu_util[i][0]):
idle = cpu_util[i][0]
break
if idle is None:
writer.warn ("not idle after proc '%s'" % crop_after)
return None
crop_at = idle + 300
writer.info ("cropping at time %d" % crop_at)
while len (self.cpu_stats) \
and self.cpu_stats[-1].time > crop_at:
self.cpu_stats.pop()
while len (self.disk_stats) \
and self.disk_stats[-1].time > crop_at:
self.disk_stats.pop()
self.ps_stats.end_time = crop_at
cropped_map = {}
for key, value in self.ps_stats.process_map.items():
if (value.start_time <= crop_at):
cropped_map[key] = value
for proc in cropped_map.values():
proc.duration = min (proc.duration, crop_at - proc.start_time)
while len (proc.samples) \
and proc.samples[-1].time > crop_at:
proc.samples.pop()
self.ps_stats.process_map = cropped_map
return idle
class ParseError(Exception):
"""Represents errors during parse of the bootchart."""
def __init__(self, value):
self.value = value
def __str__(self):
return self.value
def _parse_headers(file):
"""Parses the headers of the bootchart."""
def parse(acc, line):
(headers, last) = acc
if '=' in line:
last, value = map (lambda x: x.strip(), line.split('=', 1))
else:
value = line.strip()
headers[last] += value
return headers, last
return reduce(parse, file.read().split('\n'), (defaultdict(str),''))[0]
def _parse_timed_blocks(file):
"""Parses (ie., splits) a file into so-called timed-blocks. A
timed-block consists of a timestamp on a line by itself followed
by zero or more lines of data for that point in time."""
def parse(block):
lines = block.split('\n')
if not lines:
raise ParseError('expected a timed-block consisting a timestamp followed by data lines')
try:
return (int(lines[0]), lines[1:])
except ValueError:
raise ParseError("expected a timed-block, but timestamp '%s' is not an integer" % lines[0])
blocks = file.read().split('\n\n')
return [parse(block) for block in blocks if block.strip() and not block.endswith(' not running\n')]
def _parse_proc_ps_log(writer, file):
"""
* See proc(5) for details.
*
* {pid, comm, state, ppid, pgrp, session, tty_nr, tpgid, flags, minflt, cminflt, majflt, cmajflt, utime, stime,
* cutime, cstime, priority, nice, 0, itrealvalue, starttime, vsize, rss, rlim, startcode, endcode, startstack,
* kstkesp, kstkeip}
"""
processMap = {}
ltime = 0
timed_blocks = _parse_timed_blocks(file)
for time, lines in timed_blocks:
for line in lines:
if not line: continue
tokens = line.split(' ')
if len(tokens) < 21:
continue
offset = [index for index, token in enumerate(tokens[1:]) if token[-1] == ')'][0]
pid, cmd, state, ppid = int(tokens[0]), ' '.join(tokens[1:2+offset]), tokens[2+offset], int(tokens[3+offset])
userCpu, sysCpu, stime = int(tokens[13+offset]), int(tokens[14+offset]), int(tokens[21+offset])
# magic fixed point-ness ...
pid *= 1000
ppid *= 1000
if pid in processMap:
process = processMap[pid]
process.cmd = cmd.strip('()') # why rename after latest name??
else:
process = Process(writer, pid, cmd.strip('()'), ppid, min(time, stime))
processMap[pid] = process
if process.last_user_cpu_time is not None and process.last_sys_cpu_time is not None and ltime is not None:
userCpuLoad, sysCpuLoad = process.calc_load(userCpu, sysCpu, max(1, time - ltime))
cpuSample = CPUSample('null', userCpuLoad, sysCpuLoad, 0.0)
process.samples.append(ProcessSample(time, state, cpuSample))
process.last_user_cpu_time = userCpu
process.last_sys_cpu_time = sysCpu
ltime = time
if len (timed_blocks) < 2:
return None
startTime = timed_blocks[0][0]
avgSampleLength = (ltime - startTime)/(len (timed_blocks) - 1)
return ProcessStats (writer, processMap, len (timed_blocks), avgSampleLength, startTime, ltime)
def _parse_taskstats_log(writer, file):
"""
* See bootchart-collector.c for details.
*
* { pid, ppid, comm, cpu_run_real_total, blkio_delay_total, swapin_delay_total }
*
"""
processMap = {}
pidRewrites = {}
ltime = None
timed_blocks = _parse_timed_blocks(file)
for time, lines in timed_blocks:
# we have no 'stime' from taskstats, so prep 'init'
if ltime is None:
process = Process(writer, 1, '[init]', 0, 0)
processMap[1000] = process
ltime = time
# continue
for line in lines:
if not line: continue
tokens = line.split(' ')
if len(tokens) != 6:
continue
opid, ppid, cmd = int(tokens[0]), int(tokens[1]), tokens[2]
cpu_ns, blkio_delay_ns, swapin_delay_ns = long(tokens[-3]), long(tokens[-2]), long(tokens[-1]),
# make space for trees of pids
opid *= 1000
ppid *= 1000
# when the process name changes, we re-write the pid.
if opid in pidRewrites:
pid = pidRewrites[opid]
else:
pid = opid
cmd = cmd.strip('(').strip(')')
if pid in processMap:
process = processMap[pid]
if process.cmd != cmd:
pid += 1
pidRewrites[opid] = pid
# print "process mutation ! '%s' vs '%s' pid %s -> pid %s\n" % (process.cmd, cmd, opid, pid)
process = process.split (writer, pid, cmd, ppid, time)
processMap[pid] = process
else:
process.cmd = cmd;
else:
process = Process(writer, pid, cmd, ppid, time)
processMap[pid] = process
delta_cpu_ns = (float) (cpu_ns - process.last_cpu_ns)
delta_blkio_delay_ns = (float) (blkio_delay_ns - process.last_blkio_delay_ns)
delta_swapin_delay_ns = (float) (swapin_delay_ns - process.last_swapin_delay_ns)
# make up some state data ...
if delta_cpu_ns > 0:
state = "R"
elif delta_blkio_delay_ns + delta_swapin_delay_ns > 0:
state = "D"
else:
state = "S"
# retain the ns timing information into a CPUSample - that tries
# with the old-style to be a %age of CPU used in this time-slice.
if delta_cpu_ns + delta_blkio_delay_ns + delta_swapin_delay_ns > 0:
# print "proc %s cpu_ns %g delta_cpu %g" % (cmd, cpu_ns, delta_cpu_ns)
cpuSample = CPUSample('null', delta_cpu_ns, 0.0,
delta_blkio_delay_ns,
delta_swapin_delay_ns)
process.samples.append(ProcessSample(time, state, cpuSample))
process.last_cpu_ns = cpu_ns
process.last_blkio_delay_ns = blkio_delay_ns
process.last_swapin_delay_ns = swapin_delay_ns
ltime = time
if len (timed_blocks) < 2:
return None
startTime = timed_blocks[0][0]
avgSampleLength = (ltime - startTime)/(len(timed_blocks)-1)
return ProcessStats (writer, processMap, len (timed_blocks), avgSampleLength, startTime, ltime)
def _parse_proc_stat_log(file):
samples = []
ltimes = None
for time, lines in _parse_timed_blocks(file):
# skip emtpy lines
if not lines:
continue
# CPU times {user, nice, system, idle, io_wait, irq, softirq}
tokens = lines[0].split()
times = [ int(token) for token in tokens[1:] ]
if ltimes:
user = float((times[0] + times[1]) - (ltimes[0] + ltimes[1]))
system = float((times[2] + times[5] + times[6]) - (ltimes[2] + ltimes[5] + ltimes[6]))
idle = float(times[3] - ltimes[3])
iowait = float(times[4] - ltimes[4])
aSum = max(user + system + idle + iowait, 1)
samples.append( CPUSample(time, user/aSum, system/aSum, iowait/aSum) )
ltimes = times
# skip the rest of statistics lines
return samples
def _parse_reduced_log(file, sample_class):
samples = []
for time, lines in _parse_timed_blocks(file):
samples.append(sample_class(time, *[float(x) for x in lines[0].split()]))
return samples
def _parse_proc_disk_stat_log(file):
"""
Parse file for disk stats, but only look at the whole device, eg. sda,
not sda1, sda2 etc. The format of relevant lines should be:
{major minor name rio rmerge rsect ruse wio wmerge wsect wuse running use aveq}
"""
disk_regex_re = re.compile ('^([hsv]d.|mtdblock\d|mmcblk\d|cciss/c\d+d\d+.*)$')
# this gets called an awful lot.
def is_relevant_line(linetokens):
if len(linetokens) != 14:
return False
disk = linetokens[2]
return disk_regex_re.match(disk)
disk_stat_samples = []
for time, lines in _parse_timed_blocks(file):
sample = DiskStatSample(time)
relevant_tokens = [linetokens for linetokens in map (lambda x: x.split(),lines) if is_relevant_line(linetokens)]
for tokens in relevant_tokens:
disk, rsect, wsect, use = tokens[2], int(tokens[5]), int(tokens[9]), int(tokens[12])
sample.add_diskdata([rsect, wsect, use])
disk_stat_samples.append(sample)
disk_stats = []
for sample1, sample2 in zip(disk_stat_samples[:-1], disk_stat_samples[1:]):
interval = sample1.time - sample2.time
if interval == 0:
interval = 1
sums = [ a - b for a, b in zip(sample1.diskdata, sample2.diskdata) ]
readTput = sums[0] / 2.0 * 100.0 / interval
writeTput = sums[1] / 2.0 * 100.0 / interval
util = float( sums[2] ) / 10 / interval
util = max(0.0, min(1.0, util))
disk_stats.append(DiskSample(sample2.time, readTput, writeTput, util))
return disk_stats
def _parse_reduced_proc_meminfo_log(file):
"""
Parse file for global memory statistics with
'MemTotal', 'MemFree', 'Buffers', 'Cached', 'SwapTotal', 'SwapFree' values
(in that order) directly stored on one line.
"""
used_values = ('MemTotal', 'MemFree', 'Buffers', 'Cached', 'SwapTotal', 'SwapFree',)
mem_stats = []
for time, lines in _parse_timed_blocks(file):
sample = MemSample(time)
for name, value in zip(used_values, lines[0].split()):
sample.add_value(name, int(value))
if sample.valid():
mem_stats.append(DrawMemSample(sample))
return mem_stats
def _parse_proc_meminfo_log(file):
"""
Parse file for global memory statistics.
The format of relevant lines should be: ^key: value( unit)?
"""
used_values = ('MemTotal', 'MemFree', 'Buffers', 'Cached', 'SwapTotal', 'SwapFree',)
mem_stats = []
meminfo_re = re.compile(r'([^ \t:]+):\s*(\d+).*')
for time, lines in _parse_timed_blocks(file):
sample = MemSample(time)
for line in lines:
match = meminfo_re.match(line)
if not match:
raise ParseError("Invalid meminfo line \"%s\"" % line)
sample.add_value(match.group(1), int(match.group(2)))
if sample.valid():
mem_stats.append(DrawMemSample(sample))
return mem_stats
def _parse_monitor_disk_log(file):
"""
Parse file with information about amount of diskspace used.
The format of relevant lines should be: ^volume path: number-of-bytes?
"""
disk_stats = []
diskinfo_re = re.compile(r'^(.+):\s*(\d+)$')
for time, lines in _parse_timed_blocks(file):
sample = DiskSpaceSample(time)
for line in lines:
match = diskinfo_re.match(line)
if not match:
raise ParseError("Invalid monitor_disk line \"%s\"" % line)
sample.add_value(match.group(1), int(match.group(2)))
if sample.valid():
disk_stats.append(sample)
return disk_stats
def _parse_pressure_logs(file, filename):
"""
Parse file for "some" pressure with 'avg10', 'avg60' 'avg300' and delta total values
(in that order) directly stored on one line for both CPU and IO, based on filename.
"""
pressure_stats = []
if filename == "cpu.log":
SamplingClass = CPUPressureSample
elif filename == "memory.log":
SamplingClass = MemPressureSample
else:
SamplingClass = IOPressureSample
for time, lines in _parse_timed_blocks(file):
for line in lines:
if not line: continue
tokens = line.split()
avg10 = float(tokens[0])
avg60 = float(tokens[1])
avg300 = float(tokens[2])
delta = float(tokens[3])
pressure_stats.append(SamplingClass(time, avg10, avg60, avg300, delta))
return pressure_stats
# if we boot the kernel with: initcall_debug printk.time=1 we can
# get all manner of interesting data from the dmesg output
# We turn this into a pseudo-process tree: each event is
# characterised by a
# we don't try to detect a "kernel finished" state - since the kernel
# continues to do interesting things after init is called.
#
# sample input:
# [ 0.000000] ACPI: FACP 3f4fc000 000F4 (v04 INTEL Napa 00000001 MSFT 01000013)
# ...
# [ 0.039993] calling migration_init+0x0/0x6b @ 1
# [ 0.039993] initcall migration_init+0x0/0x6b returned 1 after 0 usecs
def _parse_dmesg(writer, file):
timestamp_re = re.compile ("^\[\s*(\d+\.\d+)\s*]\s+(.*)$")
split_re = re.compile ("^(\S+)\s+([\S\+_-]+) (.*)$")
processMap = {}
idx = 0
inc = 1.0 / 1000000
kernel = Process(writer, idx, "k-boot", 0, 0.1)
processMap['k-boot'] = kernel
base_ts = False
max_ts = 0
for line in file.read().split('\n'):
t = timestamp_re.match (line)
if t is None:
# print "duff timestamp " + line
continue
time_ms = float (t.group(1)) * 1000
# looks like we may have a huge diff after the clock
# has been set up. This could lead to huge graph:
# so huge we will be killed by the OOM.
# So instead of using the plain timestamp we will
# use a delta to first one and skip the first one
# for convenience
if max_ts == 0 and not base_ts and time_ms > 1000:
base_ts = time_ms
continue
max_ts = max(time_ms, max_ts)
if base_ts:
# print "fscked clock: used %f instead of %f" % (time_ms - base_ts, time_ms)
time_ms -= base_ts
m = split_re.match (t.group(2))
if m is None:
continue
# print "match: '%s'" % (m.group(1))
type = m.group(1)
func = m.group(2)
rest = m.group(3)
if t.group(2).startswith ('Write protecting the') or \
t.group(2).startswith ('Freeing unused kernel memory'):
kernel.duration = time_ms / 10
continue
# print "foo: '%s' '%s' '%s'" % (type, func, rest)
if type == "calling":
ppid = kernel.pid
p = re.match ("\@ (\d+)", rest)
if p is not None:
ppid = float (p.group(1)) // 1000
# print "match: '%s' ('%g') at '%s'" % (func, ppid, time_ms)
name = func.split ('+', 1) [0]
idx += inc
processMap[func] = Process(writer, ppid + idx, name, ppid, time_ms / 10)
elif type == "initcall":
# print "finished: '%s' at '%s'" % (func, time_ms)
if func in processMap:
process = processMap[func]
process.duration = (time_ms / 10) - process.start_time
else:
print("corrupted init call for %s" % (func))
elif type == "async_waiting" or type == "async_continuing":
continue # ignore
return processMap.values()
#
# Parse binary pacct accounting file output if we have one
# cf. /usr/include/linux/acct.h
#
def _parse_pacct(writer, file):
# read LE int32
def _read_le_int32(file):
byts = file.read(4)
return (ord(byts[0])) | (ord(byts[1]) << 8) | \
(ord(byts[2]) << 16) | (ord(byts[3]) << 24)
parent_map = {}
parent_map[0] = 0
while file.read(1) != "": # ignore flags
ver = file.read(1)
if ord(ver) < 3:
print("Invalid version 0x%x" % (ord(ver)))
return None
file.seek (14, 1) # user, group etc.
pid = _read_le_int32 (file)
ppid = _read_le_int32 (file)
# print "Parent of %d is %d" % (pid, ppid)
parent_map[pid] = ppid
file.seek (4 + 4 + 16, 1) # timings
file.seek (16, 1) # acct_comm
return parent_map
def _parse_paternity_log(writer, file):
parent_map = {}
parent_map[0] = 0
for line in file.read().split('\n'):
if not line:
continue
elems = line.split(' ') # <Child> <Parent>
if len (elems) >= 2:
# print "paternity of %d is %d" % (int(elems[0]), int(elems[1]))
parent_map[int(elems[0])] = int(elems[1])
else:
print("Odd paternity line '%s'" % (line))
return parent_map
def _parse_cmdline_log(writer, file):
cmdLines = {}
for block in file.read().split('\n\n'):
lines = block.split('\n')
if len (lines) >= 3:
# print "Lines '%s'" % (lines[0])
pid = int (lines[0])
values = {}
values['exe'] = lines[1].lstrip(':')
args = lines[2].lstrip(':').split('\0')
args.pop()
values['args'] = args
cmdLines[pid] = values
return cmdLines
def _parse_bitbake_buildstats(writer, state, filename, file):
paths = filename.split("/")
task = paths[-1]
pn = paths[-2]
start = None
end = None
for line in file:
if line.startswith("Started:"):
start = int(float(line.split()[-1]))
elif line.startswith("Ended:"):
end = int(float(line.split()[-1]))
if start and end:
state.add_process(pn + ":" + task, start, end)
def get_num_cpus(headers):
"""Get the number of CPUs from the system.cpu header property. As the
CPU utilization graphs are relative, the number of CPUs currently makes
no difference."""
if headers is None:
return 1
if headers.get("system.cpu.num"):
return max (int (headers.get("system.cpu.num")), 1)
cpu_model = headers.get("system.cpu")
if cpu_model is None:
return 1
mat = re.match(".*\\((\\d+)\\)", cpu_model)
if mat is None:
return 1
return max (int(mat.group(1)), 1)
def _do_parse(writer, state, filename, file):
writer.info("parsing '%s'" % filename)
t1 = time.process_time()
name = os.path.basename(filename)
if name == "proc_diskstats.log":
state.disk_stats = _parse_proc_disk_stat_log(file)
elif name == "reduced_proc_diskstats.log":
state.disk_stats = _parse_reduced_log(file, DiskSample)
elif name == "proc_stat.log":
state.cpu_stats = _parse_proc_stat_log(file)
elif name == "reduced_proc_stat.log":
state.cpu_stats = _parse_reduced_log(file, CPUSample)
elif name == "proc_meminfo.log":
state.mem_stats = _parse_proc_meminfo_log(file)
elif name == "reduced_proc_meminfo.log":
state.mem_stats = _parse_reduced_proc_meminfo_log(file)
elif name == "cmdline2.log":
state.cmdline = _parse_cmdline_log(writer, file)
elif name == "monitor_disk.log":
state.monitor_disk = _parse_monitor_disk_log(file)
#pressure logs are in a subdirectory
elif name == "cpu.log":
state.cpu_pressure = _parse_pressure_logs(file, name)
elif name == "io.log":
state.io_pressure = _parse_pressure_logs(file, name)
elif name == "memory.log":
state.mem_pressure = _parse_pressure_logs(file, name)
elif not filename.endswith('.log'):
_parse_bitbake_buildstats(writer, state, filename, file)
t2 = time.process_time()
writer.info(" %s seconds" % str(t2-t1))
return state
def parse_file(writer, state, filename):
if state.filename is None:
state.filename = filename
basename = os.path.basename(filename)
with open(filename, "r") as file:
return _do_parse(writer, state, filename, file)
def parse_paths(writer, state, paths):
for path in paths:
if state.filename is None:
state.filename = path
root, extension = os.path.splitext(path)
if not(os.path.exists(path)):
writer.warn("warning: path '%s' does not exist, ignoring." % path)
continue
#state.filename = path
if os.path.isdir(path):
files = sorted([os.path.join(path, f) for f in os.listdir(path)])
state = parse_paths(writer, state, files)
elif extension in [".tar", ".tgz", ".gz"]:
if extension == ".gz":
root, extension = os.path.splitext(root)
if extension != ".tar":
writer.warn("warning: can only handle zipped tar files, not zipped '%s'-files; ignoring" % extension)
continue
tf = None
try:
writer.status("parsing '%s'" % path)
tf = tarfile.open(path, 'r:*')
for name in tf.getnames():
state = _do_parse(writer, state, name, tf.extractfile(name))
except tarfile.ReadError as error:
raise ParseError("error: could not read tarfile '%s': %s." % (path, error))
finally:
if tf != None:
tf.close()
else:
state = parse_file(writer, state, path)
return state
def split_res(res, options):
""" Split the res into n pieces """
res_list = []
if options.num > 1:
s_list = sorted(res.start.keys())
frag_size = len(s_list) / float(options.num)
# Need the top value
if frag_size > int(frag_size):
frag_size = int(frag_size + 1)
else:
frag_size = int(frag_size)
start = 0
end = frag_size
while start < end:
state = Trace(None, [], None)
if options.full_time:
state.min = min(res.start.keys())
state.max = max(res.end.keys())
for i in range(start, end):
# Add this line for reference
#state.add_process(pn + ":" + task, start, end)
for p in res.start[s_list[i]]:
state.add_process(p, s_list[i], res.processes[p][1])
start = end
end = end + frag_size
if end > len(s_list):
end = len(s_list)
res_list.append(state)
else:
res_list.append(res)
return res_list